Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-22T05:55:06.442Z Has data issue: false hasContentIssue false

Transcranial direct current stimulation and neuroplasticity genes: implications for psychiatric disorders

Published online by Cambridge University Press:  16 April 2015

Harleen Chhabra
Affiliation:
The Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
Venkataram Shivakumar
Affiliation:
The Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
Sri Mahavir Agarwal
Affiliation:
The Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
Anushree Bose
Affiliation:
The Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
Deepthi Venugopal
Affiliation:
Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India
Ashwini Rajasekaran
Affiliation:
Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India
Manjula Subbanna
Affiliation:
The Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
Sunil V. Kalmady
Affiliation:
The Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
Janardhanan C. Narayanaswamy
Affiliation:
The Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
Monojit Debnath
Affiliation:
Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India
Ganesan Venkatasubramanian*
Affiliation:
The Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
*
Dr. Ganesan Venkatasubramanian, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560029. Tel: 00 91 80 26995256; Fax: 00 91 80 26564830; E-mail: [email protected]

Abstract

Background and Aim

Transcranial direct current stimulation (tDCS) is a non-invasive and well-tolerated brain stimulation technique with promising efficacy as an add-on treatment for schizophrenia and for several other psychiatric disorders. tDCS modulates neuroplasticity; psychiatric disorders are established to be associated with neuroplasticity abnormalities. This review presents the summary of research on potential genetic basis of neuroplasticity-modulation mechanism underlying tDCS and its implications for treating various psychiatric disorders.

Method

A systematic review highlighting the genes involved in neuroplasticity and their role in psychiatric disorders was carried out. The focus was on the established genetic findings of tDCS response relationship with BDNF and COMT gene polymorphisms.

Result

Synthesis of these preliminary observations suggests the potential influence of neuroplastic genes on tDCS treatment response. These include several animal models, pharmacological studies, mentally ill and healthy human subject trials.

Conclusion

Taking into account the rapidly unfolding understanding of tDCS and the role of synaptic plasticity disturbances in neuropsychiatric disorders, in-depth evaluation of the mechanism of action pertinent to neuroplasticity modulation with tDCS needs further systematic research. Genes such as NRG1, DISC1, as well as those linked with the glutamatergic receptor in the context of their direct role in the modulation of neuronal signalling related to neuroplasticity aberrations, are leading candidates for future research in this area. Such research studies might potentially unravel observations that might have potential translational implications in psychiatry.

