Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T01:52:19.011Z Has data issue: false hasContentIssue false

Numerical solution of highly oscillatory ordinary differential equations

Published online by Cambridge University Press:  07 November 2008

Linda R. Petzold
Affiliation:
Department of Computer Science, University of Minnesota, 4-192 EE/CS Bldg, 200 Union Street S.E., Minneapolis, MN 55455-0159, USA E-mail: [email protected]
Laurent O. Jay
Affiliation:
Department of Computer Science, University of Minnesota, 4-192 EE/CS Bldg, 200 Union Street S.E., Minneapolis, MN 55455-0159, USA E-mail: [email protected]
Jeng Yen
Affiliation:
Army High Performance Computing Research Center, University of Minnesota, 1100 Washington Ave. S., Minneapolis, MN 55415, USA E-mail: [email protected]

Extract

One of the most difficult problems in the numerical solution of ordinary differential equations (ODEs) and in differential-algebraic equations (DAEs) is the development of methods for dealing with highly oscillatory systems. These types of systems arise, for example, in vehicle simulation when modelling the suspension system or tyres, in models for contact and impact, in flexible body simulation from vibrations in the structural model, in molecular dynamics, in orbital mechanics, and in circuit simulation. Standard numerical methods can require a huge number of time-steps to track the oscillations, and even with small stepsizes they can alter the dynamics, unless the method is chosen very carefully.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agrawal, G. P. (1989), Nonlinear Fiber Optics, Academic Press.Google Scholar
Allen, M. P. and Tildesley, D. J. (1987), Computer Simulation of Liquids, Clarendon Press, Oxford.Google Scholar
Andersen, H. C. (1983), ‘Rattle: a velocity version of the Shake algorithm for molecular dynamics calculations’, J. Comput. Phys. 52, 2434.CrossRefGoogle Scholar
Aprille, T. J. Jr and Trick, T. N. (1972), ‘Steady-state analysis of nonlinear circuits with periodic inputs’, Proc. IEEE 60, 108114.CrossRefGoogle Scholar
Arnold, V. I. (1989), Mathematical Methods of Classical Mechanics, Vol. 60 of Graduate Texts in Mathematics, 2nd edn, Springer, New York.CrossRefGoogle Scholar
Ascher, U. M. and Reich, S. (1997), ‘The midpoint scheme and variants for Hamiltonian systems: advantages and pitfalls and pitfalls’. Department of Computer Science, University of British Columbia, Canada. Preprint.Google Scholar
Barth, E., Kuczera, K., Leimkuhler, B. and Skeel, R. D. (1995), ‘Algorithms for constrained molecular dynamics’, J. Comp. Chem. 16, 11921209.CrossRefGoogle Scholar
Barth, E., Mandziuk, M. and Schlick, T. (1997), A separating framework for increasing the timestep in molecular dynamics, in Computer Simulation of Biomolecular Systems: Theoretical and Experimental Applications (van Gunsteren, W. F., Weiner, P. K. and Wilkinson, A. J., eds), Vol. 3, ESCOM, Leiden, The Netherlands. To appear.Google Scholar
Bathé, K.-J. and Wilson, E. L. (1976), Numerical Methods in Finite Element Analysis, Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
Beeman, D. (1976), ‘Some multistep methods for use in molecular dynamics calculations’, J. Comput. Phys. 20, 130139.CrossRefGoogle Scholar
Bettis, D. G. (1970), ‘Numerical integration of products of Fourier and ordinary polynomials’, Numer. Math. 14, 421434.CrossRefGoogle Scholar
