Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-03T15:04:48.626Z Has data issue: false hasContentIssue false

Studies of caloric vestibular stimulation: implications for the cognitive neurosciences, the clinical neurosciences and neurophilosophy

Published online by Cambridge University Press:  24 June 2014

Steven M. Miller*
Affiliation:
Caulfield Pain Management and Research Centre, Caulfield General Medical Centre, Melbourne, Victoria, Australia Brain Stimulation Laboratory, Alfred Psychiatry Research Centre, The Alfred Hospital, Melbourne, Victoria, Australia Department of Psychological Medicine, Monash University, Melbourne, Victoria, Australia
Trung T. Ngo
Affiliation:
Caulfield Pain Management and Research Centre, Caulfield General Medical Centre, Melbourne, Victoria, Australia Brain Stimulation Laboratory, Alfred Psychiatry Research Centre, The Alfred Hospital, Melbourne, Victoria, Australia
*
Dr Steven M. Miller, Caulfield Pain Management and Research Centre, Caulfield General Medical Centre, 260 Kooyong Rd, Caulfield, Melbourne, VIC 3162, Australia. Tel: +61 3 9076 6834; Fax: +61 3 9076 6675; E-mail: [email protected]

Abstract

Objective:

Caloric vestibular stimulation (CVS) has traditionally been used as a tool for neurological diagnosis. More recently, however, it has been applied to a range of phenomena within the cognitive neurosciences. Here, we provide an overview of such studies and review our work using CVS to investigate the neural mechanisms of a visual phenomenon – binocular rivalry. We outline the interhemispheric switch model of rivalry supported by this work and its extension to a metarivalry model of interocular-grouping phenomena. In addition, studies showing a slow rate of binocular rivalry in bipolar disorder are discussed, and the relationship between this finding and the interhemispheric switch model is described. We also review the effects of CVS in various clinical contexts, explain how the technique is performed and discuss methodological issues in its application.

Methods:

A review of CVS and related literature was conducted.

Results:

Despite CVS being employed with surprising effect in a wide variety of cognitive and clinical contexts, it has been a largely underutilized brain stimulation method for both exploratory and therapeutic purposes. This is particularly so given that it is well tolerated, safe, inexpensive and easy to administer.

Conclusion:

CVS can be used to investigate various cognitive phenomena including perceptual rivalry, attention and mood, as well as somatosensory representation, belief, hemispheric laterality and pain. The technique can also be used to investigate clinical conditions related to these phenomena and may indeed have therapeutic utility, especially with respect to postlesional disorders, mania, depression and chronic pain states. Furthermore, we propose that based on existing reports of the phenomenological effects of CVS and the brain regions it is known to activate, the technique could be used to investigate and potentially treat a range of other clinical disorders. Finally, the effects of CVS (and its potential effects) on several phenomena of interest to philosophy suggest that it is also likely to become a useful tool in experimental neurophilosophy.