Type
Review Article
Copyright
© Scandinavian College of Neuropsychopharmacology 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hahn, C, Rice, J, Macuff, S, Minhas, P, Rahman, A, Bikson, M. Methods for extra-low voltage transcranial direct current stimulation: current and time dependent impedance decreases. Clin Neurophysiol 2013;124:551556.CrossRefGoogle ScholarPubMed
2. Nitsche, MA, Paulus, W. Transcranial direct current stimulation – update 2011. Restor Neurol Neurosci 2011;29:463492.Google ScholarPubMed
3. Krause, B, Marquez-Ruiz, J, Kadosh, RC. The effect of transcranial direct current stimulation: a role for cortical excitation/inhibition balance? Front Hum Neurosci 2013;7:602.CrossRefGoogle ScholarPubMed
4. Agarwal, SM, Shivakumar, V, Bose, A et al. Transcranial direct current stimulation in schizophrenia – a review. Clinical Psychopharmacol Neurosci 2013;11:118125.CrossRefGoogle Scholar
5. Brunoni, AR, Shiozawa, P, Truong, D et al. Understanding tDCS effects in schizophrenia: a systematic review of clinical data and an integrated computation modeling analysis. Expert Rev Med Devices 2014;11:383394.CrossRefGoogle Scholar
6. Narayanaswamy, JC, Shivakumar, V, Bose, A, Agarwal, SM, Venkatasubramanian, G, Gangadhar, BN. Sustained improvement of negative symptoms in schizophrenia with add-on tDCS. Clin Schizophr Relat Psychoses 2014;20:17.CrossRefGoogle Scholar
7. Brunelin, J, Mondino, M, Gassab, L et al. Examining transcranial direct-current stimulation (tDCS) as a treatment for hallucinations in schizophrenia. Am J Psychiatry 2012;169:719724.CrossRefGoogle ScholarPubMed
8. Rakesh, G, Shivakumar, V, Subramaniam, A et al. Monotherapy with tDCS for schizophrenia: a case report. Brain Stimul 2013;6:708709.CrossRefGoogle ScholarPubMed
9. Shivakumar, V, Bose, A, Rakesh, G et al. Rapid improvement of auditory verbal hallucinations in schizophrenia after add-on treatment with transcranial direct-current stimulation. J ECT 2013;29:e43e44.CrossRefGoogle ScholarPubMed
10. Bose, A, Shivakumar, V, Narayanaswamy, JC et al. Insight facilitation with add-on tDCS in schizophrenia. Schizophr Res 2014;156:6365.CrossRefGoogle ScholarPubMed
11. Nawani, H, Bose, A, Agarwal, SM et al. Modulation of corollary discharge dysfunction in schizophrenia by tDCS: preliminary evidence. Brain Stimul 2014;7:486488.CrossRefGoogle ScholarPubMed
12. Nawani, H, Kalmady, SV, Bose, A et al. Neural basis of tDCS effects on auditory verbal hallucinations in schizophrenia: a case report evidence for cortical neuroplasticity modulation. J ECT 2014;30:e2e4.CrossRefGoogle ScholarPubMed
13. Kandel, ER, Pittenger, C. The past, the future and the biology of memory storage. Philos Trans R Soc Lond B Biol Sci 1999;354:20272052.CrossRefGoogle ScholarPubMed
14. Kandel, ER. The molecular biology of memory storage: a dialog between genes and synapses. Biosci Rep 2004;24:475522.CrossRefGoogle ScholarPubMed
15. Sibille, E. Molecular aging of the brain, neuroplasticity, and vulnerability to depression and other brain-related disorders. Dialogues Clin Neurosci 2013;15:5365.CrossRefGoogle ScholarPubMed
16. Voineskos, D, Rogasch, NC, Rajji, TK, Fitzgerald, PB, Daskalakis, ZJ. A review of evidence linking disrupted neural plasticity to schizophrenia. Can J Psychiatry 2013;58:8692.CrossRefGoogle ScholarPubMed
17. Balu, DT, Coyle, JT. Neuroplasticity signaling pathways linked to the pathophysiology of schizophrenia. Neurosci Biobehav Rev 2011;35:848870.CrossRefGoogle Scholar
18. Nakata, K, Lipska, BK, Hyde, TM et al. DISC1 splice variants are upregulated in schizophrenia and associated with risk polymorphisms. Proc Natl Acad Sci U S A 2009;106:1587315878.CrossRefGoogle ScholarPubMed
19. Bailey, CH, Bartsch, D, Kandel, ER. Toward a molecular definition of long-term memory storage. Proc Natl Acad Sci U S A 1996;93:1344513452.CrossRefGoogle Scholar
20. Guo, AY, Sun, J, Riley, BP, Thiselton, DL, Kendler, KS, Zhao, Z. The dystrobrevin-binding protein 1 gene: features and networks. Mol Psychiatry 2009;14:1829.CrossRefGoogle ScholarPubMed
