Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T05:31:13.780Z Has data issue: false hasContentIssue false

Mathematical analysis of variational isogeometric methods*

Published online by Cambridge University Press:  12 May 2014

L. Beirão da Veiga
Affiliation:
Dipartimento di Matematica, Università di Milano, via Saldini 50, 20133, Milano, Italy, E-mail: [email protected] Istituto di Matematica Applicata e Tecnologie Informatiche, ‘E. Magenes’ del CNR, via Ferrata 1, 27100, Pavia, Italy, E-mail: {annalisa.buffa, vazquez}@imati.cnr.it
A. Buffa
Affiliation:
Istituto di Matematica Applicata e Tecnologie Informatiche, ‘E. Magenes’ del CNR, via Ferrata 1, 27100, Pavia, Italy, E-mail: {annalisa.buffa, vazquez}@imati.cnr.it
G. Sangalli
Affiliation:
Istituto di Matematica Applicata e Tecnologie Informatiche, ‘E. Magenes’ del CNR, via Ferrata 1, 27100, Pavia, Italy, E-mail: {annalisa.buffa, vazquez}@imati.cnr.it Dipartimento di Matematica, Università di Pavia, via Ferrata 1, 27100, Pavia, Italy, E-mail: [email protected]
R. Vázquez
Affiliation:
Istituto di Matematica Applicata e Tecnologie Informatiche, ‘E. Magenes’ del CNR, via Ferrata 1, 27100, Pavia, Italy, E-mail: {annalisa.buffa, vazquez}@imati.cnr.it

Extract

This review paper collects several results that form part of the theoretical foundation of isogeometric methods. We analyse variational techniques for the numerical resolution of PDEs based on splines or NURBS and we provide optimal approximation and error estimates in several cases of interest. The theory presented also includes estimates for T-splines, which are an extension of splines allowing for local refinement. In particular, we focus our attention on elliptic and saddle point problems, and we define spline edge and face elements. Our theoretical results are demonstrated by a rich set of numerical examples. Finally, we discuss implementation and efficiency together with preconditioning issues for the final linear system.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Colour online for monochrome figures available at journals.cambridge.org/anu.

References

REFERENCES

Adams, R. A. (1975), Sobolev Spaces, Vol. 65 of Pure and Applied Mathematics, Academic Press.Google Scholar
Aigner, M., Heinrich, C., Jüttler, B., Pilgerstorfer, E., Simeon, B. and Vuong, A.-V. (2009), ‘Swept volume parameterization for isogeometric analysis’, Vol. 5654 of Lecture Notes in Computer Science, Springer, pp. 1944.Google Scholar
Apostolatos, A., Schmidt, R., Wüchner, R. and Bletzinger, K.-U. (2014), ‘A Nitsche-type formulation and comparison of the most common domain decomposition methods in isogeometric analysis’, Internat. J. Numer. Methods Engrg 97, 473504.Google Scholar
Arnold, D. N., Falk, R. S. and Winther, R. (2006), Finite element exterior calculus, homological techniques, and applications. In Acta Numerica, Vol. 15, Cambridge University Press, pp. 1155.Google Scholar
Arnold, D. N., Falk, R. S. and Winther, R. (2010), ‘Finite element exterior calculus: From Hodge theory to numerical stability’, Bull. Amer. Math. Soc. (NS) 47, 281354.Google Scholar
Auricchio, F., da Veiga, L. Beirao, Lovadina, C. and Reali, A. (2010 a), ‘The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: Mixed FEMs versus NURBS-based approximations’, Comput. Methods Appl. Mech. Engrg 199, 314323.Google Scholar