Biesiadecki, J. J. and Skeel, R. D. (1993), ‘Dangers of multiple-time-step methods’, J. Comput. Phys. 109, 318328.CrossRefGoogle Scholar
Board, J. A. Jr, Kalé, L. V., Schulten, K., Skeel, R. D. and Schlick, T. (1994), ‘Modeling biomolecules: larger scales, longer durations’, IEEE Comp. Sci. Eng. 1, 1930.CrossRefGoogle Scholar
Bogoliubov, N. N. and Mitropolski, Y. A. (1961), Asymptotic Methods in the Theory of Nonlinear Oscillations, Hindustan Publishing Corp., Delhi, India.Google Scholar
Bornemann, F. A. and Schütte, C. (1995 a), Homogenization of highly oscillatory Hamiltonian systems, Technical Report SC 95-39, Konrad-Zuse-Zentrum, Berlin, Germany.Google Scholar
Bornemann, F. A. and Schütte, C. (1995 b), A mathematical approach to smoothed molecular dynamics: correcting potentials for freezing bond angles, Technical Report SC 95-30, Konrad-Zuse-Zentrum, Berlin, Germany.Google Scholar
Brenan, K. E., Campbell, S. L. and Petzold, L. R. (1995), Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, 2nd edn, SIAM.CrossRefGoogle Scholar
Brusa, L. and Nigro, L. (1980), ‘A one-step method for direct integration of structural dynamics equations’, Internat. J. Numer. Methods Engrg. 15, 685699.CrossRefGoogle Scholar
Cardona, A. and Géradin, M. (1989), ‘Time integration of the equations of motion in mechanism analysis’, Comput. & Structures 33, 801820.CrossRefGoogle Scholar
Cardona, A. and Géradin, M. (1993), Finite element modeling concepts in multibody dynamics, in Computer Aided Analysis of Rigid and Flexible Mechanical Systems (Pereira, M. S. and Ambrósio, J. A. C., eds), Vol. 1 of NATO ASI Series, pp. 325375.Google Scholar
Cash, J. R. (1981), ‘High order P-stable formulæ for the numerical integration of periodic initial value problems’, Numer. Math. 37, 355370.CrossRefGoogle Scholar
Chawla, M. M. (1985), ‘On the order and attainable intervals of periodicity of explicit Nyström methods for y″ = f(x, y)’, SIAM J. Numer. Anal. 22, 127131.CrossRefGoogle Scholar
Chawla, M. M. and Rao, P. S. (1985), ‘High-accuracy P-stable methods for y″ = f(x, y)’, IMA J. Numer. Anal. 5, 215220.CrossRefGoogle Scholar
Chawla, M. M. and Sharma, S. R. (1981 a), ‘Families of fifth order Nyström methods for y″ = f(x, y) and intervals of periodicity’, Computing 26, 247256.CrossRefGoogle Scholar
Chawla, M. M. and Sharma, S. R. (1981 b), ‘Intervals of periodicity and absolute stability of explicit Nyström methods for y″ = f(x, y)’, BIT 21, 455464.CrossRefGoogle Scholar
Chen, H. C. and Taylor, R. L. (1989), ‘Using Lanczos vectors and Ritz vectors for computing dynamic responses’, Eng. Comput. 6, 151157.CrossRefGoogle Scholar
Chung, J. and Hulbert, G. M. (1993), ‘A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method’, ASME J. Appl. Mech. 93-APM-20.CrossRefGoogle Scholar
Cooper, G. J. (1987), ‘Stability of Runge–Kutta methods for trajectory problems’, IMA J. Numer. Anal. 7, 113.CrossRefGoogle Scholar
Craig, R. and Bampton, M. (1968), ‘Coupling of substructures for dynamic analysis’, AIAA J. 6, 13131319.CrossRefGoogle Scholar
Craig, R. R. (1981), Structural Dynamics, an Introduction to Computer Methods, Wiley, New York.Google Scholar
Dahlquist, G. (1963), ‘A special stability problem for linear multistep methods’, BIT 3, 2743.CrossRefGoogle Scholar