21. Alizadeh, F, Tabatabaiefar, MA, Ghadiri, M, Yekaninejad, MS, Jalilian, N, Noori-Daloii, MR. Association of P1635 and P1655 polymorphisms in dysbindin (DTNBP1) gene with schizophrenia. Acta Neuropsychiatrica 2012;24:155159.CrossRefGoogle ScholarPubMed
22. Desbonnet, L, Waddington, JL, O’Tuathaigh, CM. Mutant models for genes associated with schizophrenia. Biochem Soc Trans 2009;37(Pt 1):308312.CrossRefGoogle ScholarPubMed
23. Jonsson, EG, Edman-Ahlbom, B, Sillen, A et al. Brain-derived neurotrophic factor gene (BDNF) variants and schizophrenia: an association study. Prog Neuropsychopharmacol Biol Psychiatry 2006;30:924933.CrossRefGoogle ScholarPubMed
24. Allen, NC, Bagade, S, McQueen, MB et al. Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet 2008;40:827834.CrossRefGoogle ScholarPubMed
25. Hasan, A, Misewitsch, K, Nitsche, MA et al. Impaired motor cortex responses in non-psychotic first-degree relatives of schizophrenia patients: a cathodal tDCS pilot study. Brain Stimul 2013;6:821829.CrossRefGoogle ScholarPubMed
26. Hasan, A, Nitsche, MA, Herrmann, M et al. Impaired long-term depression in schizophrenia: a cathodal tDCS pilot study. Brain Stimul 2012;5:475483.CrossRefGoogle ScholarPubMed
27. Hasan, A, Wobrock, T, Rajji, T, Malchow, B, Daskalakis, ZJ. Modulating neural plasticity with non-invasive brain stimulation in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2013;263:621631. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24061608.CrossRefGoogle ScholarPubMed
28. Loo, CK, Alonzo, A, Martin, D, Mitchell, PB, Galvez, V, Sachdev, P. Transcranial direct current stimulation for depression: 3-week, randomised, sham-controlled trial. Br J Psychiatry 2012;200:5259.CrossRefGoogle ScholarPubMed
29. Brunoni, AR, Ferrucci, R, Bortolomasi, M et al. Transcranial direct current stimulation (tDCS) in unipolar vs. bipolar depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2011;35:96101.CrossRefGoogle ScholarPubMed
30. Ferrucci, R, Bortolomasi, M, Vergari, M et al. Transcranial direct current stimulation in severe, drug-resistant major depression. J Affect Disord 2009;118:215219.CrossRefGoogle ScholarPubMed
31. Klauss, J, Penido Pinheiro, LC, Silva Merlo, BL et al. A randomized controlled trial of targeted prefrontal cortex modulation with tDCS in patients with alcohol dependence. Int J Neuropsychopharmacol 2014;17:17931803.CrossRefGoogle ScholarPubMed
32. Boggio, PS, Zaghi, S, Villani, AB, Fecteau, S, Pascual-Leone, A, Fregni, F. Modulation of risk-taking in marijuana users by transcranial direct current stimulation (tDCS) of the dorsolateral prefrontal cortex (DLPFC). Drug Alcohol Depend 2010;112:220225.CrossRefGoogle ScholarPubMed
33. da Silva, MC, Conti, CL, Klauss, J et al. Behavioral effects of transcranial direct current stimulation (tDCS) induced dorsolateral prefrontal cortex plasticity in alcohol dependence. J Physiol Paris 2013;107:493502.CrossRefGoogle ScholarPubMed
34. Shiozawa, P, Leiva, AP, Castro, CD et al. Transcranial direct current stimulation for generalized anxiety disorder: a case study. Biol Psychiatry 2014;75:e17e18.CrossRefGoogle ScholarPubMed
35. Narayanaswamy, JC, Jose, D, Chhabra, H et al. Successful application of add-on transcranial direct current stimulation (tDCS) for treatment of SSRI resistant OCD. Brain Stimul 2014.Google ScholarPubMed
36. Ferrucci, R, Mameli, F, Guidi, I et al. Transcranial direct current stimulation improves recognition memory in Alzheimer disease. Neurology 2008;71:493498.CrossRefGoogle ScholarPubMed
37. Knable, MB, Barci, BM, Bartko, JJ, Webster, MJ, Torrey, EF. Molecular abnormalities in the major psychiatric illnesses: classification and regression tree (CRT) analysis of post-mortem prefrontal markers. Mol Psychiatry 2002;7:392404.CrossRefGoogle ScholarPubMed
38. Spedding, M, Neau, I, Harsing, L. Brain plasticity and pathology in psychiatric disease: sites of action for potential therapy. Current Opin Pharmacology 2003;3:3340.CrossRefGoogle ScholarPubMed
