Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T13:43:16.606Z Has data issue: false hasContentIssue false

Numerical methods for Kohn–Sham density functional theory

Published online by Cambridge University Press:  14 June 2019

Lin Lin
Affiliation:
Department of Mathematics, University of California, Berkeley, and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA E-mail: [email protected]
Jianfeng Lu
Affiliation:
Department of Mathematics, Department of Physics, and Department of Chemistry, Duke University, Durham, NC 27708, USA E-mail: [email protected]
Lexing Ying
Affiliation:
Department of Mathematics and Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA E-mail: [email protected]

Abstract

Kohn–Sham density functional theory (DFT) is the most widely used electronic structure theory. Despite significant progress in the past few decades, the numerical solution of Kohn–Sham DFT problems remains challenging, especially for large-scale systems. In this paper we review the basics as well as state-of-the-art numerical methods, and focus on the unique numerical challenges of DFT.

Type
Research Article
Copyright
© Cambridge University Press, 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Partially supported by the US National Science Foundation via grant DMS-1652330, and by the US Department of Energy via grants DE-SC0017867 and DE-AC02-05CH11231.

Partially supported by the US National Science Foundation via grants DMS-1454939 and ACI-1450280 and by the US Department of Energy via grant DE-SC0019449.

§

Partially supported by the US Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, the ‘Scientific Discovery through Advanced Computing (SciDAC)’ programme and the US National Science Foundation via grant DMS-1818449.

References

REFERENCES 2

Aktulga, H. M., Lin, L., Haine, C., Ng, E. G. and Yang, C. (2014), ‘Parallel eigenvalue calculation based on multiple shift–invert Lanczos and contour integral based spectral projection method’, Parallel Comput. 40, 195212.Google Scholar
Amestoy, P., Duff, I., L’Excellent, J.-Y. and Koster, J. (2001), ‘A fully asynchronous multifrontal solver using distributed dynamic scheduling’, SIAM J. Matrix Anal. Appl. 23, 1541.Google Scholar
Andersen, O. K. (1975), ‘Linear methods in band theory’, Phys. Rev. B 12, 30603083.Google Scholar
Anderson, D. G. (1965), ‘Iterative procedures for nonlinear integral equations’, J. Assoc. Comput. Mach. 12, 547560.Google Scholar
Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A. and Sorensen, D. (1999), LAPACK Users’ Guide, third edition, SIAM.Google Scholar
Arnold, D. N. (1982), ‘An interior penalty finite element method with discontinuous elements’, SIAM J. Numer. Anal. 19, 742760.Google Scholar
Arnold, D. N., Brezzi, F., Cockburn, B. and Marini, L. D. (2002), ‘Unified analysis of discontinuous Galerkin methods for elliptic problems’, SIAM J. Numer. Anal. 39, 17491779.Google Scholar
Ashcraft, C. and Grimes, R. (1989), ‘The influence of relaxed supernode partitions on the multifrontal method’, ACM Trans. Math. Software 15, 291309.Google Scholar
Babuška, I. and Zlámal, M. (1973), ‘Nonconforming elements in the finite element method with penalty’, SIAM J. Numer. Anal. 10, 863875.Google Scholar
Banerjee, A. S., Lin, L., Suryanarayana, P., Yang, C. and Pask, J. E. (2018), ‘Two-level Chebyshev filter based complementary subspace method for pushing the envelope of large-scale electronic structure calculations’, J. Chem. Theory Comput. 14, 29302946.Google Scholar
Bao, G., Hu, G. and Liu, D. (2012), ‘An $h$ -adaptive finite element solver for the calculations of the electronic structures’, J. Comput. Phys. 231, 49674979.Google Scholar
Baroni, S. and Giannozzi, P. (1992), ‘Towards very large-scale electronic-structure calculations’, Europhys. Lett. 17, 547552.Google Scholar
Barrault, M., Cancès, E., Hager, W. and Le Bris, C. (2007), ‘Multilevel domain decomposition for electronic structure calculations’, J. Comput. Phys. 222, 86109.Google Scholar
Bartók, A. P., Payne, M. C. and Csányi, G. (2010), ‘Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons’, Phys. Rev. Lett. 104, 14.Google Scholar
Becke, A. D. (1988), ‘Density-functional exchange-energy approximation with correct asymptotic behavior’, Phys. Rev. A 38, 30983100.Google Scholar
Becke, A. D. (1993), ‘Density functional thermochemistry, III: The role of exact exchange’, J. Chem. Phys. 98, 56485652.Google Scholar
Belpassi, L., Tarantelli, F., Sgamellotti, A. and Quiney, H. M. (2005), ‘Computational strategies for a four-component Dirac–Kohn–Sham program: Implementation and first applications’, J. Chem. Phys. 122, 184109.Google Scholar
Bencteux, G., Barrault, M., Cancès, E., Hager, W. W. and Le Bris, C. (2008), Domain decomposition and electronic structure computations: A promising approach. In Numerical Analysis and Scientific Computing for PDEs and Their Challenging Applications, (Glowinski, R. and Neittaanmäki, P., eds), Vol. 16 of Computational Methods in Applied Sciences, Springer, pp. 147164.Google Scholar
Benzi, M., Boito, P. and Razouk, N. (2013), ‘Decay properties of spectral projectors with applications to electronic structure’, SIAM Rev. 55, 364.Google Scholar
Blackford, L. S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D. and Whaley, R. C. (1997), ScaLAPACK Users’ Guide, SIAM.Google Scholar
Blöchl, P. E. (1994), ‘Projector augmented-wave method’, Phys. Rev. B 50, 1795317979.Google Scholar
Blount, E. I. (1962), ‘Formalisms of band theory’, Solid State Phys. 13, 305373.Google Scholar
Blum, V., Gehrke, R., Hanke, F., Havu, P., Havu, V., Ren, X., Reuter, K. and Scheffler, M. (2009), ‘Ab initio molecular simulations with numeric atom-centered orbitals’, Comput. Phys. Commun. 180, 21752196.Google Scholar
Boffi, N. M., Jain, M. and Natan, A. (2016), ‘Efficient computation of the Hartree–Fock exchange in real-space with projection operators’, J. Chem. Theory Comput. 12, 36143622.Google Scholar
Bohm, D. and Pines, D. (1953), ‘A collective description of electron interactions, III: Coulomb interactions in a degenerate electron gas’, Phys. Rev. 92, 609625.Google Scholar
Bowler, D. R. and Miyazaki, T. (2012), ‘ $O(N)$ methods in electronic structure calculations’, Rep. Prog. Phys. 75, 036503.Google Scholar
Brandt, A. (1977), ‘Multi-level adaptive solutions to boundary-value problems’, Math. Comp. 31, 333390.Google Scholar
