Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T06:03:44.319Z Has data issue: false hasContentIssue false

Algebraic multigrid methods*

Published online by Cambridge University Press:  05 May 2017

Jinchao Xu
Affiliation:
Center for Computational Mathematics and Applications, Department of Mathematics, The Pennsylvania State University, University Park, PA 16802USA E-mail: [email protected], [email protected]
Ludmil Zikatanov
Affiliation:
Center for Computational Mathematics and Applications, Department of Mathematics, The Pennsylvania State University, University Park, PA 16802USA E-mail: [email protected], [email protected]

Abstract

This paper provides an overview of AMG methods for solving large-scale systems of equations, such as those from discretizations of partial differential equations. AMG is often understood as the acronym of ‘algebraic multigrid’, but it can also be understood as ‘abstract multigrid’. Indeed, we demonstrate in this paper how and why an algebraic multigrid method can be better understood at a more abstract level. In the literature, there are many different algebraic multigrid methods that have been developed from different perspectives. In this paper we try to develop a unified framework and theory that can be used to derive and analyse different algebraic multigrid methods in a coherent manner. Given a smoother $R$ for a matrix $A$, such as Gauss–Seidel or Jacobi, we prove that the optimal coarse space of dimension $n_{c}$ is the span of the eigenvectors corresponding to the first $n_{c}$ eigenvectors $\bar{R}A$ (with $\bar{R}=R+R^{T}-R^{T}AR$). We also prove that this optimal coarse space can be obtained via a constrained trace-minimization problem for a matrix associated with $\bar{R}A$, and demonstrate that coarse spaces of most existing AMG methods can be viewed as approximate solutions of this trace-minimization problem. Furthermore, we provide a general approach to the construction of quasi-optimal coarse spaces, and we prove that under appropriate assumptions the resulting two-level AMG method for the underlying linear system converges uniformly with respect to the size of the problem, the coefficient variation and the anisotropy. Our theory applies to most existing multigrid methods, including the standard geometric multigrid method, classical AMG, energy-minimization AMG, unsmoothed and smoothed aggregation AMG and spectral AMGe.

Type
Research Article
Copyright
© Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alcouffe, R., Brandt, A., Dendy, J. Jr and Painter, J. (1981), ‘The multigrid method for the diffusion equation with strongly discontinuous coefficients’, SIAM J. Sci. Statist. Comput. 2, 430454.CrossRefGoogle Scholar
Axelsson, O. and Vassilevski, P. (1991), ‘A black box generalized conjugate gradient solver with inner iterations and variable-step preconditioning’, SIAM J. Matrix Anal. Appl. 12, 625644.CrossRefGoogle Scholar
Axelsson, O. and Vassilevski, P. (1994), ‘Variable-step multilevel preconditioning methods I: Self-adjoint and positive definite elliptic problems’, Numer. Linear Algebra Appl. 1, 75101.CrossRefGoogle Scholar
Ayuso de Dios, B., Brezzi, F., Marini, L., Xu, J. and Zikatanov, L. (2014), ‘A simple preconditioner for a discontinuous Galerkin method for the Stokes problem’, J. Sci. Comput. 58, 517547.CrossRefGoogle Scholar
Babuška, I. and Osborn, J. (1983), ‘Generalized finite element methods: Their performance and their relation to mixed methods’, SIAM J. Numer. Anal. 20, 510536.CrossRefGoogle Scholar
Bahvalov, N. (1966), ‘Convergence of a relaxation method under natural constraints on an elliptic operator’, Z̆. Vyčisl. Mat. i Mat. Fiz. 6, 861883.Google Scholar
Bank, R. and Douglas, C. (1985), ‘Sharp estimates for multigrid rates of convergence with general smoothing and acceleration’, SIAM J. Numer. Anal. 22, 617633.CrossRefGoogle Scholar
Bank, R. and Dupont, T. (1980), Analysis of a two-level scheme for solving finite element equations. Technical report CNA–159, Center for Numerical Analysis, University of Texas, Austin.CrossRefGoogle Scholar