39. Player, MJ, Taylor, JL, Weickert, CS et al. Increase in PAS-induced neuroplasticity after a treatment course of transcranial direct current stimulation for depression. J Affect Disord 2014;167:140147.CrossRefGoogle ScholarPubMed
40. Krause, B, Marquez-Ruiz, J, Cohen Kadosh, R. The effect of transcranial direct current stimulation: a role for cortical excitation/inhibition balance? Front Hum Neurosci 2013;7:602.CrossRefGoogle ScholarPubMed
41. Fritsch, B, Reis, J, Martinowich, K et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 2010;66:198204.CrossRefGoogle ScholarPubMed
42. Bikson, M, Inoue, M, Akiyama, H et al. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol 2004;557(Pt 1):175190.CrossRefGoogle ScholarPubMed
43. Hasan, A, Nitsche, MA, Rein, B et al. Dysfunctional long-term potentiation-like plasticity in schizophrenia revealed by transcranial direct current stimulation. Behav Brain Res 2011;224:1522.CrossRefGoogle ScholarPubMed
44. Nitsche, MAA, Liebetanz, D, Lang, N, Tergau, F, Paulus, W. Induction and modulation of neuroplasticity by transcranial direct current stimulation. In: Marcolin MA, Padberg F, editors. Transcranial brain stimulation for treatment of psychiatric disorders. Basel: Karger, 2007;23:172186.CrossRefGoogle Scholar
45. Nitsche, MA, Paulus, W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 2001;57:18991901.CrossRefGoogle ScholarPubMed
46. Jiang, T, Xu, RX, Zhang, AW et al. Effects of transcranial direct current stimulation on hemichannel pannexin-1 and neural plasticity in rat model of cerebral infarction. Neuroscience 2012;226:421426.CrossRefGoogle ScholarPubMed
47. Yoon, KJ, Oh, BM, Kim, DY. Functional improvement and neuroplastic effects of anodal transcranial direct current stimulation (tDCS) delivered 1 day vs. 1 week after cerebral ischemia in rats. Brain Res 2012;1452:6172.CrossRefGoogle ScholarPubMed
48. Kimoto, S, Bazmi, HH, Lewis, DA. Lower expression of glutamic acid decarboxylase 67 in the prefrontal cortex in schizophrenia: contribution of altered regulation by Zif268. Am J Psychiatry 2014;171:969978.CrossRefGoogle ScholarPubMed
49. Vaisanen, J, Ihalainen, J, Tanila, H, Castren, E. Effects of NMDA-receptor antagonist treatment on c-fos expression in rat brain areas implicated in schizophrenia. Cell Mol Neurobiol 2004;24:769780.CrossRefGoogle ScholarPubMed
50. Ranieri, F, Podda, MV, Riccardi, E et al. Modulation of LTP at rat hippocampal CA3-CA1 synapses by direct current stimulation. J Neurophysiol 2012;107:18681880.CrossRefGoogle ScholarPubMed
51. Liebetanz, D, Nitsche, MA, Tergau, F, Paulus, W. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain 2002;125(Pt 10):22382247.CrossRefGoogle Scholar
52. Nitsche, MA, Fricke, K, Henschke, U et al. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol 2003;553(Pt 1):293301.CrossRefGoogle ScholarPubMed
53. Goodwill, AM, Reynolds, J, Daly, RM, Kidgell, DJ. Formation of cortical plasticity in older adults following tDCS and motor training. Front Aging Neurosci 2013;5:87.CrossRefGoogle ScholarPubMed
54. Monte-Silva, K, Kuo, MF, Hessenthaler, S et al. Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimul 2013;6:424432.CrossRefGoogle ScholarPubMed
55. Fregni, F, Boggio, PS, Nitsche, M et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res 2005;166:2330.CrossRefGoogle ScholarPubMed
56. Antal, A, Paulus, W, Nitsche, MA. Electrical stimulation and visual network plasticity. Restor Neurol Neurosci 2011;29:365374. (Review).Google ScholarPubMed
57. Monte-Silva, K, Kuo, MF, Hessenthaler, S et al. Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimul 2013;6:424432.CrossRefGoogle ScholarPubMed
58. Kirimoto, H, Ogata, K, Onishi, H, Oyama, M, Goto, Y, Tobimatsu, S. Transcranial direct current stimulation over the motor association cortex induces plastic changes in ipsilateral primary motor and somatosensory cortices. Clin Neurophysiol 2011;122:777783.CrossRefGoogle ScholarPubMed