Type
Research Article
Copyright
Copyright © 2007 Blackwell Munksgaard

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fife, TD, Tusa, RJ, Furman, JMet al. Assessment: vestibular testing techniques in adults and children. Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 2000;55:14311441.CrossRefGoogle ScholarPubMed
Te Quality Standards Subcommittee Of Te American Academy Of Neurology. Practice parameters for determining brain death in adults (Summary Statement). Neurology 1995;45:10121014.CrossRefGoogle Scholar
Feldmann, HDie zweitausendjährige Geschichte der Ohrenspritze und ihre Verflechtung mit dem Klistier. Bilder aus der Geschichte der Hals-Nasen-Ohren-Heilkunde, dargestellt an Instrumenten aus der Sammlung im Deutschen Medizinhistorischen Museum in Ingolstadt. Laryngo-Rhino-Otol 1999;78:462467.CrossRefGoogle Scholar
Bárány, R. Untersuchungen über den vom Vestibularapparat des Ohres reflektorisch ausgelösten rhythmischen Nystagmus und seine Begleiterscheinungen. Monatsschr Ohrenheilkd 1906;40:193297.Google Scholar
Bárány, R. Some new methods for functional testing of the vestibular apparatus and the cerebellum. Nobel Lecture, September 11, 1916. In: Nobel lectures including presentation of speeches and laureates’ biographies, physiology or medicine 1901–1921. Amsterdam: Elsevier Publishing Company, 1967: 500511.Google Scholar
Baloh, RW. Charles Skinner Hallpike and the beginnings of neurotology. Neurology 2000;54:21382146.CrossRefGoogle Scholar
Bottini, G, Sterzi, R, Paulesu, Eet al. Identification of the central vestibular projections in man: a positron emission tomography activation study. Exp Brain Res 1994;99:164169.CrossRefGoogle ScholarPubMed
Bottini, G, Paulesu, E, Sterzi, Ret al. Modulation of conscious experience by peripheral sensory stimuli. Nature 1995;376:778781.CrossRefGoogle ScholarPubMed
Bottini, G, Karnath, H-O, Vallar, Get al. Cerebral representations for egocentric space. Functional-anatomical evidence from caloric vestibular stimulation and neck vibration. Brain 2001;124:11821196.CrossRefGoogle ScholarPubMed
Bense, S, Bartenstein, P, Lutz, Set al. Three determinants of vestibular hemispheric dominance during caloric stimulation. A positron emission tomography study. Ann N Y Acad Sci 2003;1004:440445.CrossRefGoogle Scholar
Emri, M, Kisely, M, Lengyel, Zet al. Cortical projection of peripheral vestibular signaling. J Neurophysiol 2003;89:26392646.CrossRefGoogle ScholarPubMed
Kisely, M, Emri, M, Lengyel, Zet al. Changes in brain activation caused by caloric stimulation in the case of cochleovestibular denervation – PET study. Nucl Med Commun 2002;23:967973.CrossRefGoogle ScholarPubMed
Indovina, I, Maffei, V, Bosco, G, Zago, M, Macaluso, E, Lacquaniti, F. Representation of visual gravitational motion in the human vestibular cortex. Science 2005;308:416419.CrossRefGoogle ScholarPubMed
Vitte, E, Derosier, C, Caritu, Y, Berthoz, A, Hasboun, D, Soulié, S. Activation of the hippocampal formation by vestibular stimulation: a functional magnetic resonance imaging study. Exp Brain Res 1996;112:523526.CrossRefGoogle ScholarPubMed
Wenzel, R, Bartenstein, P, Dieterich, Met al. Deactivation of human visual cortex during involuntary ocular oscillations. A PET activation study. Brain 1996;119:101110.CrossRefGoogle ScholarPubMed
Blake, R. A primer on binocular rivalry, including current controversies. Brain Mind 2001;2:538.CrossRefGoogle Scholar
Blake, R. A neural theory of binocular rivalry. Psychol Rev 1989;96:145167.CrossRefGoogle ScholarPubMed
