Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T06:45:08.288Z Has data issue: false hasContentIssue false

Formalization and computational aspects of image analysis

Published online by Cambridge University Press:  07 November 2008

Luis Alvarez
Affiliation:
Departamento de Informatica y Sistemas, Universidad de Las Palmas, Campus de Tafira, 35017 Las Palmas, Spain
Jean Michel Morel
Affiliation:
C.E.R.E.M.A.D.E.Université Paris IX Dauphine, 75775 Paris cedex 16, France

Abstract

In this article we shall present a unified and axiomatized view of several theories and algorithms of image multiscale analysis (and low level vision) which have been developed in the past twenty years. We shall show that under reasonable invariance and assumptions, all image (and shape) analyses can be reduced to a single partial differential equation. In the same way, movie analysis leads to a single parabolic differential equation. We discuss some applications to image segmentation and movie restoration. The experiments show how accurate and invariant the numerical schemes must be and we compare several (old and new) algorithms by discussing how well they match the axiomatic invariance requirements.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alvarez, L., Guichard, F., Lions, P.L. and Morel, J.M. (1992a), ‘Axioms and fundamental equations of image processing’, Report 9216, C.E.R.E.M.A.D.E., Université Paris Dauphine, Arch. Rat. Mech., to appear.Google Scholar
Alvarez, L., Guichard, F., Lions, P.L. and Morel, J.M. (1992b), ‘Axiomatisation et nouveaux opérateurs de la morphologie mathematique’, C.R. Acad. Sci. Paris 315, 265268.Google Scholar
Alvarez, L., Lions, P.L. and Morel, J.M. (1992c), ‘Image selective smoothing and edge detection by nonlinear diffusion (II)’, SIAM J. Numer. Anal. 29, 845866.CrossRefGoogle Scholar
Alvarez, L. and Mazorra, L. (1992), ‘Signal and image restoration by using shock filters and anisotropic diffusion’, Preprint, Dep. de Inf. U.L.P.G.C. ref:0192, SIAM J. Numer. Anal., to appear.Google Scholar
Angenent, S. (1989), ‘Parabolic equations for curves on surfaces I, II’, University of Wisconsin-Madison Technical Summary Reports, 19, 24.Google Scholar
Asada, H. and Brady, M. (1986), ‘The curvature primal sketch’, IEEE Trans. Patt. Anal. Machine Intell. 8(1).Google ScholarPubMed
Ballester, C. and Gonzalez, M. (1993), ‘Affine invariant multiscale segmentation by variational method’, Proc. Eighth Workshop on Image and Multidimensional Signal Processing (8–10 September, Cannes), IEEE (New York), 220221.Google Scholar
Barles, G. (1985), ‘Remarks on a flame propagation model’, Technical Report No 464, INRIA Rapports de Recherche.Google Scholar
Barles, G. and Georgelin, C. (1992), ‘A simple proof of convergence for an approximation scheme for computing motions by mean curvature’, Preprint.Google Scholar
Barles, G. and Souganidis, P.E. (1993), ‘Convergence of approximation schemes for fully nonlinear second order equation’, Asymp. Anal., to appear.Google Scholar
Brice, C. and Fennema, C. (1970), ‘Scene analysis using regions’, Artificial Intelligence 1, 205226.CrossRefGoogle Scholar
Brockett, W. and Maragos, P. (1992), ‘Evolution equations for continuous-scale morphology’, ICASSP, San Francisco 2326.Google Scholar
Bruckstein, A.M., Sapiro, G. and Shaked, D. (1992), ‘Affine-invariant evolutions of planar polygons’, Preprint.Google Scholar
Caselles, V., Catté, F., Coll, T. and Dibos, F. (1992), ‘A geometric model for active contours in image processing’, Report 9210, C.E.R.E.M.A.D.E., Université Paris Dauphine (Paris).Google Scholar