59. Kidgell, DJ, Goodwill, AM, Frazer, AK, Daly, RM. Induction of cortical plasticity and improved motor performance following unilateral and bilateral transcranial direct current stimulation of the primary motor cortex. BMC Neurosci 2013;14:64.CrossRefGoogle ScholarPubMed
60. Venkatakrishnan, A, Sandrini, M. Combining transcranial direct current stimulation and neuroimaging: novel insights in understanding neuroplasticity. J Neurophysiol 2012;107:14.CrossRefGoogle ScholarPubMed
61. Lang, N, Siebner, HR, Ward, NS et al. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur J Neurosci 2005;22:495504.CrossRefGoogle ScholarPubMed
62. Polania, R, Paulus, W, Antal, A, Nitsche, MA. Introducing graph theory to track for neuroplastic alterations in the resting human brain: a transcranial direct current stimulation study. Neuroimage 2011;54:22872296.CrossRefGoogle Scholar
63. Khan, B, Hodics, T, Hervey, N, Kondraske, G, Stowe, AM, Alexandrakis, G. Functional near-infrared spectroscopy maps cortical plasticity underlying altered motor performance induced by transcranial direct current stimulation. J Biomed Opt 2013;18:116003.CrossRefGoogle ScholarPubMed
64. Hunter, MA, Coffman, BA, Trumbo, MC, Clark, VP. Tracking the neuroplastic changes associated with transcranial direct current stimulation: a push for multimodal imaging. Front Hum Neurosci 2013;7:495.Google ScholarPubMed
65. Pena-Gomez, C, Sala-Lonch, R, Junque, C et al. Modulation of large-scale brain networks by transcranial direct current stimulation evidenced by resting-state functional MRI. Brain Stimul 2012;5:252263.CrossRefGoogle ScholarPubMed
66. Prathikanti, S, Weinberger, DR. Psychiatric genetics – the new era: genetic research and some clinical implications. Br Med Bull 2005;73–74:107122.CrossRefGoogle ScholarPubMed
67. Weaver, SM, Portelli, JN, Chau, A, Cristofori, I, Moretti, L, Grafman, J. Genetic polymorphisms and traumatic brain injury: the contribution of individual differences to recovery. Brain Imaging Behav 2012;8:420434.CrossRefGoogle Scholar
68. Nieto, R, Kukuljan, M, Silva, H. BDNF and schizophrenia: from neurodevelopment to neuronal plasticity, learning, and memory. Front Psychiatry 2013;4:45.CrossRefGoogle ScholarPubMed
69. Singh, JP, Volavka, J, Czobor, P, Van Dorn, RA. A meta-analysis of the Val158Met COMT polymorphism and violent behavior in schizophrenia. PLoS One 2012;7:e43423.CrossRefGoogle ScholarPubMed
70. Ira, E, Zanoni, M, Ruggeri, M, Dazzan, P, Tosato, S. COMT, neuropsychological function and brain structure in schizophrenia: a systematic review and neurobiological interpretation. J Psychiatry Neurosci 2013;38:366380.CrossRefGoogle ScholarPubMed
71. Yang, XX, Zhu, AN, Li, FX, Zhang, ZX, Li, M. Neurogenic locus notch homolog protein 4 and brain-derived neurotrophic factor variants combined effect on schizophrenia susceptibility. Acta Neuropsychiatr 2013;25:356360.CrossRefGoogle ScholarPubMed
72. Antal, A, Chaieb, L, Moliadze, V et al. Brain-derived neurotrophic factor (BDNF) gene polymorphisms shape cortical plasticity in humans. Brain Stimul 2010;3:230237.CrossRefGoogle ScholarPubMed
73. Di Lazzaro, V, Manganelli, F, Dileone, M et al. The effects of prolonged cathodal direct current stimulation on the excitatory and inhibitory circuits of the ipsilateral and contralateral motor cortex. J Neural Transm 2012;119:14991506.CrossRefGoogle ScholarPubMed
74. Brunoni, AR, Kemp, AH, Shiozawa, P et al. Impact of 5-HTTLPR and BDNF polymorphisms on response to sertraline versus transcranial direct current stimulation: implications for the serotonergic system. Eur Neuropsychopharmacol 2013;23:15301540.CrossRefGoogle ScholarPubMed
75. Fujiyama, H, Hyde, J, Hinder, MR et al. Delayed plastic responses to anodal tDCS in older adults. Front Aging Neurosci 2014;6:115.CrossRefGoogle ScholarPubMed