Auricchio, F., da Veiga, L. Beirào, Buffa, A., Lovadina, C., Reali, A. and Sangalli, G. (2007), ‘A fully “locking-free” isogeometric approach for plane linear elasticity problems: A stream function formulation’, Comput. Methods Appl. Mech. Engrg 197, 160172.Google Scholar
Auricchio, F., da Veiga, L. Beirao, Hughes, T. J. R., Reali, A. and Sangalli, G. (2010 b), ‘Isogeometric collocation methods’, Math. Models Methods Appl. Sci. 20, 20752107.CrossRefGoogle Scholar
Auricchio, F., Calabro, F., Hughes, T., Reali, A. and Sangalli, G. (2012), ‘A simple algorithm for obtaining nearly optimal quadrature rules for NURBS-based isogeometric analysis’, Comput. Methods Appl. Mech. Engrg 249-252, 1527.Google Scholar
Babuška, I. and Strouboulis, T. (2001), The Finite Element Method and its Reliability, Numerical Mathematics and Scientific Computation, Oxford Science Publications.Google Scholar
Bazilevs, Y. and Hughes, T. J. R. (2008), ‘NURBS-based isogeometric analysis for the computation of flows about rotating components’, Comput. Mech. 43, 143150.Google Scholar
Bazilevs, Y., da Veiga, L. Beiràao, Cottrell, J. A., Hughes, T. J. R. and Sangalli, G. (2006) , ‘Isogeometric analysis: Approximation, stability and error estimates for h-refined meshes’, Math. Models Methods Appl. Sci. 16, 10311090.Google Scholar
Bazilevs, Y., Calo, V., Cottrell, J. A., Evans, J. A., Hughes, T. J. R., Lipton, S., Scott, M. and Sederberg, T. (2010 a), ‘Isogeometric analysis using T-splines’, Comput. Methods Appl. Mech. Engrg 199, 229263.Google Scholar
Bazilevs, Y., Calo, V. M., Cottrell, J. A., Hughes, T. J. R., Reali, A. and Scovazzi, G. (2007) , ‘Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows’, Comput. Methods Appl. Mech. Engrg 197, 173201.Google Scholar
Bazilevs, Y., Calo, V. M., Hughes, T. J. R. and Zhang, Y. (2008), ‘Isogeometric fluid-structure interaction: Theory, algorithms, and computations’, Comput. Mech. 43, 337.CrossRefGoogle Scholar
Bazilevs, Y., Hsu, M.-C. and Scott, M. (2012), ‘Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines’, Comput. Methods Appl. Mech. Engrg 249, 2841.Google Scholar
Bazilevs, Y., Hsu, M.-C., Kiendl, J., Wuchner, R. and K.-U. Blezinger (2011), ‘3D simulation of wind turbine rotors at full scale II: Fluid-structure interaction modeling with composite blades’, Internat. J. Numer. Meth. Fluids 65, 236253.Google Scholar
Bazilevs, Y., Michler, C., Calo, V. and Hughes, T. (2010b), ‘Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes’, Comput. Methods Appl. Mech. Engrg 199, 780790.Google Scholar
da Veiga, L. Beirão, Buffa, A., Cho, D. and Sangalli, G. (2012 a), ‘Analysis-suitable T-splines are dual-compatible’, Comput. Methods Appl. Mech. Engrg 249-252, 4251.Google Scholar
da Veiga, L. Beirão, Buffa, A., Lovadina, C., Martinelli, M. and Sangalli, G. (2012 b), ‘An isogeometric method for the Reissner-Mindlin plate bending problem’, Comput. Methods Appl. Mech. Engrg 209-212, 4253.Google Scholar
da Veiga, L. Beirão, Buffa, A., Rivas, J. and Sangalli, G. (2011), ‘Some estimates for h-p-k-refinement in isogeometric analysis’, Numer. Math. 118, 271305.Google Scholar
da Veiga, L. Beirão, Buffa, A., Sangalli, G. and Vázquez, R. (2013 a), ‘Analysis-suitable T-splines of arbitrary degree: Definition, linear independence and approximation properties’, Math. Models Methods Appl. Sci. 23, 19792003.Google Scholar
da Veiga, L. Beirão, Cho, D. and Sangalli, G. (2012 c), ‘Anisotropic NURBS approximation in isogeometric analysis’, Comput. Methods Appl. Mech. Engrg 209-212, 111.Google Scholar