Bank, R. and Smith, R. (2002), ‘An algebraic multilevel multigraph algorithm’, SIAM J. Sci. Comput. 23, 15721592.CrossRefGoogle Scholar
Blaheta, R. (1986), ‘A multilevel method with correction by aggregation for solving discrete elliptic problems’, Aplikace Matematiky 31, 365378.Google Scholar
Blaheta, R. (1988), ‘Iterative methods for the numerical solution of the boundary value problem of elasticity’ (abstract of thesis)’, Commentationes Mathematicae Universitatis Carolinae 29, 200.Google Scholar
Braess, D. and Hackbusch, W. (1983), ‘A new convergence proof for the multigrid method including the $V$ -cycle’, SIAM J. Numer. Anal. 20, 967975.CrossRefGoogle Scholar
Bramble, J. (1993), Multigrid Methods, Vol. 294 of Pitman Research Notes in Mathematics, Longman Scientific & Technical.Google Scholar
Bramble, J. and Pasciak, J. (1987), ‘New convergence estimates for multigrid algorithms’, Math. Comp. 49(180), 311329.CrossRefGoogle Scholar
Bramble, J. and Xu, J. (1991), ‘Some estimates for a weighted $L^{2}$ projection’, Math. Comp. 56(194), 463476.Google Scholar
Bramble, J., Pasciak, J. and Xu, J. (1990), ‘Parallel multilevel preconditioners’, Math. Comp. 55(191), 122.CrossRefGoogle Scholar
Bramble, J., Pasciak, J. and Xu, J. (1991a), ‘The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms’, Math. Comp. 56(193), 134.CrossRefGoogle Scholar
Bramble, J., Pasciak, J., Wang, J. and Xu, J. (1991b), ‘Convergence estimates for multigrid algorithms without regularity assumptions’, Math. Comp. 57(195), 2345.CrossRefGoogle Scholar
Bramble, J., Pasciak, J., Wang, J. and Xu, J. (1991c), ‘Convergence estimates for product iterative methods with applications to domain decomposition’, Math. Comp. 57(195), 121.CrossRefGoogle Scholar
Brandt, A. (1973), Multi-level adaptive technique (MLAT) for fast numerical solution to boundary value problems. Proc. Third International Conference on Numerical Methods in Fluid Mechanics, Vol. 18 of Lecture Notes in Physics, Springer, pp. 8289.Google Scholar
Brandt, A. (1977), ‘Multi-level adaptive solutions to boundary-value problems’, Math. Comp. 31(138), 333390.CrossRefGoogle Scholar
Brandt, A. (1986), ‘Algebraic multigrid theory: The symmetric case’, Appl. Math. Comput. 19, 2356.Google Scholar
Brandt, A. (2000), ‘General highly accurate algebraic coarsening’, Electron. Trans. Numer. Anal. 10, 120.Google Scholar
Brandt, A. (2002), Multiscale scientific computation: Review 2001. In Multiscale and Multiresolution Methods: Theory and Applications (Barth, T., Chan, T. and Haimes, R., eds), Springer, pp. 395.CrossRefGoogle Scholar
Brandt, A., Brannick, J., Kahl, K. and Livshits, I. (2011), ‘Bootstrap AMG’, SIAM J. Sci. Comput. 33, 612632.CrossRefGoogle Scholar
Brandt, A., Brannick, J., Kahl, K. and Livshits, I. (2015), ‘Bootstrap algebraic multigrid: Status report, open problems, and outlook’, Numer. Math. Theory Methods Appl. 8, 112135.CrossRefGoogle Scholar
Brandt, A., Mccormick, S. and Ruge, J. (1982), Algebraic multigrid (AMG) for automatic multigrid solutions with application to geodetic computations. Technical report, Institute for Computational Studies, Fort Collins, CO.Google Scholar
Brandt, A., Mccormick, S. and Ruge, J. (1985), Algebraic multigrid (AMG) for sparse matrix equations. In Sparsity and its Applications: Loughborough 1983, Cambridge University Press, pp. 257284.Google Scholar
Brannick, J. and Falgout, R. (2010), ‘Compatible relaxation and coarsening in algebraic multigrid’, SIAM J. Sci. Comput. 32, 13931416.CrossRefGoogle Scholar
Brannick, J. and Zikatanov, L. (2006), Algebraic multigrid methods based on compatible relaxation and energy minimization. In Domain Decomposition Methods in Science and Engineering XVI (Widlund, O. and Keyes, D., eds), Springer, pp. 1526.Google Scholar
Brannick, J., Brezina, M., Maclachlan, S., Manteuffel, T., Mccormick, S. and Ruge, J. (2006), ‘An energy-based AMG coarsening strategy’, Numer. Linear Algebra Appl. 13, 133148.CrossRefGoogle Scholar