De Meyer, H., Vanthournout, J. and Vanden Berghe, G. (1990), ‘On a new type of mixed interpolation’, J. Comput. Appl. Math. 30, 5569.CrossRefGoogle Scholar
Denk, G. (1993), ‘A new numerical method for the integration of highly oscillatory second-order ordinary differential equations’, APNUM 13, 5767.Google Scholar
Denk, G. (1994), The simulation of highly oscillatory circuits: an effective integration scheme, Technical Report TUM-M9413, Techn. Univ. München, Germany.Google Scholar
Diu, B., Guthmann, C., Lederer, D. and Roulet, B. (1989), Physique Statistique, Hermann, Paris.Google Scholar
Engstler, C. and Lubich, C. (1995), Multirate extrapolation methods for differential equations with different time scales, Technical Report 29, Math. Inst., Univ. Tübingen, Germany.Google Scholar
Fenichel, N. (1979), ‘Geometric singular perturbation theory for ordinary differential equations’, J. Diff. Eq. 31, 5398.CrossRefGoogle Scholar
Fixman, M. (1974), ‘Classical statistical mechanics of constraints: a theorem and application to polymers’, Proc. Nat. Acad. Sci. 71, 30505053.CrossRefGoogle ScholarPubMed
Freund, R. W., Golub, G. H. and Nachtigal, N. M. (1992), Iterative solution of linear systems, in Acta Numerica, Vol. 1, Cambridge University Press, pp. 57100.Google Scholar
Friesner, R. A., Tuckerman, L., Dornblaser, B. and Russo, T. (1989), ‘A method for exponential propagation of large systems of stiff nonlinear differential equations’, J. Sci. Comp. 4, 327–254.CrossRefGoogle Scholar
Führer, C. and Leimkuhler, B. J. (1991), ‘Numerical solution of differential-algebraic equations for constrained mechanical motion’, Numer. Math. 59, 5569.CrossRefGoogle Scholar
Gallivan, K. A. (1980), Detection and integration of oscillatory differential equations with initial stepsize, order and method selection, Technical report, Dept of Comput. Sci., Univ. of Illinois.CrossRefGoogle Scholar
Gallivan, K. A. (1983), An algorithm for the detection and integration of highly oscillatory ordinary differential equations using a generalized unified modified divided difference representation, PhD thesis, Dept of Comput. Sci., Univ. of Illinois.Google Scholar
Gallopoulos, E. and Saad, Y. (1992), ‘Efficient solution of parabolic equations by Krylov approximation methods’, SIAM J. Sci. Statist. Comput. 13, 12361264.CrossRefGoogle Scholar
Garrett, C. and Munk, W. (1979), ‘Internal waves in the ocean’, Ann. Rev. Fluid Mech. 14, 339369.CrossRefGoogle Scholar
Gautschi, W. (1961), ‘Numerical integration of ordinary differential equations based on trigonometric polynomials’, Numer. Math. 3, 381397.CrossRefGoogle Scholar
Gear, C. W. (1984), The numerical solution of problems which may have high frequency components, in Computer Aided Analysis and Optimization of Mechanical System Dynamics (Haug, E. J., ed.), Vol. F9 of NATO ASI Series, pp. 335349.CrossRefGoogle Scholar
Gear, C. W. and Wells, D. R. (1984), ‘Multirate linear multistep methods’, BIT 24, 484502.CrossRefGoogle Scholar
Gear, C. W., Gupta, G. K. and Leimkuhler, B. J. (1985), ‘Automatic integration of the Euler–Lagrange equations with constraints’, J. Comput. Appl. Math. 12, 7790.CrossRefGoogle Scholar
Gerschel, A. (1995), Liaisons Intermoléculaires, Savoirs actuels, InterEditions/CNRS Editions.CrossRefGoogle Scholar
Gjaja, I. and Holm, D. D. (1996), ‘Self-consistent wave-mean flow interaction dynamics and its Hamiltonian formulation for a rotating stratified incompressible fluid’, Physica D. To appear.CrossRefGoogle Scholar