da Veiga, L. Beirão, Cho, D., Pavarino, L. and Scacchi, S. (2012 d), ‘Overlapping Schwarz methods for isogeometric analysis’, SIAM J. Numer. Anal. 50, 13941416.Google Scholar
da Veiga, L. Beirão, Cho, D., Pavarino, L. F. and Scacchi, S. (2013 b), ‘BDDC preconditioners for isogeometric analysis’, Math. Models Methods Appl. Sci. 23, 10991142.CrossRefGoogle Scholar
da Veiga, L. Beirão, Cho, D., Pavarino, L. F. and Scacchi, S. (2013 c), ‘Isogeometric Schwarz preconditioners for linear elasticity systems’, Comput. Methods Appl. Mech. Engrg 253, 439444.Google Scholar
Benson, D., Bazilevs, Y., Hsu, M.-C. and Hughes, T. (2011), ‘A large deformation, rotation-free, isogeometric shell’, Comput. Methods Appl. Mech. Engrg 200, 13671378.Google Scholar
Boffi, D. (2007), ‘Approximation of eigenvalues in mixed form, discrete compactness property, and application to hp mixed finite elements’, Comput. Methods Appl. Mech. Engrg 196, 36723681.Google Scholar
Boffi, D. (2010), Finite element approximation of eigenvalue problems. In Acta Numerica, Vol. 19, Cambridge University Press, pp. 1120.Google Scholar
Boffi, D., Brezzi, F. and Fortin, M. (2013), Mixed Finite Element Methods and Applications, Vol. 44 of Springer Series in Computational Mathematics, Springer.Google Scholar
Boffi, D., Brezzi, F. and Gastaldi, L. (1997), ‘On the convergence of eigenvalues for mixed formulations’, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25, 131154.Google Scholar
Boffi, D., Fernandes, P., Gastaldi, L. and Perugia, I. (1999), ‘Computational models of electromagnetic resonators: Analysis of edge element approximation’, SIAM J. Numer. Anal. 36, 12641290.Google Scholar
de Boor, C. (2001), A Practical Guide to Splines, Vol. 27 of Applied Mathematical Sciences, revised edition, Springer.Google Scholar
Borden, M. J., Scott, M. A., Evans, J. A. and Hughes, T. J. R. (2011), ‘Isogeometric finite element data structures based on Bézier extraction of NURBS’, Internat. J. Numer. Methods Engrg 87, 1547.Google Scholar
Bramble, J. H., Pasciak, J. E. and Xu, J. (1990), ‘Parallel multilevel preconditioned’, Math. Comp. 55, 122.CrossRefGoogle Scholar
Bressan, A. (2011), ‘Isogeometric regular discretization for the Stokes problem’, IMA J. Numer. Anal. 31, 13341356.Google Scholar
Bressan, A. (2013), ‘Some properties of LR-splines’, Comput. Aided Geom. Design. 30, 778794.Google Scholar
Bressan, A. and Sangalli, G. (2013), ‘Isogeometric discretizations of the Stokes problem: Stability analysis by the macroelement technique’, IMA J. Numer. Anal. 33, 629651.Google Scholar
Bressan, A., Buffa, A. and Sangalli, G. (2013), Characterization of analysis suitable T-splines. Technical report, IMATI-CNR.Google Scholar
Buffa, A., Cho, D. and Kumar, M. (2012), ‘Characterization of T-splines with reduced continuity order on T-meshes’, Comput. Methods Appl. Mech. Engrg 201-204, 112126.CrossRefGoogle Scholar
Buffa, A., Cho, D. and Sangalli, G. (2010 a), ‘Linear independence of the T-spline blending functions associated with some particular T-meshes’, Comput. Methods Appl. Mech. Engrg 199, 14371445.Google Scholar
Buffa, A., Costabel, M. and Dauge, M. (2005), ‘Algebraic convergence for anisotropic edge elements in polyhedral domains’, Numer. Math. 101, 2965.Google Scholar
Buffa, A., de Falco, C. and Sangalli, G. (2011 a), ‘Isogeometric analysis: Stable elements for the 2D Stokes equation’, Internat. J. Numer. Methods Fluids 65, 14071422.CrossRefGoogle Scholar
Buffa, A., Harbrecht, H., Kunoth, A. and Sangalli, G. (2013), ‘BPX-preconditioning for isogeometric analysis’, Comput. Methods Appl. Mech. Engrg 265, 6370.Google Scholar