Brannick, J., Chen, Y. and Zikatanov, L. (2012), ‘An algebraic multigrid method for anisotropic elliptic equations based on subgraph matching equations based on subgraph matching’, Numer. Linear Algebra Appl. 19, 279295.CrossRefGoogle Scholar
Brannick, J., Frommer, A., Kahl, K., Maclachlan, S. and Zikatanov, L. (2010), ‘Adaptive reduction-based multigrid for nearly singular and highly disordered physical systems’, Electron. Trans. Numer. Anal. 37, 276295.Google Scholar
Brezina, M. and Vassilevski, P. (2011), Smoothed aggregation spectral element agglomeration AMG: SA-𝜌AMGe. In Large-Scale Scientific Computing 2011, (Lirkov, I., Margenov, S. and Wasniewski, J., eds), Vol. 7116 of Lecture Notes in Computer Science, Springer, pp. 315.Google Scholar
Brezina, M., Cleary, A., Falgout, R., Henson, V., Jones, J., Manteuffel, T., Mccormick, S. and Ruge, J. (2001), ‘Algebraic multigrid based on element interpolation (AMGe)’, SIAM J. Sci. Comput. 22, 15701592.CrossRefGoogle Scholar
Brezina, M., Falgout, R., Maclachlan, S., Manteuffel, T., Mccormick, S. and Ruge, J. (2004), ‘Adaptive smoothed aggregation ( $\unicode[STIX]{x1D6FC}$ SA)’, SIAM J. Sci. Comput. 25, 18961920.CrossRefGoogle Scholar
Brezina, M., Falgout, R., Maclachlan, S., Manteuffel, T., Mccormick, S. and Ruge, J. (2005), ‘Adaptive smoothed aggregation $(\unicode[STIX]{x1D6FC}\text{SA})$ multigrid’, SIAM Rev. 47, 317346.CrossRefGoogle Scholar
Brezina, M., Falgout, R., Maclachlan, S., Manteuffel, T., Mccormick, S. and Ruge, J. (2006), ‘Adaptive algebraic multigrid’, SIAM J. Sci. Comput. 27, 12611286.CrossRefGoogle Scholar
Brezina, M., Manteuffel, T., Mccormick, S., Ruge, J., Sanders, G. and Vassilevski, P. (2008), ‘A generalized eigensolver based on smoothed aggregation (GES-SA) for initializing smoothed aggregation (SA) multigrid’, Numer. Linear Algebra Appl. 15, 249269.CrossRefGoogle Scholar
Briggs, W., Henson, V. and Mccormick, S. (2000), A Multigrid Tutorial, second edition, SIAM.CrossRefGoogle Scholar
Chan, T. and Wan, W. (2000), ‘Robust multigrid methods for nonsmooth coefficient elliptic linear systems’, J. Comput. Appl. Math. 123, 323352.CrossRefGoogle Scholar
Chan, T., Xu, J. and Zikatanov, L. (1998), An agglomeration multigrid method for unstructured grids. In Domain Decomposition Methods 10, Vol. 218 of Contemporary Mathematics, AMS, pp. 6781.CrossRefGoogle Scholar
Chartier, T., Falgout, R., Henson, V., Jones, J., Manteuffel, T., Mccormick, S., Ruge, J. and Vassilevski, P. (2003), ‘Spectral AMGe ( $\unicode[STIX]{x1D70C}$ AMGe)’, SIAM J. Sci. Comput. 25, 126.CrossRefGoogle Scholar
Chen, L. (2011), Deriving the X-Z identity from auxiliary space method. In Domain Decomposition Methods in Science and Engineering XIX, Vol. 78 of Lecture Notes in Computational Science and Engineering, Springer, pp. 309316.CrossRefGoogle Scholar
Chen, L., Nochetto, R. and Xu, J. (2012), ‘Optimal multilevel methods for graded bisection grids’, Numer. Math. 120, 134.CrossRefGoogle Scholar
Ciarlet, P. (2002), The Finite Element Method for Elliptic Problems, Vol. 40 of Classics in Applied Mathematics, SIAM, Reprint of the 1978 original.CrossRefGoogle Scholar
Cleary, A., Falgout, R., Henson, V. and Jones, J. (1998), Coarse-grid selection for parallel algebraic multigrid. In Solving Irregularly Structured Problems in Parallel: Berkeley, CA, 1998, Vol. 1457 of Lecture Notes in Computer Science, Springer, pp. 104115.CrossRefGoogle Scholar
Courant, R. and Hilbert, D. (1924), Methoden der Mathematischen Physik, Vol. 1, Julius Springer.CrossRefGoogle Scholar
D’Ambra, P. and Vassilevski, P. (2013), ‘Adaptive AMG with coarsening based on compatible weighted matching’, Comput. Vis. Sci. 16, 5976.CrossRefGoogle Scholar
D’Ambra, P. and Vassilevski, P. (2014), $\unicode[STIX]{x1D6FC}$ AMG based on weighted matching for systems of elliptic PDEs arising from displacement and mixed methods. Technical report LNLL-CONF-656131, Lawrence Livermore National Laboratory.Google Scholar