Logothetis, NK. Single units and conscious vision. Philos Trans R Soc Lond B Biol Sci 1998;353:18011818.CrossRefGoogle ScholarPubMed
Miller, SM. On the correlation/constitution distinction problem (and other hard problems) in the scientific study of consciousness. Acta Neuropsychiatr 2007;19:159176.CrossRefGoogle Scholar
Logothetis, NK, Leopold, DA, Sheinberg, DL. What is rivalling during binocular rivalry? Nature 1996;380:621624.CrossRefGoogle ScholarPubMed
Ngo, TT, Liu, GB, Tilley, AJ, Pettigrew, JD, Miller, SM. Caloric vestibular stimulation reveals discrete neural mechanisms for coherence rivalry and eye rivalry: a meta-rivalry model. Vision Res 2007 (in press).Google ScholarPubMed
Blake, R, Logothetis, NK. Visual competition. Nat Rev Neurosci 2002;3:1321.CrossRefGoogle ScholarPubMed
Shannahoff-Khalsa, D. The ultradian rhythm of alternating cerebral hemispheric activity. Int J Neurosci 1993;70:285298.CrossRefGoogle ScholarPubMed
Pettigrew, JD, Collin, SP, Ott, M. Convergence of highly-specialised behaviour, eye movements and visual optics in the sandlance (Teleostei) and the chameleon (Reptilia). Curr Biol 1999;9:421424.CrossRefGoogle Scholar
Rattenborg, NC, Amlaner, CJ, Lima, SL. Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep. Neurosci Biobehav Rev 2000;24:817842.CrossRefGoogle ScholarPubMed
Luck, SJ, Hillyard, SA, Mangun, GR, Gazzaniga, MS. Independent hemispheric attentional systems mediate visual search in split-brain patients. Nature 1989;342:543545.CrossRefGoogle ScholarPubMed
Bogen, J, Berker, E, Van Lancker, Det al. Left hemicerebrectomy: vision, olfaction and mentation 45 years later. Soc Neurosci Abs 1998;24:173.Google Scholar
Vallar, G, Guariglia, C, Rusconi, ML. Modulation of the neglect syndrome by sensory stimulation. In: Their, P, Karnath, H-O, eds. Parietal lobe contributions to orientation in 3D space. Berlin: Springer-Verlag, 1997: 555578.CrossRefGoogle Scholar
Rossetti, Y, Rode, G. Reducing spatial neglect by visual and other sensory manipulations: noncognitive (physiological) routes to the rehabilitation of a cognitive disorder. In: Karnath, H-O, Milner, D, Vallar, G, eds. The cognitive and neural bases of spatial neglect. Oxford: Oxford University Press, 2002: 375396.Google Scholar
Karnath, H-O, Berger, MF, Küker, W, Rorden, C. The anatomy of spatial neglect based on voxelwise statistical analysis: a study of 140 patients. Cereb Cortex 2004;14:11641172.CrossRefGoogle ScholarPubMed
Leibovitch, FS, Black, SE, Caldwell, CB, Ebert, PL, Ehrlich, LE, Szalai, JP. Brain-behavior correlations in hemispatial neglect using CT and SPECT: The Sunnybrook Stroke Study. Neurology 1998;50:901908.CrossRefGoogle ScholarPubMed
Leibovitch, FS, Black, SE, Caldwell, CB, Mcintosh, AR, Ehrlich, LE, Szalai, JP. Brain SPECT imaging and left hemispatial neglect covaried using partial least squares: The Sunnybrook Stroke Study. Hum Brain Mapp 1999;7:244253.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Bowen, A, Mckenna, K, Tallis, RC. Reasons for variability in the reported rate of occurrence of unilateral spatial neglect after stroke. Stroke 1999;30:11961202.CrossRefGoogle ScholarPubMed
Heilman, KM, Van Den Abell, T. Right hemisphere dominance for attention: the mechanism underlying hemispheric asymmetries of inattention (neglect). Neurology 1980;30:327330.CrossRefGoogle Scholar
Miller, SM, Liu, GB, Ngo, TTet al. Interhemispheric switching mediates perceptual rivalry. Curr Biol 2000;10:383392.CrossRefGoogle ScholarPubMed