Buffa, A., Rivas, J., Sangalli, G. and Vazquez, R. (2011 b), ‘Isogeometric discrete differential forms in three dimensions’, SIAM J. Numer. Anal. 49, 818844.Google Scholar
Buffa, A., Sangalli, G. and Schwab, C. (2014 a), Exponential convergence of the hp version of isogeometric analysis in 1D. In Spectral and High Order Methods for Partial Differential Equations: ICOSAHOM 2012 (Azaez, M., El, H. Fekih and Hesthaven, J. S., eds), Vol. 95 of Lecture Notes in Computational Science and Engineering, Springer, pp. 191203.Google Scholar
Buffa, A., Sangalli, G. and Vazquez, R. (2010 b), ‘Isogeometric analysis in electromagnetics: B-splines approximation’, Comput. Methods Appl. Mech. Engrg 199, 11431152.Google Scholar
Buffa, A., Sangalli, G. and Vázquez, R. (2014 b), ‘Isogeometric methods for computational electromagnetics: B-spline and T-spline discretizations’, J. Comput. Phys. B 257, 12911320.Google Scholar
Ciarlet, P. G. (2002), The Finite Element Method for Elliptic Problems, Vol. 40 of Classics in Applied Mathematics, SIAM. Reprint of the 1978 original (North-Holland).Google Scholar
Cohen, E. and Schumaker, L. L. (1985), ‘Rates of convergence of control polygons’, Comput. Aided Geom. Design. 2, 229235.Google Scholar
Cohen, E., Lyche, T. and Riesenfeld, R. (2013), ‘A B-spline-like basis for the Powell–Sabin 12-split based on simplex splines’, Math. Comp. 82, 16671707.Google Scholar
Cohen, E., Martin, T., Kirby, R. M., Lyche, T. and Riesenfeld, R. F. (2010), ‘Analysisaware modeling: Understanding quality considerations in modeling for isoge-ometric analysis’, Comput. Methods Appl. Mech. Engrg 199, 334356.Google Scholar
Cohen, E., Riesenfeld, R. and Elber, G. (2001), Geometric Modeling with Splines: An Introduction, Vol. 1, A. K. Peters.Google Scholar
Collier, N., Dalcin, L., Pardo, D. and Calo, V. M. (2013 a), ‘The cost of continuity: Performance of iterative solvers on isogeometric finite elements’, SIAM J. Sci. Comput. 35, A767A784.Google Scholar
Collier, N. O., Dalcin, L. and Calo, V. M. (2013 b), PetIGA: High-performance isogeometric analysis. arXiv:1305.4452Google Scholar
Collier, N. O., Pardo, D., Paszynski, M. and Calo, V. M. (2012 a), Computational complexity and memory usage for multi-frontal direct solvers in structured mesh finite elements. arXiv:1204.1718Google Scholar
Collier, N., Pardo, D., Dalcin, L., Paszynski, M. and Calo, V. M. (20126), ‘The cost of continuity: A study of the performance of isogeometric finite elements using direct solvers’, Comput. Methods Appl. Mech. Engrg 213-216, 353361.Google Scholar
Costabel, M. and Dauge, M. (2006), Maxwell eigenmodes in tensor product domains. Technical report, University of Rennes.Google Scholar
Cottrell, J. A., Hughes, T. and Reali, A. (2007), ‘Studies of refinement and continuity in isogeometric structural analysis’, Comput. Methods Appl. Mech. Engrg 196, 41604183.Google Scholar
Cottrell, J. A., Hughes, T. J. R. and Bazilevs, Y. (2009), Isogeometric Analysis: Toward Integration of CAD and FEA, Wiley.Google Scholar
Cottrell, J. A., Reali, A., Bazilevs, Y. and Hughes, T. J. R. (2006), ‘Isogeometric analysis of structural vibrations’, Comput. Methods Appl. Mech. Engrg 195, 52575296.Google Scholar
Crouseilles, N., Ratnani, A. and Sonnendrücker, E. (2012), ‘An isogeometric analysis approach for the study of the gyrokinetic quasi-neutrality equation’, J. Comput. Phys. 231, 373393.Google Scholar