De Sterck, H., Falgout, R., Nolting, J. and Yang, U. (2008), ‘Distance-two interpolation for parallel algebraic multigrid’, Numer. Linear Algebra Appl. 15, 115139.CrossRefGoogle Scholar
De Sterck, H., Miller, K., Treister, E. and Yavneh, I. (2011), ‘Fast multilevel methods for Markov chains’, Numer. Linear Algebra Appl. 18, 961980.CrossRefGoogle Scholar
de Zeeuw, P. (1990), ‘Matrix-dependent prolongations and restrictions in a blackbox multigrid solver’, J. Comput. Appl. Math. 33, 127.CrossRefGoogle Scholar
Dendy, J. Jr (1982), ‘Black box multigrid’, J. Comput. Phys. 48, 366386.CrossRefGoogle Scholar
Dendy, J. Jr (1983), ‘Black box multigrid for nonsymmetric problems’, Appl. Math. Comput. 13, 261283.Google Scholar
Diestel, R. (2010), Graph Theory, Vol. 173 of Graduate Texts in Mathematics, fourth edition, Springer.CrossRefGoogle Scholar
Dohrmann, C., Klawonn, A. and Widlund, O. (2008), A family of energy minimizing coarse spaces for overlapping Schwarz preconditioners. In Domain Decomposition Methods in Science and Engineering XVII, Vol. 60 of Lecture Notes in Computational Science and Engineering, Springer, pp. 247254.CrossRefGoogle Scholar
Efendiev, Y., Galvis, J. and Vassilevski, P. (2011), Spectral element agglomerate algebraic multigrid methods for elliptic problems with high contrast coefficients. In Vol. 78 of Lecture Notes in Computational Science and Engineering (Huang, Y., Kornhuber, R., Widlund, O. and Xu, J., eds), Springer, pp. 407414.Google Scholar
Efendiev, Y., Hou, T. and Wu, X.-H. (2000), ‘Convergence of a nonconforming multiscale finite element method’, SIAM J. Numer. Anal. 37, 888910.CrossRefGoogle Scholar
Falgout, R. (2004), A note on the relationship between adaptive AMG and PCG. Technical report UCRL-TR-205838, Lawrence Livermore National Laboratory.CrossRefGoogle Scholar
Falgout, R. and Vassilevski, P. (2004), ‘On generalizing the AMG framework’, SIAM J. Numer. Anal. 42, 16691693. Also available as technical report UCRL-JC-150807, Lawrence Livermore National Laboratory.CrossRefGoogle Scholar
Falgout, R., Vassilevski, P. and Zikatanov, L. (2005), ‘On two-grid convergence estimates’, Numer. Linear Algebra Appl. 12, 471494.CrossRefGoogle Scholar
Fan, K. (1949), ‘On a theorem of Weyl concerning eigenvalues of linear transformations I’, Proc. Nat. Acad. Sci. USA 35, 652.CrossRefGoogle ScholarPubMed
Fedorenko, R. (1961), ‘A relaxation method of solution of elliptic difference equations’, Ž. Vyčisl. Mat. i Mat. Fiz. 1, 922927.Google Scholar
Fedorenko, R. (1964), ‘On the speed of convergence of an iteration process’, Ž. Vyčisl. Mat. i Mat. Fiz. 4, 559564.Google Scholar
Gibbons, A. (1985), Algorithmic Graph Theory, Cambridge University Press.Google Scholar
Golub, G. and Ye, Q. (1999/2000), ‘Inexact preconditioned conjugate gradient method with inner–outer iteration’, SIAM J. Sci. Comput. 21, 13051320.CrossRefGoogle Scholar
Grasedyck, L., Wang, L. and Xu, J. (2015), ‘A nearly optimal multigrid method for general unstructured grids’, Numer. Math. 130.Google Scholar
Grauschopf, T., Griebel, M. and Regler, H. (1997), ‘Additive multilevel preconditioners based on bilinear interpolation, matrix-dependent geometric coarsening and algebraic multigrid coarsening for second-order elliptic PDEs’, Appl. Numer. Math. 23, 6395.CrossRefGoogle Scholar
Griebel, M. and Oswald, P. (1995), ‘On the abstract theory of additive and multiplicative Schwarz algorithms’, Numer. Math. 70, 163180.CrossRefGoogle Scholar
Hackbusch, W. (1978), A fast iterative method for solving Poisson’s equation in a general region. Numerical Treatment of Differential Equations: Proc. Conf., Math. Forschungsinst., Oberwolfach 1976, Vol. 631 of Lecture Notes in Mathematics, Springer, pp. 5162. Longer version: Ein Iteratives Verfahren zur Schnellen Auflösung Elliptischer Randwertprobleme, Report 76-12 (1976), Mathematisches Institut der Universität zu Köln.CrossRefGoogle Scholar
Hackbusch, W. (1979), ‘On the computation of approximate eigenvalues and eigenfunctions of elliptic operators by means of a multi-grid method’, SIAM J. Numer. Anal. 16, 201215. Earlier version: Report 77-10, Mathematisches Institut der Universität zu Köln, 1977.CrossRefGoogle Scholar