76. Teo, JT, Bentley, G, Lawrence, P et al. Late cortical plasticity in motor and auditory cortex: role of met-allele in BDNF Val66Met polymorphism. Int J Neuropsychopharmacol 2014;17:705713.CrossRefGoogle ScholarPubMed
77. Plewnia, C, Zwissler, B, Langst, I, Maurer, B, Giel, K, Kruger, R. Effects of transcranial direct current stimulation (tDCS) on executive functions: influence of COMT Val/Met polymorphism. Cortex 2013;49:18011807.CrossRefGoogle ScholarPubMed
78. Arnsten, AF, Paspalas, CD, Gamo, NJ, Yang, Y, Wang, M. Dynamic network connectivity: a new form of neuroplasticity. Trends Cogn Sci 2010;14:365375.CrossRefGoogle ScholarPubMed
79. Chakravarty, MM, Felsky, D, Tampakeras, M et al. DISC1 and striatal volume: a potential risk phenotype for mental illness. Front Psychiatry 2012;3:57.CrossRefGoogle ScholarPubMed
80. Greenwood, TA, Light, GA, Swerdlow, NR, Radant, AD, Braff, DL. Association analysis of 94 candidate genes and schizophrenia-related endophenotypes. PLoS One 2012;7:e29630.CrossRefGoogle ScholarPubMed
81. Juhasz, G, Dunham, JS, McKie, S et al. The CREB1-BDNF-NTRK2 pathway in depression: multiple gene-cognition-environment interactions. Biol Psychiatry 2011;69:762771.CrossRefGoogle ScholarPubMed
82. Shyn, SI, Hamilton, SP. The genetics of major depression: moving beyond the monoamine hypothesis. Psychiatr Clin North Am 2010;33:125140.CrossRefGoogle ScholarPubMed
83. Dick, DM, Jones, K, Saccone, N et al. Endophenotypes successfully lead to gene identification: results from the collaborative study on the genetics of alcoholism. Behav Genet 2006;36:112126.CrossRefGoogle ScholarPubMed
84. Ferreira, MA, O’Donovan, MC, Meng, YA et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 2008;40:10561058.CrossRefGoogle ScholarPubMed
85. Schulze, TG, Detera-Wadleigh, SD, Akula, N et al. Two variants in Ankyrin 3 (ANK3) are independent genetic risk factors for bipolar disorder. Mol Psychiatry 2009;14:487491.CrossRefGoogle ScholarPubMed
86. Smith, KR, Kopeikina, KJ, Fawcett-Patel, JM et al. Psychiatric risk factor ANK3/ankyrin-G nanodomains regulate the structure and function of glutamatergic synapses. Neuron 2014;84:399415.CrossRefGoogle ScholarPubMed
87. Munafo, MR, Attwood, AS, Flint, J. Neuregulin 1 genotype and schizophrenia. Schizophr Bull 2008;34:912.CrossRefGoogle ScholarPubMed
88. Gong, YG, Wu, CN, Xing, QH, Zhao, XZ, Zhu, J, He, L. A two-method meta-analysis of neuregulin 1 (NRG1) association and heterogeneity in schizophrenia. Schizophr Res 2009;111:109114.CrossRefGoogle ScholarPubMed
89. Mitchelmore, C, Gede, L. Brain derived neurotrophic factor: epigenetic regulation in psychiatric disorders. Brain Res 2014;1586:162172.CrossRefGoogle ScholarPubMed
90. Chen, ZY, Jing, D, Bath, KG et al. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science 2006;314:140143.CrossRefGoogle ScholarPubMed
91. Egan, MF, Kojima, M, Callicott, JH et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 2003;112:257269.CrossRefGoogle ScholarPubMed
92. van Winkel, R, Henquet, C, Rosa, A et al. Evidence that the COMT(Val158Met) polymorphism moderates sensitivity to stress in psychosis: an experience-sampling study. Am J Med Genet B Neuropsychiatr Genet 2008;147B:1017.CrossRefGoogle ScholarPubMed
93. Lopez-Leon, S, Janssens, AC, Gonzalez-Zuloeta Ladd, AM et al. Meta-analyses of genetic studies on major depressive disorder. Mol Psychiatry 2008;13:772785.CrossRefGoogle ScholarPubMed
94. Chen, AC, Manz, N, Tang, Y et al. Single-nucleotide polymorphisms in corticotropin releasing hormone receptor 1 gene (CRHR1) are associated with quantitative trait of event-related potential and alcohol dependence. Alcohol Clin Exp Res 2010;34:988996.CrossRefGoogle ScholarPubMed
95. Ait-Daoud, N, Seneviratne, C, Smith, JB et al. Preliminary evidence for cue-induced alcohol craving modulated by serotonin transporter gene polymorphism rs1042173. Front Psychiatry 2012;3:6.CrossRefGoogle ScholarPubMed
96. Zhang, X, Gainetdinov, RR, Beaulieu, JM et al. Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron 2005;45:1116.CrossRefGoogle ScholarPubMed