Gladwell, I. and Thomas, R. M. (1983), ‘Damping and phase analysis for some methods for solving second-order ordinary differential equations’, Int. J. Numer. Meth. Eng. 19, 495503.CrossRefGoogle Scholar
Golub, G. H. and Pereyra, V. (1973), ‘The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate’, SIAM J. Numer. Anal. 10, 413432.CrossRefGoogle Scholar
Graff, O. F. and Bettis, D. G. (1975), ‘Methods of orbit computation with multirevolution steps’, Celestial Mechanics 11, 443448.Google Scholar
Grubmüller, H., Heller, H., Windemuth, A. and Schulten, K. (1991), ‘Generalized Verlet algorithm for efficient dynamics simulations with long-range interactions’, Mol. Simul. 6, 121142.CrossRefGoogle Scholar
Günther, M. and Rentrop, P. (1993 a), ‘Multirate ROW-methods and latency of electric circuits’, Appl. Numer. Math. 13, 83102.CrossRefGoogle Scholar
Günther, M. and Rentrop, P. (1993 b), Partitioning and multirate strategies in latent electric circuits, Technical Report TUM-M9301, Technische Univ. München, Germany.CrossRefGoogle Scholar
Hairer, E. (1979), ‘Unconditionally stable methods for second order differential equations’, Numer. Math. 32, 373379.CrossRefGoogle Scholar
Hairer, E. (1994), ‘Backward analysis of numerical integrators and symplectic methods’, Ann. Numer. Math. 1, 107132.Google Scholar
Hairer, E. (1996), Variable time step integration with symplectic methods, Technical report, Dept. of Math., Univ. of Geneva, Switzerland.Google Scholar
Hairer, E. and Lubich, C. (1997), ‘The life-span of backward error analysis for numerical integrators’, Numer. Math. To appear.CrossRefGoogle Scholar
Hairer, E. and Wanner, G. (1996), Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Vol. 14 of Comput. Math., 2nd revised edn, Springer, Berlin.Google Scholar
Hairer, E., Lubich, C. and Roche, M. (1989), The Numerical Solution of Differential-Algebraic Systems by Runge–Kutta Methods, Vol. 1409 of Lect. Notes in Math., Springer, Berlin.CrossRefGoogle Scholar
Hairer, E., Nørsett, S. P. and Wanner, G. (1993), Solving Ordinary Differential Equations I. Nonstiff Problems, Vol. 18 of Comput. Math., 2nd revised edn, Springer, Berlin.Google Scholar
Haug, E. J. (1989), Computer Aided Kinematics and Dynamics of Mechanical systems. Volume I: basic methods, Allyn-Bacon, MA.Google Scholar
Hersch, J. (1958), ‘Contribution à la méthode aux différences’, ZAMP 9a(2), 129180.Google Scholar
Hilber, H. H., Hughes, T. J. R. and Taylor, R. L. (1977), ‘Improved numerical dissipation for time integration algorithms in structural dynamics’, Earthquake Engineering and Structural Dynamics 5, 283292.CrossRefGoogle Scholar
Hochbruck, M., Lubich, C. and Selhofer, H. (1995), Exponential integrators for large systems of differential equations, Technical report, Math. Inst., Univ. Tübingen, Germany.Google Scholar
Hoff, C. and Pahl, P. J. (1988), ‘Development of an implicit method with numerical dissipation from a generalized single-step algorithm for structural dynamics’, Comput. Meth. Appl. Mech. Eng. 67, 367385.CrossRefGoogle Scholar
Hoover, W. G. (1991), Computational Statistical Mechanics, Vol. 11 of Studies in modern thermodynamics, Elsevier, Amsterdam.Google Scholar
Hughes, T. J. R. (1987), The Finite Element Method, Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