Dahmen, W. and Kunoth, A. (1992), ‘Multilevel preconditioning’, Numer. Math. 63, 315344.CrossRefGoogle Scholar
Dauge, M. (2014), Benchmark computations for Maxwell equations for the approximation of highly singular solutions. http://perso.univ-rennes1.fr/monique.dauge/benchmax.htmlGoogle Scholar
Lorenzis, L. De, Temizer, I., Wriggers, P. and Zavarise, G. (2011), ‘A large deformation frictional contact formulation using NURBS-based isogeometric analysis’, Internat.J.Numer. Methods Engrg 87, 12781300.Google Scholar
Dimitri, R., Lorenzis, L. De, Scott, M., Wriggers, P., Taylor, R. and Zavarise, G. (2014), ‘Isogeometric large deformation frictionless contact using T-splines’, Comput. Methods Appl. Mech. Engrg 269, 394414.Google Scholar
Dokken, T., Lyche, T. and Pettersen, K. F. (2013), ‘Polynomial splines over locally refined box-partitions’, Comput. Aided Geom. Design 30, 331356.Google Scholar
Dürfel, M., Jüttler, B. and Simeon, B. (2010), ‘Adaptive isogeometric analysis by local h-refinement with T-splines’, Comput. Methods Appl. Mech. Engrg 199, 264275.Google Scholar
Echter, R. and Bischoff, M. (2010), ‘Numerical efficiency, locking and unlocking of NURBS finite elements’, Comput. Methods Appl. Mech. Engrg 199, 374382.Google Scholar
Elguedj, T., Bazilevs, Y., Calo, V. and Hughes, T. J. R. (2008), ‘B and F projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements’, Comput. Methods Appl. Mech. Engrg 197, 27322762.Google Scholar
Evans, J. A. and Hughes, T. J. R. (2013 a), ‘Isogeometric divergence-conforming B-splines for the Darcy–Stokes–Brinkman equations’, Math. Models Methods Appl. Sci. 23, 671741.Google Scholar
Evans, J. A. and Hughes, T. J. R. (2013 b), ‘Isogeometric divergence-conforming B-splines for the steady Navier-Stokes equations’, Math. Models Methods Appl. Sci. 23, 14211478.Google Scholar
Evans, J. A. and Hughes, T. J. R. (2013 c), ‘Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations’, J. Comput. Phys. 241, 141167.Google Scholar
Evans, J. A., Bazilevs, Y., Babuska, I. and Hughes, T. J. R. (2009), ‘n-widths, supinfs, and optimality ratios for the k-version of the isogeometric finite element method’, Comput. Methods Appl. Mech. Engrg 198, 17261741.Google Scholar
de Falco, C., Reali, A. and Vázquez, R. (2011), ‘GeoPDEs: A research tool for isogeometric analysis of PDEs’, Adv. Engrg Softw. 42, 10201034.Google Scholar
Gahalaut, K., Tomar, S. and Kraus, J. (2013), ‘Algebraic multilevel preconditioning in isogeometric analysis: Construction and numerical studies’, Comput. Methods Appl. Mech. Engrg 266, 4056.Google Scholar
Garoni, C., Manni, C., Pelosi, F., Serra-Capizzano, S. and Speleers, H. (2014), ‘On the spectrum of stiffness matrices arising from isogeometric analysis’, Numer. Math, to appear.Google Scholar
Giannelli, C. and Juüttler, B. (2013), ‘Bases and dimensions of bivariate hierarchical tensor-product splines’, J. Comput. Appl. Math. 239, 162178.Google Scholar
Giannelli, C., Juüttler, B. and Speleers, H. (2012), ‘THB-splines: The truncated basis for hierarchical splines’, Comput. Aided Geom. Design. 29, 485498.Google Scholar
Gómez, H., Calo, V., Bazilevs, Y. and Hughes, T. J. R. (2008), ‘Isogeometric analysis of the Cahn-Hilliard phase-field model’, Comput. Methods Appl. Mech. Engrg 197, 43334352.Google Scholar
Gómez, H., Hughes, T. J. R., Nogueira, X. and Calo, V. M. (2010), ‘Isogeometric analysis of the isothermal Navier–Stokes–Korteweg equations’, Comput. Methods Appl. Mech. Engrg 199, 18281840.Google Scholar
