Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T11:33:21.925Z Has data issue: false hasContentIssue false

Asymptotic and numerical homogenization

Published online by Cambridge University Press:  25 April 2008

B. Engquist
Affiliation:
Department of Mathematics, The University of Texas at Austin, Austin, TX 78712, USA E-mail: [email protected]@math.utexas.edu
P. E. Souganidis
Affiliation:
Department of Mathematics, The University of Texas at Austin, Austin, TX 78712, USA E-mail: [email protected]@math.utexas.edu

Extract

Homogenization is an important mathematical framework for developing effective models of differential equations with oscillations. We include in the presentation techniques for deriving effective equations, a brief discussion on analysis of related limit processes and numerical methods that are based on homogenization principles. We concentrate on first- and second-order partial differential equations and present results concerning both periodic and random media for linear as well as nonlinear problems. In the numerical sections, we comment on computations of multi-scale problems in general and then focus on projection-based numerical homogenization and the heterogeneous multi-scale method.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdulle, A. and W. E, (2003), ‘Finite difference heterogeneous multi-scale method for homogenization problems’, J. Comput. Phys. 191, 1839.CrossRefGoogle Scholar
Allaire, G. (1992), ‘Homogenization and two-scale convergence’, SIAM J. Math. Anal. 23, 14821518.Google Scholar
Allaire, G., Braides, A., Buttazzo, G., Defranceschi, A. and Gibiansky, L. (1993), School on Homogenization. SISSA Ref. 140/73/M.Google Scholar
Andersson, U., Engquist, B., Ledfelt, G. and Runborg, O. (1999), ‘A contribution to wavelet-based subgrid modeling’, Appl. Comput. Harmon. Anal. 7, 151164.CrossRefGoogle Scholar
Babuška, I. (1976), Homogenization and its applications: Mathematical and computational problems. In Numerical Solution of Partial Differential Equations III, Academic Press, pp. 89116.Google Scholar
Babuška, I., Caloz, G. and Osborn, E. (1994), ‘Special finite element methods for a class of second order elliptic problems with rough coefficients’, SIAM J. Numer. Anal. 31, 945981.Google Scholar
Barles, G. and Perthame, B. (1988), ‘Exit time problems in optimal control and vanishing viscosity solutions of Hamilton–Jacobi equations’, SIAM J. Control Optim. 26, 11331148.CrossRefGoogle Scholar
Bensoussan, A., Lions, J.-L. and Papanicolaou, G. (1978), Asymptotic Analysis for Periodic Structures, North-Holland.Google Scholar
Beylkin, G. and Brewster, M. (1995), ‘A multiresolution strategy for numerical homogenization’, Appl. Comput. Harmon. Anal. 2, 327349.Google Scholar
Beylkin, G., Coifman, R. and Rokhlin, V. (1991), ‘Fast wavelet transforms and numerical algorithms I’, Comm. Pure Appl. Math. 44, 141183.Google Scholar
Caffarelli, L. A. and Souganidis, P. E. (2007), Error estimates for the homogenization of uniformly elliptic pde in strongly mixing random media. Preprint.Google Scholar
Caffarelli, L. A. and Souganidis, P. E. (2008), ‘A rate of convergence for monotone finite difference approximations to fully nonlinear uniformly elliptic PDE’, Comm. Pure Appl. Math. 61, 117.CrossRefGoogle Scholar
Caffarelli, L. A., Souganidis, P. E. and Wang, L. (2005), ‘Stochastic homogenization for fully nonlinear, second-order partial differential equations’, Comm. Pure Appl. Math. 30, 319361.Google Scholar
Capuzzo-Dolcetta, I. and Ishii, H. (2001), ‘On the rate of convergence in homogenization of Hamilton–Jacobi equations’, Indiana U. Math. J. 50, 110129.CrossRefGoogle Scholar
Cardaliaguet, P., Lions, P.-L. and Souganidis, P. E. (2008), ‘A discussion about the homogenization of moving interfaces’, J. Mathématique Pure et Appliqué, to appear.Google Scholar
Cioranescu, D. and Donato, P. (2000), An Introduction to Homogenization, Oxford University Press.Google Scholar
Craciun, B. and Bhattachayra, K. (2003), ‘Homogenization of a Hamilton–Jacobi equation associated with the geometric motion of an interface’, Proc. Roy. Soc. Edinburgh A 133, 773805.Google Scholar
Crandall, M. G., Ishii, H. and Lions, P.-L. (1992), ‘User's guide to viscosity solutions of second order partial differential equations’, Bull. Amer. Math. Soc. 27, 167.CrossRefGoogle Scholar
Maso, G. Dal (1993), An Introduction to Γ -Convergence, Birkhäuser.CrossRefGoogle Scholar