Brandt, A., McCormick, S. and Ruge, J. (1985), Algebraic multigrid (AMG) for sparse matrix equations. In Sparsity and its Applications, Cambridge University Press, pp. 257284.Google Scholar
Brawand, N. P., Vörös, M., Govoni, M. and Galli, G. (2016), ‘Generalization of dielectric-dependent hybrid functionals to finite systems’, Phys. Rev. X 6, 041002.Google Scholar
Briggs, W., Henson, V. E. and McCormick, S. F. (2000), A Multigrid Tutorial, second edition, SIAM.Google Scholar
Brouder, C., Panati, G., Calandra, M., Mourougane, C. and Marzari, N. (2007), ‘Exponential localization of Wannier functions in insulators’, Phys. Rev. Lett. 98, 046402.Google Scholar
Burke, K. (2012), ‘Perspective on density functional theory’, J. Chem. Phys. 136, 150901.Google Scholar
Cai, Y., Bai, Z., Pask, J. E. and Sukumar, N. (2013), ‘Hybrid preconditioning for iterative diagonalization of ill-conditioned generalized eigenvalue problems in electronic structure calculations’, J. Comput. Phys. 255, 1630.Google Scholar
Cancès, E. and Lewin, M. (2010), ‘The dielectric permittivity of crystals in the reduced Hartree–Fock approximation’, Arch. Rational Mech. Anal. 197, 139177.Google Scholar
Cancès, E. and Mourad, N. (2014), ‘A mathematical perspective on density functional perturbation theory’, Nonlinearity 27, 1999.Google Scholar
Cancès, E. and Mourad, N. (2016), ‘Existence of a type of optimal norm-conserving pseudopotentials for Kohn–Sham models’, Commun. Math. Sci. 14, 13151352.Google Scholar
Cancès, E., Deleurence, A. and Lewin, M. (2008), ‘A new approach to the modeling of local defects in crystals: The reduced Hartree–Fock case’, Commun. Math. Phys. 281, 129177.Google Scholar
Cancès, E., Levitt, A., Panati, G. and Stoltz, G. (2017), ‘Robust determination of maximally localized Wannier functions’, Phys. Rev. B 95, 075114.Google Scholar
Car, R. and Parrinello, M. (1985), ‘Unified approach for molecular dynamics and density-functional theory’, Phys. Rev. Lett. 55, 24712474.Google Scholar
Ceperley, D. M. and Alder, B. J. (1980), ‘Ground state of the electron gas by a stochastic method’, Phys. Rev. Lett. 45, 566569.Google Scholar
Ceriotti, M., Kühne, T. and Parrinello, M. (2008), ‘An efficient and accurate decomposition of the Fermi operator’, J. Chem. Phys. 129, 024707.Google Scholar
Chandrasekaran, S., Gu, M. and Pals, T. (2006), ‘A fast ULV decomposition solver for hierarchically semiseparable representations’, SIAM J. Matrix Anal. Appl. 28, 603622.Google Scholar
Chelikowsky, J., Troullier, N. and Saad, Y. (1994), ‘Finite-difference-pseudopotential method: Electronic structure calculations without a basis’, Phys. Rev. Lett. 72, 12401243.Google Scholar
Chen, G. P., Voora, V. K., Agee, M. M., Balasubramani, S. G. and Furche, F. (2017), ‘Random-phase approximation method’, Ann. Rev. Phys. Chem. 68, 421445.Google Scholar
Chen, H., Dai, X., Gong, X., He, L. and Zhou, A. (2014), ‘Adaptive finite element approximations for Kohn–Sham models’, Multiscale Model. Simul. 12, 18281869.Google Scholar
Chen, J. and Lu, J. (2016), ‘Analysis of the divide-and-conquer method for electronic structure calculations’, Math. Comp. 85, 29192938.Google Scholar
Chow, E., Liu, X., Smelyanskiy, M. and Hammond, J. R. (2015), ‘Parallel scalability of Hartree–Fock calculations’, J. Chem. Phys. 142, 104103.Google Scholar
Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. J., Refson, K. and Payne, M. C. (2005), ‘First principles methods using CASTEP’, Z. Kristallographie 220, 567570.Google Scholar
Cockburn, B., Karniadakis, G. and Shu, C.-W. (2000), Discontinuous Galerkin methods: Theory, Computation and Applications, Vol. 11 of Lecture Notes in Computational Science and Engineering, Springer.Google Scholar
Corsetti, F. (2014), ‘The orbital minimization method for electronic structure calculations with finite-range atomic basis sets’, Comput. Phys. Commun. 185, 873883.Google Scholar
Damle, A. and Lin, L. (2018), ‘Disentanglement via entanglement: A unified method for Wannier localization’, Math. Model. Simul. 16, 13921410.Google Scholar
Damle, A., Levitt, A. and Lin, L. (2019), ‘Variational formulation for Wannier functions with entangled band structure’, SIAM Multiscale Model. Simul. 17, 167191.Google Scholar
Damle, A., Lin, L. and Ying, L. (2015), ‘Compressed representation of Kohn–Sham orbitals via selected columns of the density matrix’, J. Chem. Theory Comput. 11, 14631469.Google Scholar
Damle, A., Lin, L. and Ying, L. (2017), ‘SCDM-k: Localized orbitals for solids via selected columns of the density matrix’, J. Comput. Phys. 334, 115.Google Scholar
Davidson, E. R. (1975), ‘The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real symmetric matrices’, J. Comput. Phys. 17, 8794.Google Scholar
Dawson, W. and Gygi, F. (2015), ‘Performance and accuracy of recursive subspace bisection for hybrid DFT calculations in inhomogeneous systems’, J. Chem. Theory Comput. 11, 46554663.Google Scholar
Dawson, W. and Nakajima, T. (2018), ‘Massively parallel sparse matrix function calculations with NTPoly’, Comput. Phys. Commun. 225, 154165.Google Scholar
Dion, M., Rydberg, H., Schröder, E., Langreth, D. C. and Lundqvist, B. I. (2004), ‘Van der Waals density functional for general geometries’, Phys. Rev. Lett. 92, 246401.Google Scholar
Dong, K., Hu, W. and Lin, L. (2018), ‘Interpolative separable density fitting through centroidal Voronoi tessellation with applications to hybrid functional electronic structure calculations’, J. Chem. Theory Comput. 14, 13111320.Google Scholar
Dreizler, R. M. and Gross, E. K. U. (1990), Density Functional Theory, Springer.Google Scholar
Duchemin, I. and Gygi, F. (2010), ‘A scalable and accurate algorithm for the computation of Hartree–Fock exchange’, Comput. Phys. Commun. 181, 855860.Google Scholar
Dunning, T. H. (1989), ‘Gaussian basis sets for use in correlated molecular calculations, I: The atoms boron through neon and hydrogen’, J. Chem. Phys. 90, 10071023.Google Scholar
E, W. and Lu, J. (2011), ‘The electronic structure of smoothly deformed crystals: Wannier functions and the Cauchy–Born rule’, Arch. Ration. Mech. Anal. 199, 407433.Google Scholar
Li, W. E. T. and Lu, J. (2010), ‘Localized bases of eigensubspaces and operator compression’, Proc. Nat. Acad. Sci. 107, 12731278.Google Scholar
Edelman, A., Arias, T. A. and Smith, S. T. (1998), ‘The geometry of algorithms with orthogonality constraints’, SIAM J. Matrix Anal. Appl. 20, 303353.Google Scholar