Govindjee, S., Strain, J., Mitchell, T. J. and Taylor, R. L. (2012), ‘Convergence of an efficient local least-squares fitting method for bases with compact support’, Comput. Methods Appl. Mech. Engrg 213-216, 8492.Google Scholar
Hiptmair, R. (2002), Finite elements in computational electromagnetism. In Acta Numerica, Vol. 11, Cambridge University Press, pp. 237339.Google Scholar
Hosseini, S., Remmers, J. J., Verhoosel, C. V. and Borst, R. (2013), ‘An isogeometric solid-like shell element for nonlinear analysis’, Internat. J. Numer. Methods Engrg 95, 238256.CrossRefGoogle Scholar
Hughes, T. J. R., Cottrell, J. A. and Bazilevs, Y. (2005), ‘Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement’, Comput. Methods Appl. Mech. Engrg 194, 41354195.Google Scholar
Hughes, T. J. R., Evans, J. A. and Reali, A. (2014), ‘Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems', Comput. Methods Appl. Mech. Engrg 272, 290320.Google Scholar
Hughes, T. J. R., Reali, A. and Sangalli, G. (2008), ‘Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with fc-method NURBS’, Comput. Methods Appl. Mech. Engrg 197, 41044124.Google Scholar
Hughes, T. J. R., Reali, A. and Sangalli, G. (2010), ‘Efficient quadrature for NURBS-based isogeometric analysis’, Comput. Methods Appl. Mech. Engrg 199, 301313.CrossRefGoogle Scholar
Johannessen, K. A., Kvamsdal, T. and Dokken, T. (2014), ‘Isogeometric analysis using LR B-splines’, Comput. Methods Appl. Mech. Engrg 269, 471514.Google Scholar
Karatarakis, A., Karakitsios, P. and Papadrakakis, M. (2014), ‘GPU accelerated computation of the isogeometric analysis stiffness matrix’, Comput. Methods Appl. Mech. Engrg 269, 334355.Google Scholar
Kellogg, R. B. (1974/1975), ‘On the Poisson equation with intersecting interfaces’, Applica6le Anal. 4, 101129.Google Scholar
Kiendl, J., Bazilevs, Y., Hsu, M.-C., Wuüchner, R. and Bletzinger, K.-U. (2010), ‘The bending strip method for isogeometric analysis of Kirchhoff-Love shell structures comprised of multiple patches’, Comput. Methods Appl. Mech. Engrg 199, 24032416.Google Scholar
Kiendl, J., Bletzinger, K.-U., Linhard, J. and Wuchner, R. (2009), ‘Isogeometric shell analysis with Kirchhoff-Love elements’, Comput. Methods Appl. Mech. Engrg 198, 39023914.Google Scholar
Kleiss, S. K., Pechstein, C., Jüttler, B. and Tomar, S. (2012), ‘IETI: Isogeometric tearing and interconnecting’, Comput. Methods Appl. Mech. Engrg 247/248, 201215.Google Scholar
Kraft, R. (1997), Adaptive and linearly independent multilevel B-splines. In Surface Fitting and Multiresolution Methods: Chamonix-Mont-Blanc, 1996, Vander bilt University Press, pp. 209218.Google Scholar
Lai, M.-J. and Schumaker, L. L. (2007), Spline Functions on Triangulations, Vol. 110 of Encyclopedia of Mathematics and its Applications, Cambridge University Press.Google Scholar
Lee, B. -G., Lyche, T. and Mørken, K. (2001), Some examples of quasi-interpolants constructed from local spline projectors. In Mathematical Methods for Curves and Surfaces: Oslo, 2000, Vanderbilt University Press, pp. 243252.Google Scholar
Li, X. and Scott, M. A. (2014), ‘Analysis-suitable T-splines: Characterization, refineability, and approximation’, Math. Models Methods Appl. Sci. 24, 1141.Google Scholar
Li, X., Zheng, J., Sederberg, T., Hughes, T. and Scott, M. (2012), ‘On linear independence of T-spline blending functions’, Comput. Aided Geom. Design 29, 6376.Google Scholar