Maso, G. Dal and Modica, L. (1986), ‘Nonlinear stochastic homogenization and ergodic theory’, J. Reine Angew. Math. 368, 2842.Google Scholar
Daubechies, I. (1991), Ten Lectures on Wavelets, SIAM.Google Scholar
De Giorgi, E. and Franzoni, T. (1975), ‘Su un tipo di convergenza variationale’, Atti. Acad. Naz. Lincei Rend. Cl. Sci. Mat. 58, 842850.Google Scholar
De Giorgi, E. and Spagnolo, S. (1973), ‘Sulla convergenza degli integrali dell'energia par operatori ellittici del secundo ordine’, Boll. Un. Mat. Ital. 4, 391411.Google Scholar
Dirr, N., Karali, G. and Yip, A. (2007), Pulsating wave for mean curvature flow in homogeneous medium. Preprint.Google Scholar
Dorobantu, M. and Engquist, B. (1998), ‘Wavelet-based numerical homogenization’, SIAM J. Numer. Anal. 35, 540559.CrossRefGoogle Scholar
Durlofsky, L. J. (1991), ‘Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media’, Water. Resour. Res. 27, 699708.Google Scholar
Durlofsky, L. J. (1998), ‘Coarse scale models of two-phase flow in heterogeneous reservoirs: Volume averaged equations and their relationship to existing upscaling techniques’, Comput. Geosci. 2, 7392.CrossRefGoogle Scholar
W. E, and Engquist, B. (2003 a), ‘The heterogeneous multi-scale method’, Commun. Math. Sci. 1, 87133.Google Scholar
W. E, and Engquist, B. (2003 b), ‘Multi-scale modeling and computation’, Notices Amer. Math. Soc. 50, 10621070.Google Scholar
W. E, , Engquist, B., Li, X., Ren, W. and Vanden-Eijnden, E. (2007), ‘Heterogeneous multiscale methods’, Commun. Comput. Phys. 2, 367450.Google Scholar
Engquist, B. and Luo, E. (1997), ‘Convergence of a multigrid method for elliptic equations with highly oscillatory coefficients’, SIAM J. Numer. Anal. 34, 22542273.Google Scholar
Engquist, B. and Runborg, O. (2001), Wavelet-based numerical homogenization with applications. In Proc. Conference on Multiscale and Multiresolution Methods: Theory and Applications, Vol. 20 of Lecture Notes in Computational Science and Engineering, Springer, pp. 97148.Google Scholar
Engquist, B. and Runborg, O. (2002), Projection generated homogenization. In Proc. Conference on Multiscale Problems in Science and Technology, Springer, pp. 129150.Google Scholar
Evans, L. C. (1989), ‘The perturbed test function method for viscosity solutions of nonlinear PDE’, Proc. Roy. Soc. Edinburgh A 111, 359375.CrossRefGoogle Scholar
Evans, L. C. (1992), ‘Periodic homogenization of certain fully nonlinear partial differential equations’, Proc. Roy. Soc. Edinburgh A 120, 245265.Google Scholar
Gilbert, A. C. (1998), ‘A comparison of multiresolution and classical one-dimensional homogenization schemes’, Appl. Comput. Harmon. Anal. 5, 135.CrossRefGoogle Scholar
Hou, T. Y. (2003), Numerical approximations to multiscale solutions in partial differential equations. In Frontiers in Numerical Analysis (Blowey, J. F., Craig, A. W. and Shardlow, T., eds), Springer, pp. 241302.Google Scholar
Hou, T. Y. and Wu, X.-H. (1997), ‘A multiscale finite element method for elliptic problems in composite materials and porous media’, J. Comput. Phys. 134, 169189.Google Scholar
Hou, T. Y., Wu, X.-H. and Cai, Z. (1999), ‘Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients’, Math. Comp. 68, 913943.CrossRefGoogle Scholar
Hughes, T. J. R., Feijo'o, G. R., Mazzei, L. and Quicy, J.-B. (1999), ‘The variational multiscale method: A paradigm for computational mechanics’, Comput. Methods Appl. Mech. Engrg 166, 515533.Google Scholar
Ishii, H. (1999), Homogenization of the Cauchy problem for Hamilton–Jacobi equations. In Stochastic Analysis, Control, Optimization and Applications, Systems & Control: Foundations & Applications, Birkhäuser, Boston, pp. 305324.Google Scholar
Jikov, V. V., Kozlov, S. M. and Oleinik, O. A. (1991), Homogenization of Differential Operators and Integral Functions, Springer.Google Scholar
Keller, J. B. (1977), Effective behavior of heterogeneous media. In Statistical Mechanics and Statistical Methods in Theory and Application, Plenum, pp. 631644.CrossRefGoogle Scholar
Kevrekidis, I. G., Gear, C. W., Hyman, J. M., Kevrekidis, P. G., Runborg, O. and Theodoropoulos, C. (2003), ‘Equation-free, coarse-ground multiscale computation: Enabling microscopic simulators to perform system-level analysis’, Commun. Math. Sci. 1, 715762.Google Scholar
Knapek, S. (1999), ‘Matrix-dependent multigrid-homogenization for diffusion problems’, SIAM J. Sci. Statist. Comput. 20, 512533.Google Scholar