. Erisman, A. and Tinney, W. (1975), ‘On computing certain elements of the inverse of a sparse matrix’, Comm. Assoc. Comput. Mach. 18, 177179.Google Scholar
Eschrig, H. (1996), The Fundamentals of Density Functional Theory, Springer.Google Scholar
Fang, H.-R. and Saad, Y. (2009), ‘Two classes of multisecant methods for nonlinear acceleration’, Numer. Linear Algebra Appl. 16, 197221.Google Scholar
Fattebert, J. L. and Bernholc, J. (2000), ‘Towards grid-based $O(N)$ density-functional theory methods: Optimized nonorthogonal orbitals and multigrid acceleration’, Phys. Rev. B 62, 17131722.Google Scholar
Fermi, E. (1927), ‘Un metodo statistico per la determinazione di alcune prioprietà dell’atomo’, Rend. Accad. Naz. Lincei. 6, 602607.Google Scholar
Feyereisen, M., Fitzgerald, G. and Komornicki, A. (1993), ‘Use of approximate integrals in ab initio theory: An application in MP2 energy calculations’, Chem. Phys. Lett. 208, 359363.Google Scholar
Fornberg, B. (1998), A Practical Guide to Pseudospectral Methods, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press.Google Scholar
Foster, J. M. and Boys, S. F. (1960), ‘Canonical configurational interaction procedure’, Rev. Mod. Phys. 32, 300302.Google Scholar
Fukazawa, T. and Akai, H. (2015), ‘Optimized effective potential method and application to static RPA correlation’, J. Phys. Condens. Matter 27, 115502.Google Scholar
Gao, W. and E, W. (2009), ‘Orbital minimization with localization’, Discrete Contin. Dyn. Syst. 23, 249264.Google Scholar
Garcia-Cervera, C. J., Lu, J., Xuan, Y. and E, W. (2009), ‘Linear-scaling subspace-iteration algorithm with optimally localized nonorthogonal wave functions for Kohn–Sham density functional theory’, Phys. Rev. B 79, 115110.Google Scholar
Gell-Mann, M. and Brueckner, K. A. (1957), ‘Correlation energy of an electron gas at high density’, Phys. Rev. 106, 364368.Google Scholar
Genovese, L., Neelov, A., Goedecker, S., Deutsch, T., Ghasemi, S. A., Willand, A., Caliste, D., Zilberberg, O., Rayson, M., Bergman, A. and Schneider, R. (2008), ‘Daubechies wavelets as a basis set for density functional pseudopotential calculations’, J. Chem. Phys. 129, 014109.Google Scholar
Georges, A., Kotliar, G., Krauth, W. and Rozenberg, M. J. (1996), ‘Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions’, Rev. Mod. Phys. 68, 13125.Google Scholar
Ghosez, P., Gonze, X. and Godby, R. W. (1997), ‘Long-wavelength behavior of the exchange-correlation kernel in the Kohn–Sham theory of periodic systems’, Phys. Rev. B 56, 1281112817.Google Scholar
Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Nardelli, M. B., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Corso, A. D., de Gironcoli, S., Delugas, P., DiStasio, R. A. Jr, Ferretti, A., Floris, A., Fratesi, G., Fugallo, G., Gebauer, R., Gerstmann, U., Giustino, F., Gorni, T., Jia, J., Kawamura, M., Ko, H.-Y., Kokalj, A., Küçükbenli, E., Lazzeri, M., Marsili, M., Marzari, N., Mauri, F., Nguyen, N. L., Nguyen, H.-V., de-la Roza, A. O., Paulatto, L., Poncé, S., Rocca, D., Sabatini, R., Santra, B., Schlipf, M., Seitsonen, A. P., Smogunov, A., Timrov, I., Thonhauser, T., Umari, P., Vast, N., Wu, X. and Baroni, S. (2017), ‘Advanced capabilities for materials modelling with Quantum Espresso’, J. Phys. Condens. Matter 29, 465901.Google Scholar
Godby, R. W., Schlüter, M. and Sham, L. J. (1986), ‘Accurate exchange-correlation potential for Silicon and its discontinuity on addition of an electron’, Phys. Rev. Lett. 56, 24152418.Google Scholar
Godby, R. W., Schlüter, M. and Sham, L. J. (1988), ‘Self-energy operators and exchange-correlation potentials in semiconductors’, Phys. Rev. B 37, 1015910175.Google Scholar
Goedecker, S. (1999), ‘Linear scaling electronic structure methods’, Rev. Mod. Phys. 71, 10851123.Google Scholar
Goedecker, S. and Colombo, L. (1994), ‘Efficient linear scaling algorithm for tight-binding molecular dynamics’, Phys. Rev. Lett. 73, 122125.Google Scholar
Goerigk, L. and Grimme, S. (2014), ‘Double-hybrid density functionals’, WIREs Comput. Mol. Sci. 4, 576600.Google Scholar
Golub, G. H. and Van Loan, C. F. (2013), Matrix Computations, fourth edition, Johns Hopkins University Press.Google Scholar
Gonze, X., Jollet, F., Abreu Araujo, F., Adams, D., Amadon, B., Applencourt, T., Audouze, C., Beuken, J.-M., Bieder, J., Bokhanchuk, A., Bousquet, E., Bruneval, F., Caliste, D., Côté, M., Dahm, F., Da Pieve, F., Delaveau, M., Di Gennaro, M., Dorado, B., Espejo, C., Geneste, G., Genovese, L., Gerossier, A., Giantomassi, M., Gillet, Y., Hamann, D., He, L., Jomard, G., Laflamme Janssen, J., Le Roux, S., Levitt, A., Lherbier, A., Liu, F., Lukačević, I., Martin, A., Martins, C., Oliveira, M., Poncé, S., Pouillon, Y., Rangel, T., Rignanese, G.-M., Romero, A., Rousseau, B., Rubel, O., Shukri, A., Stankovski, M., Torrent, M., Van Setten, M., Van Troeye, B., Verstraete, M., Waroquiers, D., Wiktor, J., Xu, B., Zhou, A. and Zwanziger, J. (2016), ‘Recent developments in the ABINIT software package’, Comput. Phys. Commun. 205, 106131.Google Scholar
Greengard, L. and Rokhlin, V. (1987), ‘A fast algorithm for particle simulations’, J. Comput. Phys. 73, 325348.Google Scholar
Grimme, S. (2006), ‘Semiempirical hybrid density functional with perturbative second-order correlation’, J. Chem. Phys. 124, 034108.Google Scholar
Gunnarsson, O. and Lundqvist, B. I. (1976), ‘Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism’, Phys. Rev. B 13, 42744298.Google Scholar
Gygi, F. (2008), ‘Architecture of Qbox: A scalable first-principles molecular dynamics code’, IBM J. Res. Dev. 52, 137144.Google Scholar
Gygi, F. (2009), ‘Compact representations of Kohn–Sham invariant subspaces’, Phys. Rev. Lett. 102, 166406.Google Scholar
Hackbusch, W. (1999), ‘A sparse matrix arithmetic based on ${\mathcal{H}}$ -matrices, I: Introduction to ${\mathcal{H}}$ -matrices’, Computing 62, 89108.Google Scholar
Hamann, D. R. (2013), ‘Optimized norm-conserving Vanderbilt pseudopotentials’, Phys. Rev. B 88, 085117.Google Scholar
Hamann, D. R., Schlüter, M. and Chiang, C. (1979), ‘Norm-conserving pseudopotentials’, Phys. Rev. Lett. 43, 14941497.Google Scholar
Hartwigsen, C., Goedecker, S. and Hutter, J. (1998), ‘Relativistic separable dual-space Gaussian pseudopotentials from H to Rn’, Phys. Rev. B 58, 36413662.Google Scholar
Hedin, L. (1965), ‘New method for calculating the one-particle Green’s function with application to the electron-gas problem’, Phys. Rev. A 139, 796823.Google Scholar