Lipton, S., Evans, J. A., Bazilevs, Y., Elguedj, T. and Hughes, T. J. R. (2010), ‘Robustness of isogeometric structural discretizations under severe mesh distortion’, Comput. Methods Appl. Mech. Engrg 199, 357373.Google Scholar
Maes, J., Kunoth, A. and Bultheel, A. (2007), ‘BPX-type preconditioners for second and fourth order elliptic problems on the sphere’, SIAM J. Numer. Anal. 45, 206222.Google Scholar
Mantzaflaris, A. and Jüttler, B. (2014), Exploring matrix generation strategies in isogeometric analysis. In Mathematical Methods for Curves and Surfaces (Mazure, M.-L.et al., eds), Vol. 8177 of Lecture Notes in Computer Science, Springer, pp. 364382.Google Scholar
Martin, T., Cohen, E. and Kirby, R. (2009), ‘Volumetric parameterization and trivariate B-spline fitting using harmonic functions’, Comput. Aided Geom. Design 26, 648664.Google Scholar
Melenk, J., Gerdes, K. and Schwab, C. (2001), ‘Fully discrete hp-finite elements: Fast quadrature’, Comput. Methods Appl. Mech. Engrg 190, 43394364.Google Scholar
Monk, P. (2003), Finite Element Methods for Maxwell's Equations, Oxford University Press.Google Scholar
Morin, P., Nochetto, R. H. and Siebert, K. G. (2002), ‘Convergence of adaptive finite element methods’, SIAM Rev. 44, 631658.Google Scholar
Nédélec, J.-C. (1980), ‘Mixed finite elements in ℝ3’, Numer. Math. 35, 315341.Google Scholar
Nguyen, V., Kerfriden, P., Brino, M., Bordas, S. and Bonisoli, E. (2014), ‘Nitsche's method for two and three dimensional NURBS patch coupling’, Comput. Mech., to appear.Google Scholar
Nguyen, V. P., Bordas, S. P. A. and Rabczuk, T. (2012), Isogeometric analysis: An overview and computer implementation aspects. arXiv:1205.2129Google Scholar
Pauletti, S., Martinelli, M., Cavallini, N. and Antolin, P. (2013), Igatools: An isoge-ometric analysis library. Technical report, IMATI-CNR.Google Scholar
Petzoldt, M. (2001), Regularity and error estimators for elliptic problems with discontinuous coefficients. PhD thesis, Freie Universität, Berlin.Google Scholar
Picard, R. (1984), ‘An elementary proof for a compact imbedding result in generalized electromagnetic theory’, Math. Z. 187, 151164.Google Scholar
Piegl, L. and Tiller, W. (1997), The NURBS Book, Springer.Google Scholar
Ratnani, A. and Sonnendrücker, E. (2012), ‘An arbitrary high-order spline finite element solver for the time domain Maxwell equations’, J. Sci. Comput. 51, 87106.Google Scholar
Rogers, D. F. (2001), An Introduction to NURBS: With Historical Perspective, Morgan Kaufmann.Google Scholar
Rüberg, T. and Cirak, F. (2012), ‘Subdivision-stabilised immersed B-spline finite elements for moving boundary flows’, Comput. Methods Appl. Mech. Engrg 209-212, 266283.Google Scholar
Ruess, M., Schillinger, D., Özcan, A. I. and Rank, E. (2014), ‘Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries’, Comput. Methods Appl. Mech. Engrg 269, 4671.Google Scholar
Schillinger, D., Dede, L., Scott, M. A., Evans, J. A., Borden, M. J., Rank, E. and Hughes, T. J. (2012), ‘An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces’, Comput. Methods Appl. Mech. Engrg 249-252, 116150.Google Scholar
Schillinger, D., Evans, J., Reali, A., Scott, M. and Hughes, T. (2013), ‘Isogeomet-ric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations’, Comput. Methods Appl. Mech. Engrg 267, 170232.Google Scholar
Schumaker, L. L. (2007), Spline Functions: Basic Theory, third edition, Cambridge University PressGoogle Scholar
Scott, M. (2011), T-splines as a design-through-analysis technology. PhD thesis, The University of Texas at Austin.Google Scholar