Jay, L. O. (1996), ‘Symplectic partitioned Runge–Kutta methods for constrained Hamiltonian systems’, SIAM J. Numer. Anal. 33, 368387.CrossRefGoogle Scholar
Kevorkian, J. and Cole, J. D. (1981), Perturbation Methods in Applied Mathematics, Springer, New York.CrossRefGoogle Scholar
Kirchgraber, U. (1982), ‘A numerical scheme for problems in nonlinear oscillations’, Mech. Res. Comm. 9, 411417.CrossRefGoogle Scholar
Kirchgraber, U. (1983), Dynamical system methods in numerical analysis. Part I: An ODE-solver based on the method of averaging, Technical report, Seminar für Angew. Math., ETH Zürich, Switzerland.Google Scholar
Kopell, N. (1985), ‘Invariant manifolds and the initialization problem for some atmospheric equations’, Physica D 14, 203215.CrossRefGoogle Scholar
Kundert, K., White, J. and Sangiovanni-Vincentelli, A. (1988 a), An envelope-following method for the efficient transient simulation of switching power and filter circuits, in Proc. of IEEE International Conf. on Computer-Aided Design.Google Scholar
Kundert, K., White, J. and Sangiovanni-Vincentelli, A. (1988 b), A mixed frequency-time approach for finding the steady-state solution of clocked analog circuits, in Proc. of IEEE 1988 Custom Integrated Circuits Conf.Google Scholar
Lambert, J. D. and Watson, I. A. (1976), ‘Symmetric multistep methods for periodic initial value problems’, J. Inst. Math. Appl. 18, 189202.CrossRefGoogle Scholar
Lanczos, C. (1950), ‘An iteration method for the solution of the eigenvalue problem of linear differential and integral operators’, J. Res. Nat. Bur. Standards 45, 255281.CrossRefGoogle Scholar
Leimkuhler, B., Reich, S. and Skeel, R. D. (1995), Integration methods for molecular dynamics, in Mathematical Approaches to Biomolecular Structure and Dynamics (Mesirov, J., Schulten, K. and Sumners, D. W., eds), Vol. 82 of IMA Volumes in Mathematics and its Applications, Springer, New York, pp. 161187.Google Scholar
Liniger, W. and Willoughby, R. A. (1970), ‘Efficient integration methods for stiff systems of ordinary differential equations’, SIAM J. Numer. Anal. 7, 4766.CrossRefGoogle Scholar
López-Marcos, M. A., Sanz-Serna, J. M. and Díaz, J. C. (1995 a), Are Gauss–Legendre methods useful in molecular dynamics?, Technical Report 4, Dept. of Math., Univ. of Valladolid, Spain.Google Scholar
López-Marcos, M. A., Sanz-Serna, J. M. and Skeel, R. D. (1995 b), An explicit symplectic integrator with maximal stability interval, Technical report, Dept. of Math., Univ. of Valladolid, Spain.CrossRefGoogle Scholar
Lubich, C. (1993), ‘Integration of stiff mechanical systems by Runge–Kutta methods’, ZAMP 44, 10221053.Google Scholar
Lust, K., Roose, D., Spence, A. and Champneys, A. (1997), ‘An adaptive Newton–Picard algorithm with subspace iteration for computing periodic solutions’, SIAM J. Sci. Comput. To appear.Google Scholar
Mace, D. and Thomas, L. H. (1960), ‘An extrapolation method for stepping the calculations of the orbit of an artificial satellite several revolutions ahead at a time’, Astronomical Journal.CrossRefGoogle Scholar
Mandziuk, M. and Schlick, T. (1995), ‘Resonance in the dynamics of chemical systems simulated by the implicit-midpoint scheme’, Chem. Phys. Lett. 237, 525535.CrossRefGoogle Scholar
Minorsky, N. (1974), Nonlinear Oscillations, Robert E. Krieger Publ. Comp., Huntinton, NY.Google Scholar
