Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-09T19:37:14.209Z Has data issue: false hasContentIssue false

On the numerical evaluation of electrostatic fields in composite materials

Published online by Cambridge University Press:  07 November 2008

Leslie Greengard
Affiliation:
Courant Institute of Mathematical SciencesNew York University, New York 10012, USA E-mail: [email protected]
Monique Moura
Affiliation:
Courant Institute of Mathematical SciencesNew York University, New York 10012, USA E-mail: [email protected]

Abstract

A classical problem in electrostatics is the determination of the effective electrical conductivity in a composite material consisting of a collection of piecewise homogeneous inclusions embedded in a uniform background. We discuss recently developed fast algorithms for the evaluation of the potential and electrostatic fields induced in multiphase composites by an applied potential, from which the desired effective properties may be easily obtained. The schemes are based on combining a suitable boundary integral equation with the Fast Multipole Method and the GMRES iterative method; the CPU time required grows linearly with the number of points in the discretization of the interface between the inclusions and the background material.

A variety of other questions in electrostatics, magnetostatics and diffusion can be formulated in terms of interface problems. These include the evaluation of electrostatic fields in the presence of dielectric inclusions, the determination of magnetostatic fields in media with variable magnetic permeability, and the calculation of the effective thermal conductivity of a composite material. The methods presented here apply with minor modification to these other situations as well.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, C. R. (1986), ‘A method of local corrections for computing the velocity field due to a distribution of vortex blobs’, J. Comput. Phys. 62, 111123.CrossRefGoogle Scholar
Appel, A. W. (1985), ‘An efficient program for many-body simulation’, SIAM J. Sci. Stat. Comput. 6, 85103.CrossRefGoogle Scholar
Atkinson, K. (1976), A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second Kind, SIAM (Philadelphia, PA).Google Scholar
Baker, G.R., Meiron, D.I. and Orszag, S.A. (1982), ‘Generalized vortex methods for free-surface flow problems’, J. Fluid Mech. 123, 477501.CrossRefGoogle Scholar
Barnes, J. and Hut, P. (1986), ‘A hierarchical O(N log N) force-calculation algorithm’, Nature 324, 446449.CrossRefGoogle Scholar
Beran, M.J. (1965), ‘Use of the variational approach to determine bounds for the effective permittivity in random media’, Nuovo Cimento 38, 771782.CrossRefGoogle Scholar
Bergman, D. (1978), ‘The dielectric constant of a composite material – a problem in classical physics’, Phys. Rep. (Section C of Phys. Lett.) 43(9), 377407.CrossRefGoogle Scholar
Bonnecaze, R.T. and Brady, J.F. (1990), ‘A method for determining the effective conductivity of dispersions of particles’, Proc. R. Soc. London A 369, 207225.Google Scholar
Brandt, A. and Lubrecht, A.A. (1990), ‘Multilevel matrix multiplication and fast solution of integral equations’, J. Comput. Phys. 90, 348370.CrossRefGoogle Scholar
Brebbia, C.A., Telles, J.C.F. and Wrobel, L.C. (1983), Boundary Element Techniques Springer (Berlin).Google Scholar
Carrier, J., Greengard, L. and Rokhlin, V. (1988), ‘A fast adaptive multipole algorithm for particle simulations’, SIAM J. Sci. Statist. Comput. 9, 669686.CrossRefGoogle Scholar