Scott, M., Borden, M., Verhoosel, C., Sederberg, T. and Hughes, T. J. R. (2011), ‘Isogeometric finite element data structures based on Bézier extraction of T-splines’, Internat. J. Numer. Methods Engrg 88, 126156.Google Scholar
Scott, M., Li, X., Sederberg, T. and Hughes, T. J. R. (2012), ‘Local refinement of analysis-suitable T-splines’, Comput. Methods Appl. Mech. Engrg 213-216, 206222.Google Scholar
Sederberg, T., Cardon, D., Finnigan, G., North, N., Zheng, J. and Lyche, T. (2004), ‘T-spline simplification and local refinement’, ACM Trans. Graph. 23, 276283.Google Scholar
Sederberg, T., Zheng, J., Bakenov, A. and Nasri, A. (2003), ‘T-splines and T-NURCCSs’, ACM Trans. Graph. 22, 477484.Google Scholar
Speleers, H. (2013), ‘Multivariate normalized Powell-Sabin B-splines and quasi-interpolants’, Comput. Aided Geom. Design 30, 219.Google Scholar
Speleers, H., Manni, C., Pelosi, F. and Sampoli, M. L. (2012), ‘Isogeometric analysis with Powell-Sabin splines for advection-diffusion-reaction problems’, Comput. Methods Appl. Mech. Engrg 221/222, 132148.Google Scholar
Takacs, T. and Jüttler, B. (2011), ‘Existence of stiffness matrix integrals for singularly parameterized domains in isogeometric analysis’, Comput. Methods Appl. Mech. Engrg 200, 35683582.Google Scholar
Takacs, T. and Juüttler, B. (2012), ‘Regularity properties of singular parameterizations in isogeometric analysis’, Graph. Models 74, 361372.Google Scholar
Temizer, İ., Wriggers, P. and Hughes, T. (2012), ‘Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS’, Comput. Methods Appl. Mech. Engrg 209-212, 115128.Google Scholar
Vázquez, R., Buffa, A. and Rienzo, L. Di (2012), ‘NURBS-based BEM implementation of high-order surface impedance boundary conditions’, IEEE Trans. Magn. 48, 47574766.Google Scholar
Vázquez, R., Buffa, A. and Rienzo, L. Di (2014), ‘Isogeometric FEM implementation of high order surface impedance boundary conditions’, IEEE Trans. Magn., to appear.Google Scholar
Vuong, A.-V., Giannelli, C., Juüttler, B. and Simeon, B. (2011), ‘A hierarchical approach to adaptive local refinement in isogeometric analysis’, Comput. Methods Appl. Mech. Engrg 200, 35543567.Google Scholar
Wall, W. A., Frenzel, M. A. and Cyron, C. (2008), ‘Isogeometric structural shape optimization’, Comput. Methods Appl. Mech. Engrg 197, 29762988.Google Scholar
Wang, W., Zhang, Y., Liu, L. and Hughes, T. J. (2013), ‘Trivariate solid T-spline construction from boundary triangulations with arbitrary genus topology’, Comput. Aided Design 45, 351360.Google Scholar
Wang, W., Zhang, Y., Scott, M. and Hughes, T. J. R. (2011), ‘Converting an unstructured quadrilateral mesh to a standard T-spline surface’, Comput. Mech. 48, 477498.Google Scholar
Wilson, E. L. (1974), ‘The static condensation algorithm’, Internat. J. Numer. Methods Engrg 8, 198203.Google Scholar
Xu, G., Mourrain, B., Duvigneau, R. and Galligo, A. (2011), ‘Parameterization of computational domain in isogeometric analysis: Methods and comparison’, Comput. Methods Appl. Mech. Engrg 200, 20212031.Google Scholar
Xu, G., Mourrain, B., Duvigneau, R. and Galligo, A. (2013), ‘Optimal analysis-aware parameterization of computational domain in 3D isogeometric analysis’, Comput. Aided Design 45, 812821.Google Scholar
Zhang, Y., Wang, W. and Hughes, T. J. R. (2012), ‘Solid T-spline construction from boundary representations for genus-zero geometry’, Comput. Methods Appl. Mech. Engrg 249-252, 185197.Google Scholar