Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T05:42:34.977Z Has data issue: false hasContentIssue false

Finite element solution of the Navier—Stokes equations

Published online by Cambridge University Press:  07 November 2008

Michel Fortin
Affiliation:
Département de mathématiques et de statistiqueUniversité LavalQuébec, Canada E-mail: [email protected]

Extract

Viscous incompressible flows are of considerable interest for applications. Let us mention, for example, the design of hydraulic turbines or rheologically complex flows appearing in many processes involving plastics or molten metals. Their simulation raises a number of difficulties, some of which are likely to remain while others are now resolved. Among the latter are those related to incompressibility which are also present in the simulation of incompressible or nearly incompressible elastic materials. Among the still unresolved are those associated with high Reynolds numbers which are also met in compressible flows. They involve the formation of boundary layers and turbulence, an ever present phenomenon in fluid mechanics, implying that we have to simulate unsteady, highly unstable phenomena.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arnold, D.N., Brezzi, F. and Douglas, J. (1984), ‘PEERS: a new mixed finite element for plane elasticity’, Japan J. Appl. Math. 1, 347367.CrossRefGoogle Scholar
Arnold, D.N., Brezzi, F. and Fortin, M. (1984), ‘A stable finite element for the Stokes equations’, Calcolo 21, 337344.CrossRefGoogle Scholar
Babuška, I. (1973), ‘The finite element method with lagrangian multipliers’, Numer. Math. 20, 179192.CrossRefGoogle Scholar
Bell, J.B., Colella, P. and Glaz, H.M. (1989), ‘A second-order projection method for the incompressible Navier–Stokes equations’, J. Comput. Phys. 85, 257283.CrossRefGoogle Scholar
Bercovier, M. (1978), ‘Perturbation of a mixed variational problem, applications to mixed finite element methods’, R.A.I.R.O. Anal. Numer. 12, 211236.Google Scholar
Bercovier, M., Engelman, M. and Gresho, P. (1982), ‘Consistent and reduced integration penalty methods for incompressible media using several old and new elements’, Int. J. Numer. Meth. in Fluids 2, 2542.Google Scholar
Bercovier, M. and Pironneau, O.A. (1977), ‘Error estimates for finite element method solution of the Stokes problem in the primitive variables’, Numer. Math. 33, 211224.CrossRefGoogle Scholar
Bernardi, C. and Raugel, G. (1981), ‘Méthodes d'éléments finis mixtes pour les équations de Stokes etde Navier–Stokes dans un polygone non convexe’, Calcolo 18, 255291.CrossRefGoogle Scholar
Brezzi, F. (1974), ‘On the existence, uniqueness and approximation of saddle point problems arising from lagrangian multipliers’, R.A.I.R.O. Anal. Numer. 8, 129151.Google Scholar
Brezzi, F. and Douglas, J. (1988), ‘Stabilized mixed methods forthe Stokes problem’, Numer. Math. 53, 225235.CrossRefGoogle Scholar
Brezzi, F. and Falk, R.S. (1991), ‘Stability of a higher-order Hood-Taylor method’, SIAM J. Numer. Anal. 28.CrossRefGoogle Scholar
Brezzi, F. and Fortin, M. (1991), Mixed and Hybrid Finite Element Methods, Springer (New- York).CrossRefGoogle Scholar
Brezzi, F. and Pitkäranta, J. (1984), ‘On the stabilizationof finite element approximations of the Stokes equations’, in Efficient Solutions of Elliptic Systems, Notes on Numerical Fluid Mechanics, Vol 10, (Hackbush, W., ed.), Braunschweig Wiesbaden (Vieweg).Google Scholar
Brezzi, F., Fortin, M. and Marini, L.D. (1992), ‘Mixed finite element methods with continuous stresses’, to appear.CrossRefGoogle Scholar
Bristeau, M.O., Glowinski, R. and P´eriaux, J. (1987), ‘Numerical methods for the Navier–Stokes equations, applications to the simulation of compressible and incompressible viscous flows’, Finite Elements in Physics, (Grüber, R., ed.) Computer Physics, North–Holand (Amsterdam).Google Scholar