Heyd, J., Scuseria, G. E. and Ernzerhof, M. (2003), ‘Hybrid functionals based on a screened Coulomb potential’, J. Chem. Phys. 118, 82078215.Google Scholar
Higham, N. (2008), Functions of Matrices: Theory and Computation, SIAM.Google Scholar
Hohenberg, P. and Kohn, W. (1964), ‘Inhomogeneous electron gas’, Phys. Rev. B 136, 864871.Google Scholar
Hu, J., Jiang, B., Lin, L., Wen, Z. and Yuan, Y. 2018 Structured quasi-Newton methods for optimization with orthogonality constraints. arXiv:1809.00452 Google Scholar
Hu, W., Lin, L. and Yang, C. (2015), ‘DGDFT: A massively parallel method for large scale density functional theory calculations’, J. Chem. Phys. 143, 124110.Google Scholar
Hu, W., Lin, L. and Yang, C. (2017a), ‘Interpolative separable density fitting decomposition for accelerating hybrid density functional calculations with applications to defects in silicon’, J. Chem. Theory Comput. 13, 54205431.Google Scholar
Hu, W., Lin, L. and Yang, C. (2017b), ‘Projected commutator DIIS method for accelerating hybrid functional electronic structure calculations’, J. Chem. Theory Comput. 13, 54585467.Google Scholar
Hu, W., Lin, L., Banerjee, A., Vecharynski, E. and Yang, C. (2017c), ‘Adaptively compressed exchange operator for large scale hybrid density functional calculations with applications to the adsorption of water on silicene’, J. Chem. Theory Comput. 13, 11881198.Google Scholar
Jacquelin, M., Lin, L. and Yang, C. (2016), ‘PSelInv: A distributed memory parallel algorithm for selected inversion: The symmetric case’, ACM Trans. Math. Software 43, 21.Google Scholar
Jacquelin, M., Lin, L. and Yang, C. (2018), ‘PSelInv: A distributed memory parallel algorithm for selected inversion: The non-symmetric case’, Parallel Comput. 74, 8498.Google Scholar
Jensen, F. (2013), ‘Atomic orbital basis sets’, WIREs Comput. Mol. Sci. 3, 273295.Google Scholar
Jia, W. and Lin, L. (2017), ‘Robust determination of the chemical potential in the pole expansion and selected inversion method for solving Kohn–Sham density functional theory’, J. Chem. Phys. 147, 144107.Google Scholar
Jin, Y., Zhang, D., Chen, Z., Su, N. Q. and Yang, W. (2017), ‘Generalized optimized effective potential for orbital functionals and self-consistent calculation of random phase approximation’, J. Phys. Chem. Lett. 8, 47464751.Google Scholar
Kaltak, M., Klimeš, J. and Kresse, G. (2014a), ‘Cubic scaling algorithm for the random phase approximation: Self-interstitials and vacancies in Si’, Phys. Rev. B 90, 054115.Google Scholar
Kaltak, M., Klimeš, J. and Kresse, G. (2014b), ‘Low scaling algorithms for the random phase approximation: Imaginary time and Laplace transformations’, J. Chem. Theory Comput. 10, 24982507.Google Scholar
Kaxiras, E. (2003), Atomic and Electronic Structure of Solids, Cambridge University Press.Google Scholar
Kaye, J., Lin, L. and Yang, C. (2015), ‘ A posteriori error estimator for adaptive local basis functions to solve Kohn–Sham density functional theory’, Commun. Math. Sci. 13, 17411773.Google Scholar
Kerker, G. P. (1981), ‘Efficient iteration scheme for self-consistent pseudopotential calculations’, Phys. Rev. B 23, 30823084.Google Scholar
Kim, J., Mauri, F. and Galli, G. (1995), ‘Total-energy global optimization using nonorthogonal localized orbitals’, Phys. Rev. B 52, 16401648.Google Scholar
Kivelson, S. (1982), ‘Wannier functions in one-dimensional disordered systems: Application to fractionally charged solitons’, Phys. Rev. B 26, 42694277.Google Scholar
Kleinman, L. and Bylander, D. M. (1982), ‘Efficacious form for model pseudopotentials’, Phys. Rev. Lett. 48, 14251428.Google Scholar
Knizia, G. and Chan, G. (2012), ‘Density matrix embedding: A simple alternative to dynamical mean-field theory’, Phys. Rev. Lett. 109, 186404.Google Scholar
Knyazev, A. V. (2001), ‘Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method’, SIAM J. Sci. Comput. 23, 517541.Google Scholar
Kobayashi, M. and Nakai, H. (2009), ‘Divide-and-conquer-based linear-scaling approach for traditional and renormalized coupled cluster methods with single, double, and noniterative triple excitations’, J. Chem. Phys. 131, 114108.Google Scholar
Koch, E. and Goedecker, S. (2001), ‘Locality properties and Wannier functions for interacting systems’, Solid State Commun. 119, 105109.Google Scholar
Kohn, W. (1959), ‘Analytic properties of Bloch waves and Wannier functions’, Phys. Rev. 115, 809821.Google Scholar
Kohn, W. (1996), ‘Density functional and density matrix method scaling linearly with the number of atoms’, Phys. Rev. Lett. 76, 31683171.Google Scholar
Kohn, W. and Sham, L. (1965), ‘Self-consistent equations including exchange and correlation effects’, Phys. Rev. A 140, 11331138.Google Scholar
Kotliar, G., Savrasov, S. Y., Haule, K., Oudovenko, V. S., Parcollet, O. and Marianetti, C. A. (2006), ‘Electronic structure calculations with dynamical mean-field theory’, Rev. Mod. Phys. 78, 865951.Google Scholar
Kresse, G. and Furthmüller, J. (1996), ‘Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set’, Phys. Rev. B 54, 1116911186.Google Scholar
Lai, R. and Lu, J. (2016), ‘Localized density matrix minimization and linear scaling algorithms’, J. Comput. Phys. 315, 194210.Google Scholar
Lai, R., Lu, J. and Osher, S. (2015), ‘Density matrix minimization with $\ell _{1}$ regularization’, Commun. Math. Sci. 13, 20972117.Google Scholar
Landau, L. and Lifshitz, E. (1991), Quantum Mechanics: Non-Relativistic Theory, Butterworth-Heinemann.Google Scholar
Langreth, D. C. and Perdew, J. P. (1975), ‘The exchange-correlation energy of a metallic surface’, Solid State Commun. 17, 14251429.Google Scholar
Lee, C., Yang, W. and Parr, R. G. (1988), ‘Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density’, Phys. Rev. B 37, 785789.Google Scholar
Levy, M. (1979), ‘Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the $v$ -representability problem’, Proc. Nat. Acad. Sci. 76, 60626065.Google Scholar
Li, S., Ahmed, S., Klimeck, G. and Darve, E. (2008), ‘Computing entries of the inverse of a sparse matrix using the FIND algorithm’, J. Comput. Phys. 227, 94089427.Google Scholar
Li, Y. and Lin, L. (2019), ‘Globally constructed adaptive local basis set for spectral projectors of second order differential operators’, Multiscale Model. Simul. 17, 92116.Google Scholar
Lieb, E. H. (1983), ‘Density functionals for Coulomb systems’, Int. J. Quantum Chem. 24, 243277.Google Scholar
Lieb, E. H. and Loss, M. (2001), Analysis, Vol. 14 of Graduate Studies in Mathematics, AMS.Google Scholar