Hackbusch, W. (1985), Multigrid Methods and Applications, Vol. 4 of Springer Series in Computational Mathematics, Springer.CrossRefGoogle Scholar
Hackbusch, W. (1989), ‘The frequency decomposition multi-grid method I: Application to anisotropic equations’, Numer. Math. 56, 229245.CrossRefGoogle Scholar
Hackbusch, W. (1994), Iterative Solution of Large Sparse Systems of Equations, Vol. 95 of Applied Mathematical Sciences, Springer.CrossRefGoogle Scholar
Halmos, P. (1974), Finite-dimensional Vector Spaces, Undergraduate Texts in Mathematics, second edition, Springer.CrossRefGoogle Scholar
Henson, V. and Vassilevski, P. (2001), ‘Element-free AMGe: General algorithms for computing interpolation weights in AMG’, SIAM J. Sci. Comput. 23, 629650.CrossRefGoogle Scholar
Henson, V. and Yang, U. (2002), ‘BoomerAMG: A parallel algebraic multigrid solver and preconditioner’, Appl. Numer. Math. 41, 155177.CrossRefGoogle Scholar
Hou, T., Wu, X.-H. and Cai, Z. (1999), ‘Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients’, Math. Comp. 68(227), 913943.CrossRefGoogle Scholar
Hu, X., Vassilevski, P. and Xu, J. (2013), ‘Comparative convergence analysis of nonlinear AMLI-cycle multigrid’, SIAM J. Numer. Anal. 51, 13491369.CrossRefGoogle Scholar
Jones, J. and Vassilevski, P. (2001), ‘AMGe based on element agglomeration’, SIAM J. Sci. Comput. 23, 109133.CrossRefGoogle Scholar
Kahl, K. (2009), Adaptive algebraic multigrid for lattice QCD computations. PhD thesis, Fachbereich Mathematik und Naturwissenschaften, Bergische Universität Wuppertal.Google Scholar
Karypis, G. and Kumar, V. (1998), ‘A fast and high quality multilevel scheme for partitioning irregular graphs’, SIAM J. Sci. Comput. 20, 359392.CrossRefGoogle Scholar
Kim, H., Xu, J. and Zikatanov, L. (2003), ‘A multigrid method based on graph matching for convection diffusion equations’, Numer. Linear Algebra Appl. 10, 181195.CrossRefGoogle Scholar
Kim, H., Xu, J. and Zikatanov, L. (2004), ‘Uniformly convergent multigrid methods for convection–diffusion problems without any constraint on coarse grids’, Adv. Comput. Math. 20, 385399.CrossRefGoogle Scholar
Kolev, T. and Vassilevski, P. (2006), ‘AMG by element agglomeration and constrained energy minimization interpolation’, Numer. Linear Algebra Appl. 13, 771788.CrossRefGoogle Scholar
Kraus, J. (2002), ‘An algebraic preconditioning method for $M$ -matrices: Linear versus non-linear multilevel iteration’, Numer. Linear Algebra Appl. 9, 599618.CrossRefGoogle Scholar
Kraus, J. (2008), ‘Algebraic multigrid based on computational molecules 2: Linear elasticity problems’, SIAM J. Sci. Comput. 30, 505524.CrossRefGoogle Scholar
Kraus, J. and Schicho, J. (2006), ‘Algebraic multigrid based on computational molecules 1: Scalar elliptic problems’, Computing 77, 5775.CrossRefGoogle Scholar
Lai, J. and Olson, L. (2011), ‘Algebraic multigrid for high-order hierarchical $H(\text{curl})$ finite elements’, SIAM J. Sci. Comput. 33, 28882902.CrossRefGoogle Scholar
Lee, Y.-J., Wu, J., Xu, J. and Zikatanov, L. (2007), ‘Robust subspace correction methods for nearly singular systems’, Math. Models Methods Appl. Sci. 17, 19371963.CrossRefGoogle Scholar
Lee, Y.-J., Wu, J., Xu, J. and Zikatanov, L. (2008), ‘A sharp convergence estimate for the method of subspace corrections for singular systems of equations’, Math. Comp. 77(262), 831850.CrossRefGoogle Scholar
Lipnikov, K., Moulton, J. and Svyatskiy, D. (2011), ‘Adaptive strategies in the multilevel multiscale mimetic (M $^{3}$ ) method for two-phase flows in porous media’, Multiscale Model. Simul. 9, 9911016.CrossRefGoogle Scholar
Livne, O. (2004), ‘Coarsening by compatible relaxation’, Numer. Linear Algebra Appl. 11, 205227.CrossRefGoogle Scholar
Livne, O. and Brandt, A. (2012), ‘Lean algebraic multigrid (LAMG): Fast graph Laplacian linear solver’, SIAM J. Sci. Comput. 34, 499523.CrossRefGoogle Scholar