Lumer, ED, Friston, KJ, Rees, G. Neural correlates of perceptual rivalry in the human brain. Science 1998;280:19301934.CrossRefGoogle ScholarPubMed
Miller, SM. Binocular rivalry and the cerebral hemispheres: with a note on the correlates and constitution of visual consciousness. Brain Mind 2001;2:119149.CrossRefGoogle Scholar
Díaz-Caneja, E. Sur l’alternance binoculaire. Ann Ocul 1928;165:721731.Google Scholar
Ngo, TT, Miller, SM, Liu, GB, Pettigrew, JD. Binocular rivalry and perceptual coherence. Curr Biol 2000;10:R134R136.CrossRefGoogle ScholarPubMed
Kovács, I, Papathomas, TV, Yang, M, Feher, A. When the brain changes its mind: interocular grouping during binocular rivalry. Proc Natl Acad Sci U S A 1996;93:1550815511.CrossRefGoogle ScholarPubMed
Papathomas, TV, Kovács, I, Feher, A, Julesz, B. Visual dilemmas: competition between eyes and between percepts in binocular rivalry. In: Lepore, E, Pylyshyn, Z, eds. What is cognitive science? Malden: Blackwell Publishing, 1999: 263294.Google Scholar
Pettigrew, JD, Miller, SM. A ‘sticky’ interhemispheric switch in bipolar disorder? Proc Roy Soc Lond B Biol Sci 1998;265:21412148.CrossRefGoogle ScholarPubMed
Bench, CJ, Frackowiak, RSJ, Dolan, RJ. Changes in regional cerebral blood flow on recovery from depression. Psychol Med 1995;25:247251.CrossRefGoogle ScholarPubMed
Martinot, J, Hardy, P, Feline, Aet al. Left prefrontal glucose hypometabolism in the depressed state: a confirmation. Am J Psychiatry 1990;147:13131317.Google Scholar
Migliorelli, R, Starkstein, SE, Teson, Aet al. SPECT findings in patients with primary mania. J Neuropsychiatry Clin Neurosci 1993;5:379383.Google ScholarPubMed
Henriques, JB, Davidson, RJ. Left frontal hypoactivation in depression. J Abnorm Psychol 1991;100:535545.CrossRefGoogle ScholarPubMed
Robinson, RG, Downhill, JE. Lateralization of psychopathology in response to focal brain injury. In: Davidson, RJ, Hugdahl, K, eds. Brain asymmetry. Cambridge: MIT Press, 1995: 693711.Google Scholar
Christianson, S-Å, Säisä, J, Garvill, J, Silfvenius, H. Hemisphere inactivation and mood-state changes. Brain Cogn 1993;23:127144.CrossRefGoogle ScholarPubMed
Lee, GP, Loring, DW, Meader, KJ, Brooks, BB. Hemispheric specialization for emotional expression: a reexamination of results from intracarotid administration of sodium amobarbitol. Brain Cogn 1990;12:267280.CrossRefGoogle Scholar
Grisaru, N, Chudakov, B, Yaroslavsky, Y, Belmaker, RH. Transcranial magnetic stimulation in mania: a controlled study. Am J Psychiatry 1998;155:16081610.CrossRefGoogle ScholarPubMed
Pascual-Leone, A, Rubio, B, Pallardó, F, Catalá, MD. Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression. Lancet 1996;348:233237.CrossRefGoogle ScholarPubMed
Bearden, CE, Hoffman, KM, Cannon, TD. The neuropsychology and neuroanatomy of bipolar affective disorder: a critical review. Bipolar Disord 2001;3:106150.CrossRefGoogle ScholarPubMed
Haldane, M, Frangou, S. Functional neuroimaging studies in mood disorders. Acta Neuropsychiatr 2006;18:8899.CrossRefGoogle ScholarPubMed
Ramachandran, VS. Phantom limbs, neglect syndromes and Freudian psychology. Int Rev Neurobiol 1994;37:291333.CrossRefGoogle ScholarPubMed
Cappa, S, Sterzi, R, Vallar, G, Bisiach, E. Remission of hemineglect and anosognosia during vestibular stimulation. Neuropsychologia 1987;25:775782.CrossRefGoogle ScholarPubMed
Bisiach, E, Vallar, G, Perani, D, Papagno, C, Berti, A. Unawareness of disease following lesions of the right hemisphere: anosognosia for hemiplegia and anosognosia for hemianopia. Neuropsychologia 1986;24:471482.CrossRefGoogle ScholarPubMed