Lin, L. (2016), ‘Adaptively compressed exchange operator’, J. Chem. Theory Comput. 12, 22422249.Google Scholar
Lin, L. (2017), ‘Localized spectrum slicing’, Math. Comp. 86, 23452371.Google Scholar
Lin, L. and Lindsey, M. (2019), ‘Convergence of adaptive compression methods for Hartree–Fock-like equations’, Commun. Pure Appl. Math. 72, 451499.Google Scholar
Lin, L. and Lu, J. (2016), ‘Decay estimates of discretized Green’s functions for Schrödinger type operators’, Sci. China Math. 59, 15611578.Google Scholar
Lin, L. and Lu, J. (2019), A Mathematical Introduction to Electronic Structure Theory, SIAM, to appear.Google Scholar
Lin, L. and Stamm, B. (2016), ‘ A posteriori error estimates for discontinuous Galerkin methods using non-polynomial basis functions, I: Second order linear PDE’, Math. Model. Numer. Anal. 50, 11931222.Google Scholar
Lin, L. and Stamm, B. (2017), ‘ A posteriori error estimates for discontinuous Galerkin methods using non-polynomial basis functions, II: Eigenvalue problems’, Math. Model. Numer. Anal. 51, 17331753.Google Scholar
Lin, L. and Yang, C. (2013), ‘Elliptic preconditioner for accelerating self consistent field iteration in Kohn–Sham density functional theory’, SIAM J. Sci. Comp. 35, S277S298.Google Scholar
Lin, L., Chen, M., Yang, C. and He, L. (2013), ‘Accelerating atomic orbital-based electronic structure calculation via pole expansion and selected inversion’, J. Phys. Condens. Matter 25, 295501.Google Scholar
Lin, L., Lu, J., Ying, L. and E, W. (2009a), ‘Pole-based approximation of the Fermi–Dirac function’, Chin. Ann. Math. B 30, 729742.Google Scholar
Lin, L., Lu, J., Ying, L. and E, W. (2012a), ‘Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework, I: Total energy calculation’, J. Comput. Phys. 231, 21402154.Google Scholar
Lin, L., Lu, J., Ying, L. and E, W. (2012b), ‘Optimized local basis function for Kohn–Sham density functional theory’, J. Comput. Phys. 231, 45154529.Google Scholar
Lin, L., Lu, J., Ying, L., Car, R. and E, W. (2009b), ‘Fast algorithm for extracting the diagonal of the inverse matrix with application to the electronic structure analysis of metallic systems’, Commun. Math. Sci. 7, 755777.Google Scholar
Lin, L., Xu, Z. and Ying, L. (2017), ‘Adaptively compressed polarizability operator for accelerating large scale ab initio phonon calculations’, Multiscale Model. Simul. 15, 2955.Google Scholar
Lin, L., Yang, C., Meza, J., Lu, J., Ying, L. and E, W. (2011), ‘SelInv: An algorithm for selected inversion of a sparse symmetric matrix’, ACM. Trans. Math. Software 37, 40.Google Scholar
Liu, B. (1978), The simultaneous expansion method for the iterative solution of several of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. Report LBL-8158, Lawrence Berkeley Laboratory, University of California, Berkeley.Google Scholar
Löwdin, P.-O. (1950), ‘On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals’, J. Chem. Phys. 18, 365375.Google Scholar
Lu, J. and Thicke, K. (2017a), ‘Cubic scaling algorithm for RPA correlation using interpolative separable density fitting’, J. Comput. Phys. 351, 187202.Google Scholar
Lu, J. and Thicke, K. (2017b), ‘Orbital minimization method with $\ell ^{1}$ regularization’, J. Comput. Phys. 336, 87103.Google Scholar
Lu, J. and Ying, L. (2015), ‘Compression of the electron repulsion integral tensor in tensor hypercontraction format with cubic scaling cost’, J. Comput. Phys. 302, 329335.Google Scholar
Lu, J. and Ying, L. (2016), ‘Fast algorithm for periodic density fitting for Bloch waves’, Ann. Math. Sci. Appl. 1, 321339.Google Scholar
Lu, J., Sogge, C. D. and Steinerberger, S. 2018 Approximating pointwise products of Laplacian eigenfunctions. arXiv:1811.10447 Google Scholar
Lu, T., Cai, W., Xin, J. and Guo, Y. (2013), ‘Linear scaling discontinuous Galerkin density matrix minimization method with local orbital enriched finite element basis: 1-D lattice model system’, Commun. Comput. Phys. 14, 276300.Google Scholar
Luenser, A., Schurkus, H. F. and Ochsenfeld, C. (2017), ‘Vanishing-overhead linear-scaling Random Phase Approximation by Cholesky decomposition and an attenuated Coulomb-metric’, J. Chem. Theory Comput. 13, 16471655.Google Scholar
MacQueen, J. (1967), Some methods for classification and analysis of multivariate observations. In Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, University of California Press, pp. 281297.Google Scholar
Mahan, G. (2000), Many-Particle Physics, Plenum.Google Scholar
Makov, G. and Payne, M. C. (1995), ‘Periodic boundary conditions in ab initio calculations’, Phys. Rev. B 51, 40144022.Google Scholar
Malet, F. and Gori-Giorgi, P. (2012), ‘Strong correlation in Kohn–Sham density functional theory’, Phys. Rev. Lett. 109, 246402.Google Scholar
Manby, F. R., Stella, M., Goodpaster, J. D. and Miller, T. F. III (2012), ‘A simple, exact density-functional-theory embedding scheme’, J. Chem. Theory Comput. 8, 25642568.Google Scholar
Mardirossian, N., McClain, J. D. and Chan, G. (2018), ‘Lowering of the complexity of quantum chemistry methods by choice of representation’, J. Chem. Phys. 148, 044106.Google Scholar
Marek, A., Blum, V., Johanni, R., Havu, V., Lang, B., Auckenthaler, T., Heinecke, A., Bungartz, H.-J. and Lederer, H. (2014), ‘The ELPA library: Scalable parallel eigenvalue solutions for electronic structure theory and computational science’, J. Phys. Condens. Matter 26, 213201.Google Scholar
Marks, L. D. and Luke, D. R. (2008), ‘Robust mixing for ab initio quantum mechanical calculations’, Phys. Rev. B 78, 075114075125.Google Scholar
Martin, R. (2008), Electronic Structure: Basic Theory and Practical Methods, Cambridge University Press.Google Scholar
Marx, D. and Hutter, J. (2009), Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods, Cambridge University Press.Google Scholar
Marzari, N. and Vanderbilt, D. (1997), ‘Maximally localized generalized Wannier functions for composite energy bands’, Phys. Rev. B 56, 1284712865.Google Scholar
Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I. and Vanderbilt, D. (2012), ‘Maximally localized Wannier functions: Theory and applications’, Rev. Mod. Phys. 84, 14191475.Google Scholar
Mauri, F. and Galli, G. (1994), ‘Electronic-structure calculations and molecular-dynamics simulations with linear system-size scaling’, Phys. Rev. B 50, 43164326.Google Scholar
Mauri, F., Galli, G. and Car, R. (1993), ‘Orbital formulation for electronic-structure calculations with linear system-size scaling’, Phys. Rev. B 47, 99739976.Google Scholar