Livshits, I. (2008), ‘One-dimensional algorithm for finding eigenbasis of the Schrödinger operator’, SIAM J. Sci. Comput. 30, 416440.CrossRefGoogle Scholar
Luby, M. (1986), ‘A simple parallel algorithm for the maximal independent set problem’, SIAM J. Comput. 15, 10361053.CrossRefGoogle Scholar
Maclachlan, S. and Olson, L. (2014), ‘Theoretical bounds for algebraic multigrid performance: Review and analysis’, Numer. Linear Algebra Appl. 21, 194220.CrossRefGoogle Scholar
Maclachlan, S. and Saad, Y. (2007), ‘A greedy strategy for coarse-grid selection’, SIAM J. Sci. Comput. 29, 18251853.CrossRefGoogle Scholar
Maclachlan, S., Manteuffel, T. and Mccormick, S. (2006), ‘Adaptive reduction-based AMG’, Numer. Linear Algebra Appl. 13, 599620.CrossRefGoogle Scholar
Maclachlan, S., Moulton, J. and Chartier, T. (2012), ‘Robust and adaptive multigrid methods: Comparing structured and algebraic approaches’, Numer. Linear Algebra Appl. 19, 389413.CrossRefGoogle Scholar
Maitre, J.-F. and Musy, F. (1983), ‘Méthodes multigrilles: Opérateur associé et estimations du facteur de convergence; le cas du $V$ -cycle’, CR Acad. Sci. Paris Sér. I Math. 296, 521524.Google Scholar
Mandel, J. (1988), ‘Algebraic study of multigrid methods for symmetric, definite problems’, Appl. Math. Comput. 25, 3956.Google Scholar
Mandel, J., Brezina, M. and Vaněk, P. (1999), ‘Energy optimization of algebraic multigrid bases’, Computing 62, 205228.CrossRefGoogle Scholar
Manteuffel, T., Mccormick, S., Park, M. and Ruge, J. (2010), ‘Operator-based interpolation for bootstrap algebraic multigrid’, Numerical Linear Algebra Appl. 17, 519537.CrossRefGoogle Scholar
Marek, I. (1991), Aggregation methods of computing stationary distributions of Markov processes. In Numerical Treatment of Eigenvalue Problems | Numerische Behandlung von Eigenwertaufgaben,Vol. 5, Springer, pp. 155169.CrossRefGoogle Scholar
Matsokin, A. and Nepomnyashchikh, S. (1985), ‘The Schwarz alternation method in a subspace’, Izv. Vyssh. Uchebn. Zaved. Mat. 85, 6166.Google Scholar
Mccormick, S. (1982), ‘An algebraic interpretation of multigrid methods’, SIAM J. Numer. Anal. 19, 548560.CrossRefGoogle Scholar
Mccormick, S. (1984), ‘Multigrid methods for variational problems: Further results’, SIAM J. Numer. Anal. 21, 255263.CrossRefGoogle Scholar
Mccormick, S. (1985), ‘Multigrid methods for variational problems: General theory for the $V$ -cycle’, SIAM J. Numer. Anal. 22, 634643.CrossRefGoogle Scholar
Mccormick, S. and Ruge, J. (1982), ‘Multigrid methods for variational problems’, SIAM J. Numer. Anal. 19, 924929.CrossRefGoogle Scholar
McCormick, S. and Ruge, J. (1989), Algebraic multigrid methods applied to problems in computational structural mechanics. Technical report 19900060129, NASA.Google Scholar
Míka, S. and Vaněk, P. (1992a), ‘Acceleration of convergence of a two level algebraic algorithm by aggregation in smoothing process’, Appl. Math. 37, 343356.CrossRefGoogle Scholar
Míka, S. and Vaněk, P. (1992b), ‘A modification of the two-level algorithm with overcorrection’, Appl. Math. 37, 1328.CrossRefGoogle Scholar
Nägel, A., Falgout, R. and Wittum, G. (2008), ‘Filtering algebraic multigrid and adaptive strategies’, Comput. Vis. Sci. 11, 159167.CrossRefGoogle Scholar
Napov, A. and Notay, Y. (2012), ‘An algebraic multigrid method with guaranteed convergence rate’, SIAM J. Sci. Comput. 34, A1079A1109.CrossRefGoogle Scholar
Nicolaides, R. (1975), ‘On multiple grid and related techniques for solving discrete elliptic systems’, J. Comput. Phys. 19, 418431.CrossRefGoogle Scholar
Nicolaides, R. (1977), ‘On the $l^{2}$ convergence of an algorithm for solving finite element equations’, Math. Comp. 31(140), 892906.Google Scholar
Notay, Y. (2000), ‘Flexible conjugate gradients’, SIAM J. Sci. Comput. 22, 14441460.CrossRefGoogle Scholar
Notay, Y. (2010), ‘An aggregation-based algebraic multigrid method’, Electron. Trans. Numer. Anal. 37, 123146.Google Scholar
Notay, Y. (2012), ‘Aggregation-based algebraic multigrid for convection–diffusion equations’, SIAM J. Sci. Comput. 34, A2288A2316.CrossRefGoogle Scholar