Brooks, A. and Hughes, T.J.R. (1982), ‘Streamline upwind/Petrov–Galerkin formulation for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations’, Comput. Meth. Appl. Mech. Eng. 32, 199259.CrossRefGoogle Scholar
Ciarlet, P.G. (1978), The Finite Element Method for Elliptic Problems, North-Holland (Amsterdam).Google Scholar
Ciarlet, P.G. and Lions, J.L. (1991), Handbook of Numerical Analysis, Volume II, Finite Element Methods, North-Holland (Amsterdam).Google Scholar
Ciarlet, P.G. and Raviart, P.A. (1972), ‘Interpolation theory over curved elements with applications to finite element methods’, Comput. Meth. Appl. Mech. Eng. 1, 217249.CrossRefGoogle Scholar
Ciavaldini, J.F. and Nédélec, J.C. (1974), ‘Sur l'élément de Fraeijs de Veubeke et Sander’, R.A.I.R.O. Anal. Numer. 8, 2945.Google Scholar
Chorin, A.J. (1968), ‘Numerical soluton of the Navier–Stokes equations’, Math. Comput. 22, 745762.CrossRefGoogle Scholar
Clément, P. (1975), ‘Approximation by finite element functions using local regularization’, R.A.I.R.O. Anal. Numer. 9, 7784.Google Scholar
Crouzeix, M. and Mignot, A.L. (1984), Analyse Numérique des Équations Diff´erentielles, Masson (Paris).Google Scholar
Crouzeix, M. and Raviart, P.A. (1973), ‘Conforming and non-conforming finite element methods for solving the stationary Stokes equations’, R.A.I.R.O. Anal. Numer. 7, 3376.Google Scholar
Douglas, J. and Wang, J. (1989), ‘An absolutely stabilized finite element method for the Stokes problem’, Math. Comput. 52, 495508.CrossRefGoogle Scholar
Dupont, T. and Scott, L.R. (1980), ‘Polynomial approximation offunctions in Sobolev spaces’, Math. Comput. 34, 441463.CrossRefGoogle Scholar
Duvaut, G. and Lions, J.L. (1972), Les Inéquations en Mécanique et en Physique, Dunod (Paris).Google Scholar
Fortin, M. (1977), ‘An analysis of the convergence of mixed finite element methods’, R.A.I.R.O. Anal. Numer. 11, 341354.Google Scholar
Fortin, M. (1981), ‘Old and new finite elements for incompressible flows’, Int. J. Numer. Meth. in Fluids 1, 347364.CrossRefGoogle Scholar
Fortin, M. (1985), ‘A three-dimensional quadratic non-conforming element’, Numer. Math. 46, 269279.CrossRefGoogle Scholar
Fortin, M. (1989), ‘Some iterative methods for incompressible flow problems’, Comput. Phys. Commun. 53, 393399.CrossRefGoogle Scholar
Fortin, A. and Fortin, M. (1985), ‘Newer and newer elements for incompressible flow’, Finite Elements in Fluids 6, (Gallagher, R.H., Carey, G.F., Oden, J.T. and Zienkiewicz, O.C., eds), John Wiley (Chichester).Google Scholar
Fortin, A. and Fortin, M. (1985a), ‘A generalization of Uzawa's algorithm for the solution of the Navier–Stokes equations’, Comm. Appl. Numer. Methods 1, 205208.CrossRefGoogle Scholar
Fortin, M. and Glowinski, R. (1983), Augmented Lagrangian Methods, North-Holland (Amsterdam).Google Scholar
Fortin, A. and Pelletier, D. (1989), ‘Are FEM solutions of incompressible flows really incompressible?’, Int. J. Numer. Meth. Fluids 9, 99112.Google Scholar
Fortin, M. and Pierre, R. (1992), ‘Stability analysis of discrete generalized Stokes problems’, Numer. Meth. Part. Diff. Eqns 8, 303323.CrossRefGoogle Scholar
Fortin, M. and Soulié, M. (1983), ‘A non-conforming piecewise quadratic finite element on triangles’, Int. J. Numer. Meth. Eng. 19, 505520.CrossRefGoogle Scholar
Fortin, A., Fortin, M. and Gervais, J.J. (1991), ‘Complex transition to chaotic flow in a periodic array of cylinders’, Theor. Comput Fluid Dynam. 2, 7993.CrossRefGoogle Scholar
Fortin, M., Peyret, R. and Temam, R. (1971), ‘R´esolution num´erique des équations de Navier–Stokes pour un fluide visqueux incompressible’, J. Mécanique 10, 3, 357–339.Google Scholar
Fraeijs de Veubeke, B. and Sander, G. (1968), ‘An equilibrium model for plate bending’, Int. J. Solids and Structures 4, 447468.CrossRefGoogle Scholar
Franca, L.P. and Hughes, T.J.R. (1988), ‘Two classes of finite element methods’, Comput. Meth. Appl. Mech. Eng. 69, 89129.CrossRefGoogle Scholar