McWeeny, R. (1960), ‘Some recent advances in density matrix theory’, Rev. Mod. Phys. 32, 335369.Google Scholar
Mermin, N. (1965), ‘Thermal properties of the inhomogeneous electron gas’, Phys. Rev. A 137, 14411443.Google Scholar
Mohr, S., Ratcliff, L. E., Boulanger, P., Genovese, L., Caliste, D., Deutsch, T. and Goedecker, S. (2014), ‘Daubechies wavelets for linear scaling density functional theory’, J. Chem. Phys. 140, 204110.Google Scholar
Mori-Sánchez, P., Wu, Q. and Yang, W. (2005), ‘Orbital-dependent correlation energy in density-functional theory based on a second-order perturbation approach: Success and failure’, J. Chem. Phys. 123, 062204.Google Scholar
Moussa, J. E. (2014), ‘Cubic-scaling algorithm and self-consistent field for the random-phase approximation with second-order screened exchange’, J. Chem. Phys. 140, 014107.Google Scholar
Moussa, J. E. (2016), ‘Minimax rational approximation of the Fermi–Dirac distribution’, J. Chem. Phys. 145, 164108.Google Scholar
Mustafa, J. I., Coh, S., Cohen, M. L. and Louie, S. G. (2015), ‘Automated construction of maximally localized Wannier functions: Optimized projection functions method’, Phys. Rev. B 92, 165134.Google Scholar
Nenciu, G. (1983), ‘Existence of the exponentially localised Wannier functions’, Comm. Math. Phys. 91, 8185.Google Scholar
Niklasson, A. M. N. (2002), ‘Expansion algorithm for the density matrix’, Phys. Rev. B 66, 155115.Google Scholar
Niklasson, A. M. N. (2011), Linear-scaling techniques in computational chemistry and physics. In Challenges and Advances in Computational Chemistry and Physics (Zalesny, R. et al. , eds), Springer, pp. 439473.Google Scholar
. Niklasson, A. M. N., Tymczak, C. J. and Challacombe, M. (2003), ‘Trace resetting density matrix purification in ${\mathcal{O}}(N)$ self-consistent-field theory’, J. Chem. Phys. 118, 86118620.Google Scholar
Nocedal, J. and Wright, S. J. (1999), Numerical Optimization, Springer.Google Scholar
Ohba, N., Ogata, S., Kouno, T., Tamura, T. and Kobayashi, R. (2012), ‘Linear scaling algorithm of real-space density functional theory of electrons with correlated overlapping domains’, Comput. Phys. Commun. 183, 16641673.Google Scholar
Onida, G., Reining, L. and Rubio, A. (2002), ‘Electronic excitations: Density-functional versus many-body Green’s-function approaches’, Rev. Mod. Phys. 74, 601659.Google Scholar
Ordejón, P., Drabold, D. A., Grumbach, M. P. and Martin, R. M. (1993), ‘Unconstrained minimization approach for electronic computations that scales linearly with system size’, Phys. Rev. B 48, 1464614649.Google Scholar
Ordejón, P., Drabold, D. A., Martin, R. M. and Grumbach, M. P. (1995), ‘Linear system-size scaling methods for electronic-structure calculations’, Phys. Rev. B 51, 14561476.Google Scholar
Ozaki, T. (2007), ‘Continued fraction representation of the Fermi–Dirac function for large-scale electronic structure calculations’, Phys. Rev. B 75, 035123.Google Scholar
Paler, A. H. R. and Manolopoulos, D. E. (1998), ‘Canonical purification of the density matrix in electronic-structure theory’, Phys. Rev. B 58, 1270412711.Google Scholar
Panati, G. and Pisante, A. (2013), ‘Bloch bundles, Marzari–Vanderbilt functional and maximally localized Wannier functions’, Commun. Math. Phys. 322, 835875.Google Scholar
Parr, R. and Yang, W. (1989), Density Functional Theory of Atoms and Molecules, Oxford University Press.Google Scholar
Parrish, R. M., Hohenstein, E. G., Martínez, T. J. and Sherrill, C. D. (2012), ‘Tensor hypercontraction, II: Least-squares renormalization’, J. Chem. Phys. 137, 224106.Google Scholar
Parrish, R. M., Hohenstein, E. G., Martínez, T. J. and Sherrill, C. D. (2013), ‘Discrete variable representation in electronic structure theory: Quadrature grids for least-squares tensor hypercontraction’, J. Chem. Phys. 138, 194107.Google Scholar
Payne, M. C., Teter, M. P., Allen, D. C., Arias, T. A. and Joannopoulos, J. D. (1992), ‘Iterative minimization techniques for ab initio total energy calculation: Molecular dynamics and conjugate gradients’, Rev. Mod. Phys. 64, 10451097.Google Scholar
Perdew, J. P. (2013), ‘Climbing the ladder of density functional approximations’, MRS Bull. 38, 743750.Google Scholar
Perdew, J. P. and Schmidt, K. (2001), Jacob’s ladder of density functional approximations for the exchange-correlation energy. In AIP Conference Proceedings, Vol. 577, pp. 120.Google Scholar
Perdew, J. P. and Zunger, A. (1981), ‘Self-interaction correction to density-functional approximations for many-electron systems’, Phys. Rev. B 23, 50485079.Google Scholar
Perdew, J. P., Burke, K. and Ernzerhof, M. (1996a), ‘Generalized gradient approximation made simple’, Phys. Rev. Lett. 77, 38653868.Google Scholar
Perdew, J. P., Ernzerhof, M. and Burke, K. (1996b), ‘Rationale for mixing exact exchange with density functional approximations’, J. Chem. Phys. 105, 99829985.Google Scholar
Petersen, D. E., Li, S., Stokbro, K., Sørensen, H. H. B., Hansen, P. C., Skelboe, S. and Darve, E. (2009), ‘A hybrid method for the parallel computation of Green’s functions’, J. Comput. Phys. 228, 50205039.Google Scholar
Pfrommer, B., Demmel, J. and Simon, H. (1999), ‘Unconstrained energy functionals for electronic structure calculations’, J. Comput. Phys. 150, 287298.Google Scholar
Pick, R., Cohen, M. and Martin, R. (1970), ‘Microscopic theory of force constants in the adiabatic approximation’, Phys. Rev. B 1, 910920.Google Scholar
Polizzi, E. (2009), ‘Density-matrix-based algorithm for solving eigenvalue problems’, Phys. Rev. B 79, 115112115117.Google Scholar
Prodan, E. and Kohn, W. (2005), ‘Nearsightedness of electronic matter’, Proc. Nat. Acad. Sci. 102, 1163511638.Google Scholar
Pulay, P. (1969), ‘ Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules, I: Theory’, Mol. Phys. 17, 197204.Google Scholar
Pulay, P. (1980), ‘Convergence acceleration of iterative sequences: the case of SCF iteration’, Chem. Phys. Lett. 73, 393398.Google Scholar
Pulay, P. (1982), ‘Improved SCF convergence acceleration’, J. Comput. Chem. 3, 5469.Google Scholar
Rayson, M. J. and Briddon, P. R. (2009), ‘Highly efficient method for Kohn–Sham density functional calculations of 500–10 000 atom systems’, Phys. Rev. B 80, 205104.Google Scholar
Reine, S., Helgaker, T. and Lindh, R. (2012), ‘Multi-electron integrals’, WIREs Comput. Mol. Sci. 2, 290303.Google Scholar
