Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T05:37:18.791Z Has data issue: false hasContentIssue false

Problems with different time scales

Published online by Cambridge University Press:  07 November 2008

Heinz-Otto Kreiss
Affiliation:
Deparment of MathematicsUniversity of California at Los Angeles, Los Angeles, CA 90024USA, E-mail: [email protected]

Extract

In this section we discuss a very simple problem. Consider the scalar initial value problem

Here ε > 0 is a small constant and a = a1 + ia2, a1, a2 real, is a complex number with |a| = 1. We can write down the solution of (1.1) explicity. It is

where

is the forced solution and

is a solution of the homogeneous equation

yS varies on the time scale ‘1’ while yF varies on the much faster scale 1/ε. We say that yS, yF vary on the slow and fast scale, respectively. We use also the phrase: yS and yF are the slow and the fast part of the solution, respectively.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amdursky, V. and Ziv, A. (1977), ‘On the numerical solution of stiff linear systems of the oscillatory type’, SIAM J. Appl. Math. 33, 593606.Google Scholar
Bogoliubov, N. and Mitropolsky, Y. A. (1961), Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach (New York).Google Scholar
Browning, G., Kasahara, A., and Kreiss, H.-O. (1980), ‘Initialization of the primitive equations by the bounded derivative principle’, J. Atmos. Sci. 37, 14241436.2.0.CO;2>CrossRefGoogle Scholar
Browning, G. and Kreiss, H.-O. (1982), ‘Initialization of the shallow water equations with open boundaries by the bounded derivative method’, Tellus 34, 334351.CrossRefGoogle Scholar
Browning, G. and Kreiss, H.-O. (1982), ‘Problems with different time scales for nonlinear partial differential equationsSIAM J. Appl. Math. 42, 704718.CrossRefGoogle Scholar
Browning, G. and Kreiss, H.-O. (1985), ‘Numerical problems connected with weather prediction’, in Progress and Supercomputing in Computational Fluid Dynamics, (Murman, E.M. and Abarbanel, S.S., eds), Birkhauser (Boston) 377394.CrossRefGoogle Scholar
Browning, G. L. and Kreiss, H.-O. (1986), ‘Scaling and computation of smooth atmospheric motions’, Tellus 38A, 295313.CrossRefGoogle Scholar
Browning, G. L. and Kreiss, H.-O. (1987), ‘Reduced systems for the shallow water equations’, J. Atmos. Sci. 44, 28132822.2.0.CO;2>CrossRefGoogle Scholar
Browning, G. L., Holland, W. R., Kreiss, H.-O. and Worley, S. J. (1990), ‘An accurate hyperbolic system for approximately hydrostatic and incompressible oceanographic flows’, Dyn. of Atmos. Oceans 14, 303332.CrossRefGoogle Scholar
Fatunla, S. O., (1980), ‘Numerical Integrators for stiff and highly oscillatory differential equations’, Math. Comput. 34, 373390.CrossRefGoogle Scholar
Fenichel, N. (1985), ‘Persistence and smoothness of invariant manifolds for flows’, Indiana U. Math. J. 21, 193226.CrossRefGoogle Scholar
Gautschi, W., (1961), ‘Numerical integration of ordinary differential equations based on trigonometric polynomials’, Numer. Math. 3, 381397.CrossRefGoogle Scholar
Guerra, J., and Gustafsson, B. (1982), A Semi-implicit Method for Hyperbolic Problems with Different Time Scales, Report No. 90, Department of Computer Sciences, Uppsala University.Google Scholar
Gustafsson, B. (1980a), ‘Asymptotic expansions for hyperbolic systems with different time scales’, SIAM J. Numer. Anal. 17, No. 5, 623634.CrossRefGoogle Scholar
Gustafsson, B., (1980b), ‘Numerical solution of hyperbolic systems with different time scales using asymptotic expansions’, J. Comput. Phys. 36, 209235.CrossRefGoogle Scholar
Gustafsson, B. and Kreiss, H.-O. (1983), ‘Difference approximations of hyperbolic problems with different time scales. I. The reduced problem’, SIAM J. Numer. Anal. 20, 4658.CrossRefGoogle Scholar
Hoppensteadt, F. C. and Miranker, W. L., (1976), ‘Differential equations having rapidly changing solutions: analytic methods for weakly nonlinear systems’, J. Diff. Eqns 22, 237249.CrossRefGoogle Scholar