Catté, F., Dibos, F. and Koepfler, G. (1993), ‘A morphological approach of mean curvature motion’, Report 9310, C.E.R.E.M.A.D.E., Université Paris Dauphine (Paris).Google Scholar
Chen, Y-G., Giga, Y. and Goto, S. (1989), ‘Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations’, Preprint, Hokkaido University.CrossRefGoogle Scholar
Cohignac, T., Eve, F., Guichard, F., Lopez, C. and Morel, J. M. (1993a), Numerical Analysis of the Fundamental Equation of Image Processing, to appear.Google Scholar
Cohignac, T., Lopez, C. and Morel, J. M. (1993b), ‘Multiscale analysis of shapes, images and textures’, Proc. Eighth Workshop on Image and Multidimensional Signal Processing (8–10 September, Cannes), IEEE (New York) 142143.Google Scholar
Crandall, M. G., Ishii, H. and Lions, P.L. (1991), ‘User's guide to viscosity solution of second order partial differential equation’, C.E.R.E.M.A.D.E., Preprint (Paris).Google Scholar
Dal Maso, G., Morel, J.M. and Solimini, S. (1989), ‘Une approche variationnelle en traitement d'images: résultats d'existence et d'approximation’, C. R. Acad. Sci. Paris 308, 549554.Google Scholar
Daubechies, I. (1992), ‘Ten lectures on wavelets’, SIAM (Philadelphia).CrossRefGoogle Scholar
Dibos, F. and Koepfler, G. (1991), ‘Propriété de régularité des contours d'une image segmentée’, C. R. Acad. Sci. Paris 313, 573578.Google Scholar
Enns, J. (1986), ‘Seeing textons in context’, Perception and Psychophysics 39(2), 143147.CrossRefGoogle ScholarPubMed
Evans, L.C. and Spruck, J. (1992), ‘Motion of level sets by mean curvature I', Preprint.CrossRefGoogle Scholar
Faugeras, O. (1993), ‘A few steps toward a projective scale spaceanalysis’, C. R. Acad. Sci. Paris to appear.Google Scholar
Florack, L., ter Haar Romeny, B., Koenderink, J.J. and Viergever, M. (1991), ‘General intensity transformations and second order invariants’, Proc. 7th Scandinavian Conference on Image Analysis (Aalborg) 1316.Google Scholar
Florack, L., ter Haar Romeny, B., Koenderink, J.J. and Viergever, M. (1992), ‘Scale and the differential structure of imagesImage Vision Computing 10.CrossRefGoogle Scholar
Forsyth, D., Mundy, J.L. and Zisserman, A. (1991), ‘Invariant descriptors for 3-D object recognition and Pose’, IEEE Trans. Patt. Anal. Machine Intell. 13, No.10.CrossRefGoogle Scholar
Gage, M. and Hamilton, R.S. (1986), ‘The heat equation shrinking convex plane curves’, J. Diff. Geom. 23, 6996.Google Scholar
Geman, S. and Geman, D. (1984), ‘Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images’, IEEE Patt. Anal. Machine Intell. 6.Google ScholarPubMed
Guichard, F. (1993), ‘Multiscale analysis of movies’, Proc. Eighth Workshop on Image and Multidimensional Signal Processing (8–10 September, Cannes), IEEE (New York), 236237.Google Scholar
Guichard, F., Lasry, J.M. and Morel, J.M. (1993), ‘A monotone consistent theoretical scheme for the fundamental equation of image processing’, Preprint.Google Scholar
Grayson, M. (1987), ‘The heat equation shrinks embedded plane curves to round points’, J. Diff. Geom. 26, 285314.Google Scholar
Haralick, R.M. and Shapiro, L.G. (1985), ‘Image segmentation techniques’, Comput. Vision Graph. Image Process. 29, 100132.CrossRefGoogle Scholar
Horn, B. (1986), Robot Vision, MIT (Cambridge, MA).Google Scholar
Horowitz, S. L. and Pavlidis, T. (1974), ‘Picture segmentation by a directed split-and-merge procedure’, Proc. Second In t. Joint Conf. Pattern Recognition 424433.Google Scholar
Hummel, R. (1986), ‘Representations based on zero-crossing in scale-space’, Proc. IEEE Computer Vision and Pattern Recognition Conf., 204209.Google Scholar