Ren, X., Rinke, P., Blum, V., Wieferink, J., Tkatchenko, A., Sanfilippo, A., Reuter, K. and Scheffler, M. (2012a), ‘Resolution-of-identity approach to Hartree–Fock, hybrid density functionals, RPA, MP2 and GW with numeric atom-centered orbital basis functions’, New J. Phys. 14, 053020.Google Scholar
Ren, X., Rinke, P., Joas, C. and Scheffler, M. (2012b), ‘Random-phase approximation and its applications in computational chemistry and materials science’, J. Mater. Sci. 47, 74477471.Google Scholar
Ren, X., Rinke, P., Scuseria, G. E. and Scheffler, M. (2013), ‘Renormalized second-order perturbation theory for the electron correlation energy: Concept, implementation, and benchmarks’, Phys. Rev. B 88, 035120.Google Scholar
Saad, Y. and Schultz, M. H. (1986), ‘GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems’, SIAM J. Sci. Statist. Comput. 7, 856869.Google Scholar
Schenk, O. and Gartner, K. (2006), ‘On fast factorization pivoting methods for symmetric indefinite systems’, Elec. Trans. Numer. Anal. 23, 158179.Google Scholar
Schofield, G., Chelikowsky, J. R. and Saad, Y. (2012), ‘A spectrum slicing method for the Kohn–Sham problem’, Comput. Phys. Commun. 183, 497505.Google Scholar
Schurkus, H. F. and Ochsenfeld, C. (2016), ‘Communication: An effective linear-scaling atomic-orbital reformulation of the random-phase approximation using a contracted double-Laplace transformation’, J. Chem. Phys. 144, 031101.Google Scholar
Seidl, M., Gori-Giorgi, P. and Savin, A. (2007), ‘Strictly correlated electrons in density-functional theory: A general formulation with applications to spherical densities’, Phys. Rev. A 75, 042511.Google Scholar
Shao, Y., Gan, Z., Epifanovsky, E., Gilbert, A. T., Wormit, M., Kussmann, J., Lange, A. W., Behn, A., Deng, J., Feng, X., Ghosh, D., Goldey, M., Horn, P. R., Jacobson, L. D., Kaliman, I., Khaliullin, R. Z., Kuś, T., Landau, A., Liu, J., Proynov, E. I., Rhee, Y. M., Richard, R. M., Rohrdanz, M. A., Steele, R. P., Sundstrom, E. J., Woodcock, H. L. III, Zimmerman, P. M., Zuev, D., Albrecht, B., Alguire, E., Austin, B., Beran, G. J. O., Bernard, Y. A., Berquist, E., Brandhorst, K., Bravaya, K. B., Brown, S. T., Casanova, D., Chang, C.-M., Chen, Y., Chien, S. H., Closser, K. D., Crittenden, D. L., Diedenhofen, M., DiStasio, R. A. Jr, Do, H., Dutoi, A. D., Edgar, R. G., Fatehi, S., Fusti-Molnar, L., Ghysels, A., Golubeva-Zadorozhnaya, A., Gomes, J., Hanson-Heine, M. W., Harbach, P. H., Hauser, A. W., Hohenstein, E. G., Holden, Z. C., Jagau, T.-C., Ji, H., Kaduk, B., Khistyaev, K., Kim, J., Kim, J., King, R. A., Klunzinger, P., Kosenkov, D., Kowalczyk, T., Krauter, C. M., Lao, K. U., Laurent, A. D., Lawler, K. V., Levchenko, S. V., Lin, C. Y., Liu, F., Livshits, E., Lochan, R. C., Luenser, A., Manohar, P., Manzer, S. F., Mao, S.-P., Mardirossian, N., Marenich, A. V., Maurer, S. A., Mayhall, N. J., Neuscamman, E., Oana, C. M., Olivares-Amaya, R., O’Neill, D. P., Parkhill, J. A., Perrine, T. M., Peverati, R., Prociuk, A., Rehn, D. R., Rosta, E., Russ, N. J., Sharada, S. M., Sharma, S., Small, D. W., Sodt, A., Stein, T., Stück, D., Su, Y.-C., Thom, A. J., Tsuchimochi, T., Vanovschi, V., Vogt, L., Vydrov, O., Wang, T., Watson, M. A., Wenzel, J., White, A., Williams, C. F., Yang, J., Yeganeh, S., Yost, S. R., You, Z.-Q., Zhang, I. Y., Zhang, X., Zhao, Y., Brooks, B. R., Chan, G. K., Chipman, D. M., Cramer, C. J., Goddard, W. A. III, Gordon, M. S., Hehre, W. J., Klamt, A., Schaefer, H. F. III, Schmidt, M. W., Sherrill, C. D., Truhlar, D. G., Warshel, A., Xu, X., Aspuru-Guzik, A., Baer, R., Bell, A. T., Besley, N. A., Chai, J.-D., Dreuw, A., Dunietz, B. D., Furlani, T. R., Gwaltney, S. R., Hsu, C.-P., Jung, Y., Kong, J., Lambrecht, D. S., Liang, W., Ochsenfeld, C., Rassolov, V. A., Slipchenko, L. V., Subotnik, J. E., Voorhis, T. V., Herbert, J. M., Krylov, A. I., Gill, P. M. and Head-Gordon, M. (2015), ‘Advances in molecular quantum chemistry contained in the Q-Chem 4 program package’, Mol. Phys. 113, 184215.Google Scholar
Shimojo, F., Kalia, R. K., Nakano, A. and Vashishta, P. (2008), ‘Divide-and-conquer density functional theory on hierarchical real-space grids: Parallel implementation and applications’, Phys. Rev. B 77, 085103.Google Scholar
Shimojo, F., Ohmura, S., Nakano, A., Kalia, R. and Vashishta, P. (2011), ‘Large-scale atomistic simulations of nanostructured materials based on divide-and-conquer density functional theory’, Eur. Phys. J. Spec. Top. 196, 5363.Google Scholar
Skylaris, C., Haynes, P., Mostofi, A. and Payne, M. (2005), ‘Introducing ONETEP: Linear-scaling density functional simulations on parallel computers’, J. Chem. Phys. 122, 084119.Google Scholar
Slater, J. C. (1937), ‘Wave functions in a periodic potential’, Phys. Rev. 51, 846851.Google Scholar
Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P. and Sánchez-Portal, D. (2002), ‘The SIESTA method for ab initio order- $N$ materials simulation’, J. Phys. Condens. Matter 14, 27452779.Google Scholar
Souza, I., Marzari, N. and Vanderbilt, D. (2001), ‘Maximally localized Wannier functions for entangled energy bands’, Phys. Rev. B 65, 035109.Google Scholar
Staroverov, V. N., Scuseria, G. E., Tao, J. and Perdew, J. P. (2003), ‘Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes’, J. Chem. Phys. 119, 1212912137.Google Scholar
Stoudenmire, E. M. and White, S. R. (2017), ‘Sliced basis density matrix renormalization group for electronic structure’, Phys. Rev. Lett. 119, 046401.Google Scholar
Sun, J., Ruzsinszky, A. and Perdew, J. P. (2015), ‘Strongly constrained and appropriately normed semilocal density functional’, Phys. Rev. Lett. 115, 036402.Google Scholar
Sun, Q. and Chan, G. K.-L (2016), ‘Quantum embedding theories’, Acc. Chem. Res. 49, 27052712.Google Scholar
Sun, Q., Berkelbach, T. C., McClain, J. D. and Chan, G. (2017), ‘Gaussian and plane-wave mixed density fitting for periodic systems’, J. Chem. Phys. 147, 164119.Google Scholar
Suryanarayana, P., Gavani, V., Blesgen, T., Bhattacharya, K. and Ortiz, M. (2010), ‘Non-periodic finite-element formulation of Kohn–Sham density functional theory’, J. Mech. Phys. Solids 58, 258280.Google Scholar
Sylvester, J. J. (1852), ‘A demonstration of the theorem that every homogeneous quadratic polynomial is reducible by real orthogonal substitutions to the form of a sum of positive and negative squares’, Philos. Mag. 4, 138142.Google Scholar
Szabo, A. and Ostlund, N. (1989), Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, McGraw-Hill.Google Scholar