Notay, Y. and Vassilevski, P. (2008), ‘Recursive Krylov-based multigrid cycles’, Numer. Linear Algebra Appl. 15, 473487.CrossRefGoogle Scholar
Olson, L., Schroder, J. and Tuminaro, R. (2011), ‘A general interpolation strategy for algebraic multigrid using energy minimization’, SIAM J. Sci. Comput. 33, 966991.CrossRefGoogle Scholar
Oswald, P. (1999), ‘On the robustness of the BPX-preconditioner with respect to jumps in the coefficients’, Math. Comp. 68(226), 633650.CrossRefGoogle Scholar
Reed, M. and Simon, B. (1978), Methods of Modern Mathematical Physcis, Vol. IV: Analysis of Operators, Elsevier.Google Scholar
Reusken, A. (1993), ‘Multigrid with matrix-dependent transfer operators for a singular perturbation problem’, Computing 50, 199211.CrossRefGoogle Scholar
Ruge, J. (1983), Algebraic multigrid (AMG) for geodetic survey problems. Preliminary Proc. Internat. Multigrid Conference, Fort Collins, CO.Google Scholar
Ruge, J. (1985), Final report on AMG02. Report, Gesellschaft für Mathematik und Datenverarbeitung, St. Augustin, GMD contract 5110, 022090.Google Scholar
Ruge, J. (1986), ‘AMG for problems of elasticity’, Appl. Math. Comput. 19, 293309.Google Scholar
Ruge, J. and Stüben, K. (1987), Algebraic multigrid (AMG). In Multigrid Methods, (McCormick, S., ed.), Vol. 3 of Frontiers in Applied Mathematics, SIAM, pp. 73130.CrossRefGoogle Scholar
Saad, Y. (2003), Iterative Methods for Sparse Linear Systems, second edition, SIAM.CrossRefGoogle Scholar
Schroder, J. (2012), ‘Smoothed aggregation solvers for anisotropic diffusion’, Numer. Linear Algebra Appl. 19, 296312.CrossRefGoogle Scholar
Smith, B., Bjørstad, P. and Gropp, W. (1996), Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press.Google Scholar
Southwell, R. (1940), Relaxation Methods in Engineering Science: A Treatise on Approximate Computation, Oxford Engineering Science Series, Oxford University Press.Google Scholar
Southwell, R. (1946), Relaxation Methods in Theoretical Physics, Clarendon Press, Oxford University Press.Google Scholar
Spillane, N., Dolean, V., Hauret, P., Nataf, F., Pechstein, C. and Scheichl, R. (2014), ‘Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps’, Numer. Math. 126, 741770.CrossRefGoogle Scholar
Sterck, H., Yang, U. and Heys, J. (2006), ‘Reducing complexity in parallel algebraic multigrid preconditioners’, SIAM J. Matrix Anal. Appl. 27, 10191039.CrossRefGoogle Scholar
Stüben, K. (1983), ‘Algebraic multigrid (AMG): Experiences and comparisons’, Appl. Math. Comput. 13, 419451.Google Scholar
Toselli, A. and Widlund, O. (2005), Domain Decomposition Methods: Algorithms and Theory, Vol. 34 of Springer Series in Computational Mathematics, Springer.CrossRefGoogle Scholar
Treister, E. and Yavneh, I. (2015), ‘Non-Galerkin multigrid based on sparsified smoothed aggregation’, SIAM J. Sci. Comput. 37, A30A54.CrossRefGoogle Scholar
Trottenberg, U., Oosterlee, C. and Schüller, A. (2001), Multigrid, Academic Press.Google Scholar
Vakhutinsky, I., Dudkin, L. and Ryvkin, A. (1979), ‘Iterative aggregation: A new approach to the solution of large-scale problems’, Econometrica 47, 821841.CrossRefGoogle Scholar
Vaněk, P., Mandel, J. and Brezina, M. (1996), ‘Algebraic multigrid based on smoothed aggregation for second and fourth order problems’, Computing 56, 179196.CrossRefGoogle Scholar
Vaněk, P., Mandel, J. and Brezina, M. (1998), ‘Convergence of algebraic multigrid based on smoothed aggregation’, Computing 56, 179196.CrossRefGoogle Scholar
Varga, R. (2000), Matrix Iterative Analysis, expanded edition, Vol. 27 of Springer Series in Computational Mathematics, Springer.CrossRefGoogle Scholar
Vassilevski, P. (2008), Multilevel Block Factorization Preconditioners: Matrix-based Analysis and Algorithms for Solving Finite Element Equations, Springer.Google Scholar
Vassilevski, P. and Zikatanov, L. (2006), ‘Multiple vector preserving interpolation mappings in algebraic multigrid’, SIAM J. Matrix Anal. Appl. 27, 10401055.CrossRefGoogle Scholar
Wagner, C. and Wittum, G. (1997), ‘Adaptive filtering’, Numer. Math. 78, 305328.CrossRefGoogle Scholar