Julesz, B. (1981), ‘Textons, the elements of texture perception, and their interactions’, Nature 290.CrossRefGoogle ScholarPubMed
Julesz, B. (1986), ‘Texton gradients: the texton theory revisited’, Biol. Cybern. 54, 245251.CrossRefGoogle ScholarPubMed
Julesz, B. and Bergen, J.R. (1983), ‘Textons, the fundamental elements in preattentive vision and perception of textures’, Bell System Tech. J. 62 (6), 16191645.CrossRefGoogle Scholar
Julesz, B. and Kroese, B. (1988), ‘Features and spatial filters’, Nature 333, 302303.CrossRefGoogle ScholarPubMed
Kass, M., Witkin, A. and Terzopoulos, D. (1987), ‘Snakes: active contour models’, 1st Int. Comput. Vis. Conf. IEEE 777.Google Scholar
Kimia, B.B. (1990), ‘Toward a computational theory of shape’, PhD Dissertation Department of Electrical Engineering, McGill University, Montreal, Canada.Google Scholar
Kimia, B.B., Tannenbaum, A. and Zucker, S.W. (1992), ‘On the evolution of curves via a function of curvature, 1: the classical case’, J. Math. Anal. Appl. 163(2).CrossRefGoogle Scholar
Koepfler, G., Morel, J.M. and Solimini, S. (1991), ‘Segmentation by minimizing a functional and the “merging” methods’, Proc. ‘GRETS Colloque’ (Juan-les-Pins, France).Google Scholar
Koepfler, G., Lopez, C. and Morel, J.M. (1994), ‘A multiscale algorithm for image segmentation by variational method’, SIAM J. Numer. Anal. 31, to appear.CrossRefGoogle Scholar
Koenderink, J.J. (1984), ‘The structure of images’, Bio. Cybern. 50, 363370.CrossRefGoogle ScholarPubMed
Koenderink, J.J. (1990a), Solid Shape, MIT Press (Cambridge, MA).Google Scholar
Koenderink, J.J. (1990b), ‘The brain, a geometry engine’, Psychol. Res. 52, 122127.CrossRefGoogle Scholar
Koenderink, J.J. and van Doorn, A.J. (1986), ‘Dynamic shape’, Biol. Cybern. 53, 383396.CrossRefGoogle ScholarPubMed
Koenderink, J.J. and van Doorn, A.J. (1987), ‘Representation of local geometry in the visual system’, Biol. Cybern. 55, 367375.CrossRefGoogle ScholarPubMed
Lamdan, Y., Schwartz, J.T. and Wolfson, H.J. (1988), ‘Object recognition by affine invariant matching’, in Proc. CVPR 88.Google Scholar
Lindeberg, T. (1990), ‘Scale-space for discrete signal’, IEEE Trans. Patt. Anal. Machine Intell. 12, 234254.CrossRefGoogle Scholar
Lopez, C. and Morel, J.M. (1992), ‘Axiomatisation of shape analysis and application to texture hyperdiscrimination’, Proc. Trento Conf. on Surface Tension and Movement by Mean Curvature, De Gruyter (Berlin).Google Scholar
Mackworth, A. and Mokhtarian, F. (1986), ‘Scale-based description and recognition of planar curves and two-dimensional shapes’, IEEE Trans. Patt. Anal. Machine Intell. 8(1).Google Scholar
Mackworth, A. and Mokhtarian, F. (1992), ‘A theory of multiscale, curvature-based shape representation for planar curves’, IEEE Trans. Patt. Anal. Machine Intell. 14, 789805.Google Scholar
Malik, J. and Perona, P. (1991), ‘Preattentive texture discrimination with early vision mechanisms’, J. Opt. Soc. Am. A (5), 923932.Google Scholar
Maragos, P. (1987), ‘Tutorial on advances in morphological image processing and analysis’, Opt. Engrg 26(7).Google Scholar
Marr, D. (1976), ‘Analyzing natural images: a computational theory of texture vision’, Cold Spring Harbor Symp. on Quantitative Biology, XL 647662.CrossRefGoogle Scholar
Marr, D. (1982), Vision, Freeman (San Francisco).Google Scholar
Mascarenhas, P. (1992), ‘Diffusion generated motion by mean curvature’, Preprint.Google Scholar
Matheron, G. (1975), Random Sets and Integral Geometry, John Wiley (New York).Google Scholar