Teter, M., Payne, M. and Allan, D. (1989), ‘Solution of Schrödinger’s equation for large systems’, Phys. Rev. B 40, 1225512263.Google Scholar
Thaller, B. (1992), The Dirac Equation, Springer.Google Scholar
Thomas, L. H. (1927), ‘The calculation of atomic fields’, Proc. Camb. Phil. Soc. 23, 542548.Google Scholar
Trefethen, L. N. (2008), ‘Is Gauss quadrature better than Clenshaw–Curtis?’, SIAM Rev. 50, 6787.Google Scholar
Troullier, N. and Martins, J. L. (1991), ‘Efficient pseudopotentials for plane-wave calculations’, Phys. Rev. B 43, 19932006.Google Scholar
Truflandier, L. A., Dianzinga, R. M. and Bowler, D. R. (2016), ‘Communication: Generalized canonical for density matrix minimization’, J. Chem. Phys. 144, 091102.Google Scholar
Tsuchida, E. (2007), ‘Augmented orbital minimization method for linear scaling electronic structure calculations’, J. Phys. Soc. Japan 76, 034708.Google Scholar
Tsuchida, E. and Tsukada, M. (1995), ‘Electronic-structure calculations based on the finite-element method’, Phys. Rev. B 52, 55735578.Google Scholar
Valiev, M., Bylaska, E. J., Govind, N., Kowalski, K., Straatsma, T. P., Van Dam, H. J. J., Wang, D., Nieplocha, J., Apra, E., Windus, T. L. and De Jong, W. (2010), ‘NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations’, Comput. Phys. Commun. 181, 14771489.Google Scholar
Vanderbilt, D. (1990), ‘Soft self-consistent pseudopotentials in a generalized eigenvalue formalism’, Phys. Rev. B 41, 78927895.Google Scholar
Vecharynski, E., Yang, C. and Pask, J. E. (2015), ‘A projected preconditioned conjugate gradient algorithm for computing many extreme eigenpairs of a Hermitian matrix’, J. Comput. Phys. 290, 7389.Google Scholar
Vömel, C. (2010), ‘ScaLAPACK’s MRRR algorithm’, ACM Trans. Math. Software 37, 1.Google Scholar
von Barth, U. and Hedin, L. (1972), ‘A local exchange-correlation potential for the spin polarized case’, J. Phys.C Solid State Phys. 5, 16291642.Google Scholar
Wang, L.-W., Zhao, Z. and Meza, J. (2008), ‘Linear-scaling three-dimensional fragment method for large-scale electronic structure calculations’, Phys. Rev. B 77, 165113.Google Scholar
Wannier, G. H. (1937), ‘The structure of electronic excitation levels in insulating crystals’, Phys. Rev. 52, 191197.Google Scholar
Warshel, A. and Levitt, M. (1976), ‘Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme’, J. Mol. Biol. 103, 227249.Google Scholar
Weigend, F. (2002), ‘A fully direct RI-HF algorithm: Implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency’, Phys. Chem. Chem. Phys. 4, 42854291.Google Scholar
Weigend, F., Häser, M., Patzelt, H. and Ahlrichs, R. (1998), ‘RI-MP2: Optimized auxiliary basis sets and demonstration of efficiency’, Chem. Phys. Lett. 294, 143152.Google Scholar
Wen, Z. and Yin, W. (2013), ‘A feasible method for optimization with orthogonality constraints’, Math. Program. 142, 397434.Google Scholar
Werner, H., Knowles, P. J., Knizia, G., Manby, F. R. and Schütz, M. (2012), ‘Molpro: A general-purpose quantum chemistry program package’, WIREs Comput. Mol. Sci. 2, 242253.Google Scholar
White, S. R. (2017), ‘Hybrid grid/basis set discretizations of the Schrödinger equation’, J. Chem. Phys. 147, 244102.Google Scholar
Wilhelm, J., Seewald, P., Del Ben, M. and Hutter, J. (2016), ‘Large-scale cubic-scaling random phase approximation correlation energy calculations using a Gaussian basis’, J. Chem. Theory Comput. 12, 58515859.Google Scholar
Wu, X., Selloni, A. and Car, R. (2009), ‘Order- $N$ implementation of exact exchange in extended insulating systems’, Phys. Rev. B 79, 085102.Google Scholar
Xu, Q., Suryanarayana, P. and Pask, J. E. (2018), ‘Discrete discontinuous basis projection method for large-scale electronic structure calculations’, J. Chem. Phys. 149, 094104.Google Scholar
Yang, C., Meza, J. and Wang, L. (2006), ‘A constrained optimization algorithm for total energy minimization in electronic structure calculations’, J. Comput. Phys. 217, 709721.Google Scholar
Yang, W. (1991a), ‘Direct calculation of electron density in density-functional theory’, Phys. Rev. Lett. 66, 14381441.Google Scholar
Yang, W. (1991b), ‘Direct calculation of electron density in density-functional theory: Implementation for benzene and a tetrapeptide’, Phys. Rev. A 44, 78237826.Google Scholar
Yang, W. and Lee, T.-S. (1995), ‘A density-matrix divide-and-conquer approach for electronic structure calculations of large molecules’, J. Chem. Phys. 103, 56745678.Google Scholar
Yu, V. W.-z., Corsetti, F., García, A., Huhn, W. P., Jacquelin, M., Jia, W., Lange, B., Lin, L., Lu, J., Mi, W., Seifitokaldani, A., Vazquez-Mayagoitia, A., Yang, C., Yang, H. and Blum, V. (2018), ‘ELSI: A unified software interface for Kohn–Sham electronic structure solvers’, Comput. Phys. Commun. 222, 267285.Google Scholar
Zhang, G., Lin, L., Hu, W., Yang, C. and Pask, J. E. (2017), ‘Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework, II: Force, vibration, and molecular dynamics calculations’, J. Comput. Phys. 335, 426443.Google Scholar
Zhang, H., Smith, B., Sternberg, M. and Zapol, P. (2007), ‘SIPs: Shift-and-invert parallel spectral transformations’, ACM Trans. Math. Software 33, 919.Google Scholar
Zhang, I. Y., Rinke, P. and Scheffler, M. (2016), ‘Wave-function inspired density functional applied to the $H_{2}/H_{2}^{+}$ challenge’, New J. Phys. 18, 073026.Google Scholar
Zhang, L., Han, J., Wang, H., Car, R. and W. E (2018), ‘Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics’, Phys. Rev. Lett. 120, 143001.Google Scholar
Zhang, Y., Xu, X. and Goddard, W. A. III (2009), ‘Doubly hybrid density functional for accurate descriptions of nonbond interactions, thermochemistry, and thermochemical kinetics’, Proc. Nat. Acad. Sci. USA 106, 49634968.Google Scholar
Zhao, Z., Meza, J. and Wang, L.-W. (2008), ‘A divide-and-conquer linear scaling three-dimensional fragment method for large scale electronic structure calculations’, J. Phys. Condens. Matter 20, 294203.Google Scholar
Zhou, Y., Chelikowsky, J. R. and Saad, Y. (2014), ‘Chebyshev-filtered subspace iteration method free of sparse diagonalization for solving the Kohn–Sham equation’, J. Comput. Phys. 274, 770782.Google Scholar
Zhou, Y., Saad, Y., Tiago, M. L. and Chelikowsky, J. R. (2006), ‘Self-consistent-field calculations using Chebyshev-filtered subspace iteration’, J. Comput. Phys. 219, 172184.Google Scholar
Ziman, J. M. (1979), Principles of the Theory of Solids, Cambridge University Press.Google Scholar