Nagel, L. W. (1975), SPICE2: A computer program to simulate semiconductor circuits, Technical report, Electronics Research Laboratory, Univ. of California at Berkeley.Google Scholar
Neta, B. and Ford, C. H. (1984), ‘Families of methods for ordinary differential equations based on trigonometric polynomials’, J. Comput. Appl. Math. 10, 3338.CrossRefGoogle Scholar
Newmark, N. M. (1959), ‘A method of computation for structural dynamics’, ASCE J. Eng. Mech. Div. 85, 6794.CrossRefGoogle Scholar
Nikravesh, P. E. (1988), Computer-Aided Analysis of Mechanical Systems, Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
Nosé, S. (1984), ‘A unified formulation of the constant temperature molecular dynamics methods’, J. Chem. Phys. 81, 511519.CrossRefGoogle Scholar
Nour-Omid, B. and Clough, R. W. (1984), ‘Dynamic analysis of structures using Lanczos coordinates’, Earthquake Engineering and Structural Dynamics.CrossRefGoogle Scholar
O'Malley, R. E. (1991), Singular Perturbation Methods for Ordinary Differential Equations, Springer, New York.CrossRefGoogle Scholar
Owren, B. and Simonsen, H. H. (1995), ‘Alternative integration methods for problems in structural mechanics’, Comput. Meth. Appl. Mech. Eng. 122, 110.CrossRefGoogle Scholar
Park, T. J. and Light, J. C. (1986), ‘Unitary quantum time evolution by iterative Lanczos reduction’, J. Chem. Phys. 85, 58705876.CrossRefGoogle Scholar
Pereira, M. S. and Ambrósio, J. A. C., eds (1993), Computer aided analysis of rigid and flexible mechanical systems, Vol. 1 & 2, Tróia, Portugal.Google Scholar
Peskin, C. S. and Schlick, T. (1989), ‘Molecular dynamics by the backward Euler's method’, Comm. Pure Appl. Math. 42, 10011031.CrossRefGoogle Scholar
Petzold, L. R. (1978), An efficient numerical method for highly oscillatory ordinary differential equations, PhD thesis, Dept. of Comput. Sci., Univ. of Illinois.Google Scholar
Petzold, L. R. (1981), ‘An efficient numerical method for highly oscillatory ordinary differential equations’, SIAM J. Numer. Anal. 18, 455479.CrossRefGoogle Scholar
Portillo, A. and Sanz-Serna, J. M. (1995), ‘Lack of dissipativity is not symplecticness’, BIT 35, 269276.CrossRefGoogle Scholar
Reich, S. (1994), Numerical integration of highly oscillatory Hamiltonian systems using slow manifolds, Technical Report UIUC-BI-TB-94-06, The Beckman Institute, Univ. of Illinois, USA.Google Scholar
Reich, S. (1995), ‘Smoothed dynamics of highly oscillatory Hamiltonian systems’, Physica D 89, 2842.CrossRefGoogle Scholar
Reich, S. (1996 a), Backward error analysis for numerical integrators, Technical report, Konrad-Zuse-Zentrum, Berlin, Germany.Google Scholar
Reich, S. (1996 b), Smoothed Langevin dynamics of highly oscillatory systems, Technical Report SC 96-04, Konrad-Zuse-Zentrum, Berlin, Germany.Google Scholar
Reich, S. (1997), ‘A free energy approach to the torsion dynamics of macromolecules’, Phys. Rev. E. To appear.Google Scholar
Ryckaert, J. P., Ciccotti, G. and Berendsen, H. J. C. (1977), ‘Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes’, J. Comput. Phys. 23, 327341.CrossRefGoogle Scholar
Sanz-Serna, J. M. (1992), Symplectic integrators for Hamiltonian problems: an overview, in Acta Numerica, Vol. 1, Cambridge University Press, pp. 243286.Google Scholar
Sanz-Serna, J. M. and Calvo, M. P. (1994), Numerical Hamiltonian Problems, Chapman and Hall, London.CrossRefGoogle Scholar