Wan, W. (1998), Scalable and multilevel iterative methods. PhD thesis, University of California, Los Angeles.Google Scholar
Wan, W., Chan, T. and Smith, B (1999/2000), ‘An energy-minimizing interpolation for robust multigrid methods’, SIAM J. Sci. Comput. 21, 16321649.CrossRefGoogle Scholar
Weiler, W. and Wittum, G. (1997), ‘Parallel frequency filtering’, Computing 58, 303316.CrossRefGoogle Scholar
Weyl, H. (1911), ‘Über die asymptotische Verteilung der Eigenwerte’, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch–Physikalische Klasse 1911, 110117.Google Scholar
Weyl, H. (1912), ‘Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen’, Math. Ann. 71, 441479.CrossRefGoogle Scholar
Widlund, O. (1994), Exotic coarse spaces for Schwarz methods for lower order and spectral finite elements. In Domain Decomposition Methods in Scientific and Engineering Computing, Vol. 180 of Contemporary Mathematics, AMS, pp. 131136.CrossRefGoogle Scholar
Widlund, O. (2009), The development of coarse spaces for domain decomposition algorithms. In Domain Decomposition Methods in Science and Engineering XVIII, Vol. 70 of Lecture Notes in Computational Science and Engineering, Springer, pp. 241248.CrossRefGoogle Scholar
Wittum, G. (1992), Filternde Zerlegungen: Schnelle Löser für große Gleichungssysteme, Teubner Skripten zur Numerik, Teubner.CrossRefGoogle Scholar
Xu, J. (1989), Theory of Multilevel Methods, Cornell University.Google Scholar
Xu, J. (1991), ‘Counterexamples concerning a weighted $L^{2}$ projection’, Math. Comp. 57(196), 563568.Google Scholar
Xu, J. (1992), ‘Iterative methods by space decomposition and subspace correction’, SIAM Rev. 34, 581613.CrossRefGoogle Scholar
Xu, J. (1996), ‘The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids’, Computing 56, 215235.CrossRefGoogle Scholar
Xu, J. (1997), An introduction to multilevel methods. In Wavelets, Multilevel Methods, and Elliptic PDEs, (Ainsworth, M. et al. , ed.), Numerical Mathematics and Scientific Computation, Oxford University Press, pp. 213302.Google Scholar
Xu, J. (2009), Optimal algorithms for discretized partial differential equations. In ICIAM 07: 6th International Congress on Industrial and Applied Mathematics, European Mathematical Society, pp. 409444.Google Scholar
Xu, J. (2016), Multilevel Iterative Methods, Lecture notes 1989–2016, The Pennsylvania State University.Google Scholar
Xu, J. and Zikatanov, L. (2002), ‘The method of alternating projections and the method of subspace corrections in Hilbert space’, J. Amer. Math. Soc. 15, 573597.CrossRefGoogle Scholar
Xu, J. and Zikatanov, L. (2004), ‘On an energy minimizing basis for algebraic multigrid methods’, Comput. Vis. Sci. 7, 121127.CrossRefGoogle Scholar
Xu, J. and Zou, J. (1998), ‘Some nonoverlapping domain decomposition methods’, SIAM Rev. 40, 857914.CrossRefGoogle Scholar
Xu, J., Zhang, H. and Zikatanov, L. (2017a), Obtaining optimal coarse spaces for AMG via trace minimization. Submitted to J. Comput. Math..Google Scholar
Xu, J., Zhang, H. and Zikatanov, L. (2017b), On the Weyl’s law for discretized elliptic operators. Submitted to Math. Comp..Google Scholar
Xu, J., Zhang, H. and Zikatanov, L. (2017c), A unified approach to the design and analysis of AMG. Submitted to Numer. Math..Google Scholar
Yang, U. (2006), Parallel Algebraic Multigrid Methods: High Performance Preconditioners, Springer.Google Scholar
Young, D. (1971), Iterative Solution of Large Linear Systems, Academic Press.Google Scholar
Yserentant, H. (1993), Old and new convergence proofs for multigrid methods. Acta Numerica, Vol. 2, Cambridge University Press, pp. 285326.Google Scholar
Yu, G., Xu, J. and Zikatanov, L. (2013), ‘Analysis of a two-level method for anisotropic diffusion equations on aligned and nonaligned grids’, Numer. Linear Algebra Appl. 20, 832851.CrossRefGoogle Scholar
Zikatanov, L. (2008), ‘Two-sided bounds on the convergence rate of two-level methods’, Numer. Linear Algebra Appl. 15, 439454.CrossRefGoogle Scholar