Merriman, B., Bence, J. and Osher, S. (1992), ‘Diffusion generated motion by mean curvature’, CAM Report 92–18, Department of Mathematics, University of California (Los Angeles CA 90024.1555, USA).Google Scholar
Meyer, Y. (1992), Ondelettes et Algorithmes Concurrents, Hermann (Paris).Google Scholar
Morel, J.M. and Solimini, S. (1988a), ‘Segmentation of images by variational methods: a constructive approach’, Rev. Matematica de la Universidad Complutense de Madrid Vol. 1 1,2,3, 169182.Google Scholar
Morel, J.M. and Solimini, S. (1988b), ‘Segmentation d'images par méthode variationnelle: une preuve constructive d'existence’, C. R. Acad. Sci. Paris.Google Scholar
Morel, J.M. and Solimini, S. (1993), Variational Methods in Image Segmentation, Birkhauser (Boston) to appear.Google Scholar
Muerle, J.L. and Allen, D. C. (1968), ‘Experimental evaluation of techniques for automatic segmentation of objects in a complex scene’, in Pictorial Pattern Recognition (Cheng, G. C. et al. , eds), Thompson (Washington), 313.Google Scholar
Mumford, D. and Shah, J. (1988), ‘Boundary detection by minimizing functionals’, Image Understanding (Ullman, S. and Richards, W., eds).Google Scholar
Mumford, D. and Shah, J. (1989), ‘Optimal Approximations by Piecewise Smooth Functions and Associated Variational Problems’, Commun. Pure Appl. Math. XLII 4.Google Scholar
Osher, S. and Sethian, J. (1988), ‘Fronts propagating with curvature dependent speed: algorithms based on the Hamilton-Jacobi formulation’, J. Comput. Phys. 79, 1249.CrossRefGoogle Scholar
Pavlidis, T. (1972), ‘Segmentation of pictures and maps through functional approximation’, Comput. Graph. Image Process. 1, 360372.CrossRefGoogle Scholar
Pavlidis, T. and Liow, Y.T. (1988), ‘Integrating region growing and edge detection’, Proc. IEEE Conf. on Comput. Vision Patt. Recognition.Google Scholar
Perona, P. and Malik, J. (1987), ‘A scale space and edge detection using anisotropic diffusion’, Proc. IEEE Computer Soc. Workshop on Computer Vision.Google Scholar
Rudin, L., Osher, S. and Fatemi, E. (1992), ‘Nonlinear total variation based noise removal algorithms’, Proc. Modélisations Matématiques pour le Traitement d'images, INRIA 149179.Google Scholar
Rosenfeld, A. and Kak, A. (1982), Digital Picture Processing Vol.1, Academic (New York).Google Scholar
Sapiro, G. and Tannenbaum, A. (1992a), ‘On affine plane curve evolution’, EE Pub 821, Department of Electrical Engineering, Technion Israel Institute of Technology, Haifa, Israel.Google Scholar
Sapiro, G. and Tannenbaum, A. (1992b), ‘Affine shortening of non-convex plane curves’, EE Pub 845, Department of Electrical Engineering, Technion Israel Institute of Technology, Haifa, Israel.Google Scholar
Serra, J. (1982), Image Analysis and Mathematical Morphology Vol. 1, Academic (New York).Google Scholar
Treisman, A. (1985), ‘Preattentive processing in vision’, Comput. Vision, Graph. Image Process. 31, 156177.CrossRefGoogle Scholar
Voorhees, H. and Poggio, T. (1987), ‘Detecting textons and texture boundaries in natural images’, Proc. Int. Conf. Computer Vision, IEEE (New York), 250258.Google Scholar
Witkin, A. P. (1983), ‘Scale-space filtering’, Proc. IJCAI (Karlsruhe) 10191021.Google Scholar
Yuille, A. (1988), ‘The creation of structure in dynamic shape’, Proc. Second International Conference on Computer Vision (Tampa) 685689.Google Scholar
Yuille, A. and Poggio, T. (1986), ‘Scaling theorems for zero crossings’, IEEE Trans. Patt. Anal. Machine Intell. 8.Google ScholarPubMed
Zucker, S. W. (1976), ‘Region growing: childhood and adolescence (survey)’, Comput. Graph. Image Process. 5, 382399.CrossRefGoogle Scholar