Delves, L.M. and Mohamed, J.L. (1985), Computational Methods for Integral Equations, Cambridge University Press (Cambridge).CrossRefGoogle Scholar
Durand, P.P. and Ungar, L.H. (1988), ‘Application of the boundary element method to dense dispersions’, Int. J. Numer. Methods Engrg 26, 24872501.CrossRefGoogle Scholar
Dykhne, A.M. (1970), ‘Conductivity of a two dimensional two-phase system’, Zh. Eksp. Teor. Fiz. 59, 110115.Google Scholar
Greenbaum, A., Greengard, L. and Mayo, A. (1992), ‘On the numerical solution of the biharmonic equation in the plane’, Physica D 60, 216225.Google Scholar
Greenbaum, A., Greengard, L. and McFadden, G.B. (1993), ‘Laplace's equation and the Dirichlet–Neumann map in multiply connected domains’, J. Comput. Phys. 105, 267278.CrossRefGoogle Scholar
Greengard, L. (1988), The Rapid Evaluation of Potential Fields in Particle Systems, MIT Press (Cambridge, MA).CrossRefGoogle Scholar
Greengard, L. and Rokhlin, V. (1987), ‘A fast algorithm for particle simulations’, J. Comput. Phys. 73, 325348.CrossRefGoogle Scholar
Greengard, L. and Rokhlin, V. (1988), ‘Rapid evaluation of potential fields in three dimensions’, in Vortex Methods (Anderson, C. and Greengard, C., eds). Lecture Notes in Mathematics, Vol. 1360, Springer (Berlin) 121141.CrossRefGoogle Scholar
Greengard, L. and Rokhlin, V. (1989), ‘On the evaluation of electrostatic interactions in molecular modeling’, Chem. Scr. A 29, 139144.Google Scholar
Guenther, R.B. and Lee, J.W. (1988), Partial Differential Equations of Mathematical Physics and Integral Equations, Prentice-Hall (Englewood Cliffs, NJ).Google Scholar
Gyure, M. and Beale, P.D. (1992), ‘Dielectric breakdown in continuous models of metal-loaded dielectrics’, Phys. Rev. B 46, 37363746.CrossRefGoogle ScholarPubMed
Hackbusch, W. and Nowak, Z.P. (1989), ‘On the fast matrix multiplication in the boundary element method by panel clustering’, Numer. Math. 54, 463491.CrossRefGoogle Scholar
Hashin, Z. and Shtrikman, S. (1962), ‘A variational approach to the theory of the effective magnetic permeability of multiphase materials’, J. Appl. Phys. 33(10), 31253131.CrossRefGoogle Scholar
Helsing, J. (1993), ‘Bounds to the conductivity of some two-component composites’, J. Appl. Phys. 73(3), 12401245.CrossRefGoogle Scholar
Hetherington, J. and Thorpe, M.F. (1992), ‘The conductivity of a sheet containg inclusions with sharp corners’, Proc. R. Soc. London A 438, 591604.Google Scholar
Jackson, J.D. (1975), Classical Electrodynamics, Wiley (New York).Google Scholar
Jaswon, M.A. and Symm, G.T. (1977), Integral Equation Methods in Potential Theory and Elastostatics, Academic (New York).Google Scholar
Keller, J.B. (1964), ‘A theorem on the conductivity of a composite medium’, J. Math. Phys. 5 548549.CrossRefGoogle Scholar
Keller, J.B. (1987), ‘Effective conductivity of periodic composites composed of two very unequal conductors’, J. Math. Phys. 28, 25162520.CrossRefGoogle Scholar
Kellogg, O.D. (1953), Foundations of Potential Theory, Dover (New York).Google Scholar
Landauer, R. (1978), ‘Electrical conductivity in inhomogeneous media’ in Electrical Transport and Optical Properties of Inhomogeneous Media (Garland, J.C. and Tanner, D.B., eds), AIP (New York) 261.Google Scholar
Lindholm, D.A. (1980), ‘Notes on boundary integral equations fo three-dimensional magnetostatics’, IEEE Trans. Magnetics 16, 14091413.CrossRefGoogle Scholar