Kosygina, E., Rezakhanlou, F. and Varadhan, S. R. S. (2006), ‘Stochastic homogenization for Hamilton–Jacobi–Bellman equations’, Comm. Pure Appl. Math. 59, 14891521.Google Scholar
Kozlov, S. M. (1985), ‘The method of averaging and walk in inhomogeneous environments’, Russian Math. Surveys 40, 73145.Google Scholar
LeVeque, R. (1990), Numerical Methods for Conservation Laws, Birkhäuser.CrossRefGoogle Scholar
Lions, P.-L. and Souganidis, P. E. (2003), ‘Correctors for the homogenization of Hamilton–Jacobi equations in a stationary ergodic setting’, Comm. Pure Appl. Math. LVI, 15011524.CrossRefGoogle Scholar
Lions, P.-L. and Souganidis, P. E. (2005 a), ‘Homogenization of degenerate secondorder PDE in periodic and almost periodic environments and applications’, Ann. Inst. H. Poincaré, Anal. Nonlineaire 22, 667677.CrossRefGoogle Scholar
Lions, P.-L. and Souganidis, P. E. (2005 b), ‘Homogenization for “viscous” Hamilton–Jacobi equations in stationary, ergodic media’, Comm. Partial Differential Equations 30, 335376.CrossRefGoogle Scholar
Lions, P.-L. and Souganidis, P. E. (2008), Homogenization of Hamilton–Jacobi and viscous Hamilton–Jacobi equations in stationary, ergodic environments revisited. Preprint.Google Scholar
Lions, P.-L., Papanicolaou, G. and Varadhan, S. R. S. (1983), Homogenization of Hamilton–Jacobi equations. Unpublished.Google Scholar
Marchenko, V. A. and Khruslov, E. Y. (2006), Homogenization of Partial Differential Equations, Vol. 46 of Progress in Mathematical Physics, Birkhäuser.Google Scholar
Murat, F. and Tartar, L. (1977), Calculus of variations and homogenization. In Topics in the Mathematical Modelling of Composite Materials (Cherkaev, A. and Kohn, R. V., eds), Birkhäuser, Basel, pp. 139173. Originally in French from 1985.Google Scholar
Neuss, N., Jäger, W. and Wittum, G. (2000), ‘Homogenization and multigrid’, Computing 66, 121.Google Scholar
Nguetseng, G. (1989), ‘A general convergence result for a functional related to the theory of homogenization’, SIAM J. Math. Anal. 20, 608623.Google Scholar
Obinata, G. and Anderson, D. O. (2001), Model Reduction for Control System Design, Springer.CrossRefGoogle Scholar
Papanicolaou, G. and Varadhan, S. R. S. (1979), Boundary value problems with rapidly oscillating random coefficients. In Proc. Colloq. on Random Fields: Rigorous Results in Statistical Mechanics and Quantum Field Theory (Fritz, J., Lebaritz, J. L. and Szasz, D., eds), Vol. 10 of Colloquia Mathematica Societ. Janos Bolyai, pp. 835873.Google Scholar
Papanicolaou, G. and Varadhan, S. R. S. (1981), Diffusion with random coefficients. In Essays in Statistics and Probability (Krishnaiah, P. R., ed.), North-Holland.Google Scholar
Pavliotis, G. A. and Stewart, A. M. (2007), Multiscale Methods: Averaging and Homogenization, Springer.Google Scholar
Rezankhanlou, F. and Tarver, J. (2000), ‘Homogenization for stochastic Hamilton–Jacobi equations’, Arch. Ration. Mech. Anal. 151, 277309.Google Scholar
Shannon, C. E. (1949), ‘Communication in the presence of noise’, Proc. Inst. Radio Engineers 37, 1021.Google Scholar
Souganidis, P. E. (1999), ‘Stochastic homogenization of Hamilton–Jacobi equations and some applications’, Asympt. Anal. 20, 111.Google Scholar
Tartar, L. (1977), Cours Peccot au Collège de France. Unpublished.Google Scholar
Tartar, L. (1989), Nonlocal effects induced by homogenization. In PDE and Calculus of Variation, Birkhäuser, pp. 925938.Google Scholar
Xu, K. and Prendergast, K. H. (1994), ‘Numerical Navier–Stokes solutions from gas kinetic theory’, J. Comput. Phys. 114, 917.Google Scholar
Yue, X. Y. and W. E, (2008), ‘The local microscale problem in the multiscale modelling of strongly heterogeneous media: Effect of boundary conditions and cell size’, J. Comput. Phys., to appear.Google Scholar
Yurinskii, V. V. (1980), ‘On the homogenization of boundary value problems with random coeffcients’, Sibir. Matem. Zh. 21, 209223. English translation: Siber. Math. J. 21 (1981), 470–482.Google Scholar
Yurinskii, V. V. (1982), ‘On the homogenization of non-divergent second order equations with random coeffcients’, Sibir. Matem. Zh. 23, 176188. English translation: Siber. Math. J. 23 (1982), 276–287.Google Scholar
Zhikov, V. V. (1993), ‘Asymptotic problems related to a second-order parabolic equation in nondivergence form with randomly homogeneous coeffcients’ (Russian), Differentsial'nye Uravneniya 29, 859869. English translation: Differential Equations 29 (1993), 735–744.Google Scholar