Schlick, T. and Fogelson, A. (1992), ‘TNPACK-A truncated Newton minimization package for large-scale problems: I. Algorithm and usage’, ACM Trans. Math. Software 18, 4670.CrossRefGoogle Scholar
Schlick, T., Barth, E. and Mandziuk, M. (1997), ‘Biomolecular dynamics at long timesteps: bridging the timescale gap between simulation and experimentation’, Ann. Rev. Biophys. Biomol. Struct. To appear.CrossRefGoogle ScholarPubMed
Schneider, S. (1995), ‘Convergence results for multistep Runge–Kutta on stiff mechanical systems’, Numer. Math. 69, 495508.CrossRefGoogle Scholar
Schütte, C. (1995), Smoothed molecular dynamics for thermally embedded systems, Technical Report SC 95-15, Konrad-Zuse-Zentrum, Berlin, Germany.Google Scholar
Shroff, G. and Keller, H. (1993), ‘Stabilization of unstable procedures: the recursive projection method’, SIAM J. Numer. Anal. 30, 10991120.CrossRefGoogle Scholar
Simeon, B. (1996), ‘Modelling of a flexible slider crank mechanism by a mixed system of DAEs and PDEs’, Math. Model. of Systems 2, 118.CrossRefGoogle Scholar
Simo, J. C. and Vu-Quoc, L. (1986), ‘A three-dimensional finite strain rod model. Part II: computational aspects’, Comput. Meth. Appl. Mech. Eng. 58, 79116.CrossRefGoogle Scholar
Simo, J. C., Tarnow, N. and Doblare, M. (1993), Nonlinear dynamics of three-dimensional rods: exact energy and momentum conserving algorithms, Technical report, Div. of Appl. Mech., Dept. of Mech. Eng., Stanford Univ.Google Scholar
Skeel, R. D. (1993), ‘Variable step size destabilizes the Störmer/leapfrog/Verlet method’, BIT 33, 172175.CrossRefGoogle Scholar
Skeel, R. D. and Biesiadecki, J. J. (1994), ‘Symplectic integration with variable step-size’, Ann. Numer. Math. 1, 191198.Google Scholar
Skeel, R. D., Biesiadecki, J. J. and Okunbor, D. (1993), Symplectic integration for macromolecular dynamics, in Scientific Computation and Differential Equations, World Scientific, pp. 4961.Google Scholar
Skeel, R. D., Zhang, G. and Schlick, T. (1997), ‘A family of symplectic integrators: stability, accuracy, and molecular dynamics applications’, SIAM J. Sci. Comput. 18, 203222.CrossRefGoogle Scholar
Stiefel, E. and Bettis, D. G. (1969), ‘Stabilization of Cowell's method’, Numer. Math. 13, 154175.CrossRefGoogle Scholar
Streett, W. B., Tildesley, D. J. and Saville, G. (1978), ‘Multiple time step methods in molecular dynamics’, Mol. Phys. 35, 639648.CrossRefGoogle Scholar
Streitwieser, A. Jr and Heathcock, C. H. (1985), Introduction to Organic Chemistry, 3rd edn, Macmillan, New York.Google Scholar
Taratynova, G. P. (1960), ‘Numerical solution of equations of finite differences and their application to the calculation of orbits of artificial earth satellites’, AES J. Supplement 4, 5685. Translated from Artificial Earth Satellites.Google Scholar
Telichevesky, R., Kundert, K. and White, J. (1995), Steady-state analysis based on matrix-free Krylov subspace methods, in Proc. of Design Automation Conf., San Francisco.Google Scholar
Telichevesky, R., Kundert, K. and White, J. (1996), Efficient AC and noise analysis of two-tone RF circuits, in Proc. of Design Automation Conf., Las Vegas.Google Scholar
Tidblad, J. and Graedel, T. E. (1996), ‘GILDES model studies of aqueous chemistry. Initial SO2-induced atmospheric corrosion of copper’, Corrosion Science. To appear.CrossRefGoogle Scholar