Girault, V. and Raviart, P.A. (1986), Finite Element Methods for Navier–Stokes Equations, Theory and Algorithms, Springer (Berlin).CrossRefGoogle Scholar
Glowinski, R. (1984), Numerical Methods for Nonlinear Variational Problems, Springer (Berlin).CrossRefGoogle Scholar
Glowinski, R. and Pironneau, O. (1979), ‘Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem’, SIAM Rev. 17, 167212.CrossRefGoogle Scholar
Gresho, P.M. and Sani, R.L. (1987), ‘On pressure boundary conditions for the incompressible Navier–Stokes equations’, Int. J. Numer. Meth. Fluids 7, 11111145CrossRefGoogle Scholar
Hood, P. and Taylor, C. (1973), ‘Numerical solution of the Navier–Stokes equations using the finite element technique’, Comput. Fluids 1, 128.Google Scholar
Hughes, T.J.R. (1987), The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Prentice-Hall (Englewood Cliffs, NJ).Google Scholar
Hughes, T.J.R. and Franca, L.P. (1987), ‘A new finite element formulation for computational fluid dynamics: VII. The Stokes problem with various well-posed boundary conditions, symmetric formulations that converge for all velocity-pressure spaces’, Comput. Meth. Appl. Mech. Eng. 65, 8596.CrossRefGoogle Scholar
Hughes, T.J.R., Franca, L.P. and Balestra, M. (1986), ‘A new finite element formulation of computational fluid dynamics: a stable Petrov–Galerkin formulation of the Stokes problem accomodating equal-order interpolations’, Comput. Meth. Appl. Mech. Eng. 59, 8599.CrossRefGoogle Scholar
Leborgne, G. (1992), Thèse, Ecole Polytechnique de Paris.Google Scholar
Letallec, P. and Ruas, V. (1986), ‘On the convergence of the bilinear velocity-constant pressure finite method in viscous flow’, Comput. Meth. Appl. Mech. Eng. 54, 235243.CrossRefGoogle Scholar
Lions, J.L. (1969). Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod (Paris).Google Scholar
Malkus, D.S. (1981), ‘Eigenproblems associated with the discrete LBB-condition for incompressible finite elements’, Int. J. Eng. Sci. 19, 12991310.CrossRefGoogle Scholar
Petzold, L. (1983), ‘Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations’, SIAM J. Sci. Stat. Comput. 4, 136148.CrossRefGoogle Scholar
Pironneau, O.A. (1989), Finite Element Methods for Fluids, John Wiley (Chichester).Google Scholar
Rannacher, R. and Tureěk, S. (1992), ‘A simple nonconforming quadrilateral Stokes element’, Numer. Meth. for Part. Diff. Eqns 8, 97111.CrossRefGoogle Scholar
Raviart, P.A. and Thomas, J.M. (1983), Introduction á – Analyse Numérique des Équations aux Dérivées Partielles, Masson (Paris).Google Scholar
Saad, Y. and Schultz, M.H. (1986), ‘A generalized minimum residual method for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 7, 856869.CrossRefGoogle Scholar
Scott, L.R. and Vogelius, M. (1985), ‘Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials’, Math. Modelling Numer. Anal. 9, 1143.Google Scholar
Shakib, F., Hughes, T.J.R. and Zdeneěk, J. (1989), ‘A multi–element group preconditioning GMRES algorithm for nonsymmetric systems arising in finite element analysis’, Comput. Meth. Appl. Mech. Eng. 75, 415456.CrossRefGoogle Scholar
Stenberg, R. (1984), ‘Analysis of mixed finite element methods for the Stokes problem: a unified approach’, Math. Comput. 42, 923.Google Scholar
Stenberg, R. (1987), ‘On some three-dimensional finite elements for incompressible media’, Comput. Meth. Appl. Mech. Eng. 63, 261269.CrossRefGoogle Scholar
Temam, R. (1977), Navier–Stokes Equations, North-Holland (Amsterdam).Google Scholar
Thomasset, F. (1981), Implementation of Finite Element Methods for Navier–Stokes Equations, Springer Series in Computer Physics, Springer (Berlin).CrossRefGoogle Scholar
Verfürth, R. (1984), ‘Error estimates for a mixed finite element approximation of the Stokes equation’, R.A.I.R.O. Anal. Numer. 18, 175182.Google Scholar
Zienkiewicz, O.C. (1977), The Finite Element Method, McGraw-Hill (London).Google Scholar