Johansson, C. (1991), ‘The numerical solution of low Mach number flow in confined regions by Richardson extrapolation’, to appear.Google Scholar
Kasahara, A. (1974), ‘Various vertical coordinate systems used for numerical weather prediction’, Mon. Weather Rev. 102, 509522.2.0.CO;2>CrossRefGoogle Scholar
Kasahara, A. (1982), ‘Nonlinear normal mode initialization an the bounded derivative method’, Rev. Geophys. Space Phys. 20, No.3, 385397.CrossRefGoogle Scholar
Kevorkian, J. and Cole, J. D. (1981), Perturbation Methods in Applied Mathematics., Springer-Verlag (New York)CrossRefGoogle Scholar
Klainerman, S. and Majda, A. (1982), ‘Compressible and incompressible fluids’, Comm. Pure Appl. Math. 35, 629651.CrossRefGoogle Scholar
Kopell, N. (1985), ‘Invariant manifolds and the initialization problem for atmospheric equations’, Physica 14D, 203215.Google Scholar
Kreiss, H.-O. (1979), ‘Problems with different time scales for ordinary differential equations’, SIAM J. Numer. Anal. 16, 980998.CrossRefGoogle Scholar
Kreiss, H.-O. (1980), ‘Problems with different time scales for partial differential equations’, Comm. Pure Appl. Math. 33, 399439.CrossRefGoogle Scholar
Kreiss, H.-O. and Lorenz, J. (1989), Initial-Boundary Value Problems and the Navier-Stokes Equations, Academic Press (New York).Google Scholar
Kreiss, H.-O.Lorenz, J. and Naughton, M. (1991), ‘Convergence of the solutions of the compressible to the solutions of the Incompressible Navier-Stokes equations’, Adv. Appl. Math. 12, 187214.CrossRefGoogle Scholar
Kreiss, H.-O. and Lorenz, J. (1991), ‘Manifolds of slow solutions for highly oscillatory problems’, to appear.Google Scholar
Kreth, H. (1977), ‘Time-discretizations for nonlinear evolution equations’, Lecture Notes in Mathematics, Vol. 679, Springer (Berlin).Google Scholar
Leith, C. E. (1980), ‘Nonlinear normal mode initialization and quasi-geostrophic theory’, J. Atmos. Sci. 37, 954964.2.0.CO;2>CrossRefGoogle Scholar
Lindberg, B. (1971), ‘On smoothing and extrapolation for the trapezoidal rule’, BIT 11, 2952.CrossRefGoogle Scholar
Machenhauer, B. (1977), ‘On the dynamics of gravity oscillations in a shollow water model, with applications to normal mode initialization’, Beitr. Phys. Atmos. 50, 253271.Google Scholar
Majda, G. (1984), ‘Filtering techniques for oscillatory stiff ODE's’, SIAM J. Numer. Anal. 21, 535566.CrossRefGoogle Scholar
Miranker, W. L. and Wabba, G. (1976), ‘An averaging method for the stiff highly oscillatory problem’, Math. Comput. 30, 383399.CrossRefGoogle Scholar
Miranker, W. L. and van Veldhuisen, M. (1978), ‘The method of envelopes’, Math. Comput. 32, 453498.CrossRefGoogle Scholar
Miranker, W. L. (1981), Numerical Methods for Stiff Equations and Singular Perturbation Problems, D. Reidel (Dordrecht, Holland).Google Scholar
Neu, J. C. (1980), ‘The method of near-identity transformations and its applications’, SIAM J. Appl. Math. 38, 189200.CrossRefGoogle Scholar
Nayfeh, A. H. (1973), Perturbation Methods, John Wiley and Sons (New York).Google Scholar
Oliger, J. and Sundström, A. (1978), ‘Theoretical and practical aspects of some initial-boundary value problems in fluid dynamics’, SIAM J. Appl. Math. 35, 419446.CrossRefGoogle Scholar
Petzold, L. R. (1981), ‘An efficient numerical method for highly oscillatory ordinary differential equations’, SIAM J. Numer. Anal. 18, 455479.CrossRefGoogle Scholar
Raviart, P. A. (1991), Approximative Models for Maxwell's Equations and Applications, Proceedings of the Third International Conference on Hyperbolic Problems, Uppsala, (Engquist, B. and Gustaffson, B., eds), Studentliteratur792804.Google Scholar
Sacker, R. J. (1965), ‘A new approach to the perturbation theory of invariant surfaces’, Comm. Pure Appl. Math. 18, 717732.CrossRefGoogle Scholar
Scheid, R. E. (1982), ‘The accurate numerical solution of highly oscillatory ordinary differential equations’, Thesis, Caltech, Pasadena, CA 91125.Google Scholar
Tadmor, E. (1982), ‘Hyperbolic systems with different time scales’, Comm. Pure Appl. Math. 35, 839866.CrossRefGoogle Scholar