Tuckerman, M., Berne, B. J. and Martyna, G. J. (1992), ‘Reversible multiple time scale molecular dynamics’, J. Chem. Phys. 97, 19902001.CrossRefGoogle Scholar
Tuckerman, M. E. and Parrinello, M. (1994), ‘Integrating the Car–Parrinello equations. I: Basic integration techniques’, J. Chem. Phys. 101, 13021315.CrossRefGoogle Scholar
Van Der Houwen, P. J. and Sommeijer, B. P. (1984), ‘Linear multistep methods with reduced truncation error for periodic initial-value problems’, IMA J. Numer. Anal. 4, 479489.CrossRefGoogle Scholar
Van Der Houwen, P. J. and Sommeijer, B. P. (1987), ‘Explicit Runge–Kutta (–Nyström) methods with reduced phase errors for computing oscillating solutions’, SIAM J. Numer. Anal. 24, 595617.CrossRefGoogle Scholar
Van Der Houwen, P. J. and Sommeijer, B. P. (1989), ‘Phase-lag analysis of implicit Runge–Kutta methods’, SIAM J. Numer. Anal. 26, 214229.CrossRefGoogle Scholar
Van Gunsteren, W. F. and Karplus, M. (1982), ‘Effects of constraints on the dynamics of macromolecules’, Macromolecules 15, 15281544.CrossRefGoogle Scholar
Vanthournout, J., Vanden Berghe, G. and De Meyer, H. (1990), ‘Families of backward differentiation methods based on a new type of mixed interpolation’, Comput. Math. Appl. 20, 1930.CrossRefGoogle Scholar
Verlet, L. (1967), ‘Computer experiments on classical fluids. I: thermodynamical properties of Lennard–Jones molecules’, Phys. Rev. 159, 98103.CrossRefGoogle Scholar
Webster's Ninth New Collegiate Dictionary (1985), Merriam-Webster, Springfield, MA.Google Scholar
White, J. and Leeb, S. B. (1991), ‘An envelope-following approach to switching power converter simulation’, IEEE Trans. Power Electronics 6, 303307.CrossRefGoogle Scholar
Wilson, E. L., Yuan, M. and Dickens, J. M. (1982), ‘Dynamic analysis by direct superposition of Ritz vectors’, Earthquake Engineering and Structural Dynamics 10, 813821.CrossRefGoogle Scholar
Wood, W. L., Bossak, M. and Zienkiewicz, O. C. (1980), ‘An alpha modification of Newmark's method’, Internat. J. Numer. Methods Engrg. 15, 15621566.CrossRefGoogle Scholar
Yen, J. and Petzold, L. R. (1996), Numerical solution of nonlinear oscillatory multibody systems, in Numerical Analysis 95 (Griffiths, D. F. and Watson, G. A., eds), Vol. 344 of Pitman Research Notes in Mathematics, pp. 209224.Google Scholar
Yen, J. and Petzold, L. R. (1997), ‘An efficient Newton-type iteration for the numerical solution of highly oscillatory constrained multibody dynamic systems’, SIAM J. Sci. Comput. To appear.Google Scholar
Yen, J., Petzold, L. and Raha, S. (1996), A time integration algorithm for flexible mechanism dynamics: the DAE α-method, Technical Report TR 96-024, Dept. of Comput. Sci., Univ. of Minnesota.Google Scholar
Yoo, W. S. and Haug, E. J. (1986), ‘Dynamics of articulated structures. Part I: Theory’, J. Mech. Struct. Mach. 14, 105126.CrossRefGoogle Scholar
Zhang, G. and Schlick, T. (1993), ‘LIN: a new algorithm to simulate the dynamics of biomolecules by combining implicit-integration and normal mode techniques’, J. Comput. Chem. Phys. 14, 12121233.CrossRefGoogle Scholar
Zhang, G. and Schlick, T. (1994), ‘The Langevin/implicit-Euler/normal-mode scheme for molecular dynamics at large time steps’, J. Chem. Phys. 101, 49955012.CrossRefGoogle Scholar
Zhang, G. and Schlick, T. (1995), ‘Implicit discretization schemes for Langevin dynamics’, Mol. Phys. 84, 10771098.CrossRefGoogle Scholar