Mayo, A. (1984), ‘The fast solution of Poisson's and the biharmonic equation on irregular regions’, SIAM J. Numer. Anal. 21, 285299.CrossRefGoogle Scholar
McPhedran, R.C., Poladian, L. and Milton, G.W. (1988), ‘Asymptotic studies of closely spaced, highly conducting cylinders’, Proc. R. Soc. London A 415, 185196.Google Scholar
Mendelson, K.S. (1975), ‘Effective conductivity of two-phase materials with cylindrical boundaries’, J. Appl. Phys. 46, 917918.CrossRefGoogle Scholar
Mikhlin, S.G. (1957), Integral Equations, Pergamon (London).CrossRefGoogle Scholar
Milton, G.W. (1985), ‘The coherent potential approximation is a realizable effective medium scheme’, Comrn. Math. Phys. 99, 463500.CrossRefGoogle Scholar
Moura, M. (1993), ‘On the numerical calculation of electrostaticfields in composite media’, Ph.D. Thesis, New York University.Google Scholar
Nabors, K. and White, J. (1991), ‘FastCap: a multipole accelerated 3-D capacitance extraction program’, IEEE Trans. Computer-Aided Design 10, 14471459.CrossRefGoogle Scholar
Nabors, K. and White, J. (1992), ‘Multipole-accelerated capacitance extraction algorithms for 3-D structures with multiple dielectrics’, IEEE Trans. Circuits and Systems 39, 946954.CrossRefGoogle Scholar
Odlyzko, A.M. and Schönhage, A. (1988), ‘Fast algorithms formultiple evaluations of the Riemann zeta function’, Trans. Am. Math. Soc. 309, 797809.CrossRefGoogle Scholar
Perrins, W.T., McPhedran, R.C. and McKenzie, D.R. (1979a), ‘Optical properties of dense regular cermets with relevance to selective solar absorbers’, Thin Solid Films 57, 321326.CrossRefGoogle Scholar
Perrins, W.T., McKenzie, D.R. and McPhedran, R.C. (1979b), ‘Transport properties of regular arrays of cylinders’, Proc. R. Soc. London A 369, 207225.Google Scholar
Phan-Thien, N. and Milton, G.W. (1982), ‘New bounds on the effective thermal conductivity of N-phase materials’, Proc. R. Soc. London A 380, 333348.Google Scholar
Prager, S. (1969), ‘Improved variational bounds on some bulk properties of a two-phase random medium’, J. Chem. Phys. 50, 43054312.CrossRefGoogle Scholar
Rayleigh, Lord (1892), ‘On the influence of obstacles arranged in rectangular order upon the properties of a medium’, Phil. Mag. 34, 481502.CrossRefGoogle Scholar
Rokhlin, V. (1985), ‘Rapid solution of integral equations of classical potential theory’, J. Comput. Phys. 60, 187207.CrossRefGoogle Scholar
Rokhlin, V. (1990), ‘End-point corrected trapezoidal quadrature rules for singular functions’, Comput. Math. Applic. 20, 5162.CrossRefGoogle Scholar
Saad, Y. and Schultz, M.H. (1986), ‘GMRES: a generalized minimum residual algorithm for solving nonsymmetric linear systems’, SI AM J. Sci. Stat. Comput. 7, 856869.CrossRefGoogle Scholar
Sangani, A.S. and Yao, C. (1988), ‘Transport processes in random arrays of cylinders., I. thermal conduction’, Phys. Fluids 31, 24262434.CrossRefGoogle Scholar
Torquato, S. and Lado, F. (1988), ‘Bounds on the effective conductivity of a random array of cylinders’, Proc. R. Soc. London A 417, 5980.Google Scholar
Van Bladel, J. (1964), Electromagnetic Fields, McGraw-Hill (New York).Google Scholar
Van Dommelen, L. and Rundensteiner, E.A. (1989), ‘Fast, adaptive summation of point forces in the two-dimensional Poisson equation’, J. Comput. Phys. 83, 126147.CrossRefGoogle Scholar
Willis, J.R. (1981), ‘Variational and related methods for the overall properties of composites’, Adv. Appl. Mech. 21, 178.CrossRefGoogle Scholar