McGlynn, SM, Schacter, DL. Unawareness of deficits in neuropsychological syndromes. J Clin Exp Neuropsych 1989;11:143205.CrossRefGoogle ScholarPubMed
Jehkonen, M, Laihosalo, M, Kettunen, J. Anosognosia after stroke: assessment, occurrence, subtypes and impact on functional outcome reviewed. Acta Neurol Scand 2006;114:293306.CrossRefGoogle ScholarPubMed
Davidson, RJ. Cerebral asymmetry, emotion, and affective style. In: Davidson, RJ, Hugdahl, K, eds. Brain asymmetry. Cambridge: MIT Press, 1995: 361388.Google ScholarPubMed
Silberman, EK, Weingartner, H. Hemispheric lateralization of functions related to emotion. Brain Cogn 1986;5:322353.CrossRefGoogle ScholarPubMed
Demaree, HA, Everhart, DE, Youngstrom, EA, Harrison, DW. Brain lateralization of emotional processing: historical roots and a future incorporating “dominance”. Behav Cogn Neurosci Rev 2005;4:320.CrossRefGoogle Scholar
Bhogal, SK, Teasell, R, Foley, N, Speechley, M. Lesion location and post-stroke depression. Systematic review of the methodological limitations in the literature. Stroke 2004;35:794802.CrossRefGoogle Scholar
Celik, Y, Erdogan, E, Tuglu, C, Utku, U. Post-stroke mania in late life due to right temporoparietal infarction. Psychiatry Clin Neurosci 2004;58:446447.CrossRefGoogle ScholarPubMed
Cummings, JL, Mendez, MF. Secondary mania with focal cerebrovascular lesions. Am J Psychiatry 1984;141:10841087.Google ScholarPubMed
Gainotti, G. Emotional behavior and hemispheric side of lesion. Cortex 1972;8:4155.CrossRefGoogle Scholar
Jorge, R, Robinson, RG. Mood disorders following traumatic brain injury. Neurorehabilitation 2002;17:311324.Google ScholarPubMed
Mimura, M, Nakagome, K, Hirashima, Net al. Left frontotemporal hyperperfusion in a patient with post-stroke mania. Psychiatry Res 2005;139:263267.CrossRefGoogle Scholar
Robinson, RG, Boston, JD, Starkstein, SE, Price, TR. Comparison of mania and depression after brain injury: causal factors. Am J Psychiatry 1988;145:172178.Google ScholarPubMed
Starkstein, SE, Boston, JD, Robinson, RG. Mechanisms of mania after brain injury. 12 case reports and review of the literature. J Nerv Ment Dis 1988;176:87100.CrossRefGoogle ScholarPubMed
Starkstein, SE, Mayberg, HS, Berthier, MLet al. Mania after brain injury: neuroradiological and metabolic findings. Ann Neurol 1990;27:652659.CrossRefGoogle ScholarPubMed
Vataja, R, Leppävuori, A, Pohjasvaara, Tet al. Post-stroke depression and lesion location revisited. J Neuropsychiatry Clin Neurosci 2004;16:156162.CrossRefGoogle Scholar
Miller, SM, Gynther, BD, Heslop, KRet al. Slow binocular rivalry in bipolar disorder. Psychol Med 2003;33:683692.CrossRefGoogle ScholarPubMed
Ewen, JH. The psychological estimation of the effects of certain drugs upon the syntonic and schizophrenic psychoses. With a brief enquiry into a physiological basis of temperament. J Ment Sci 1931;77:742766.Google Scholar
Hunt, J, Guilford, JP. Fluctuation of an ambiguous figure in dementia praecox and in manic depressive patients. J Abnormal Soc Psychol 1933;27:443452.CrossRefGoogle Scholar
Blumberg, HP, Stern, E, Martinez, Det al. Increased anterior cingulate and caudate activity in bipolar mania. Biol Psychiatry 2000;48:10451052.CrossRefGoogle ScholarPubMed
Dodson, MJ. Vestibular stimulation in mania: a case report. J Neurol Neurosurg Psychiatry 2004;75:168169.Google ScholarPubMed
Benke, Th, Kurzthaler, I, Schmidauer, Ch, Moncayo, R, Donnemiller, E. Mania caused by a diencephalic lesion. Neuropsychologia 2002;40:245252.CrossRefGoogle ScholarPubMed
Liebson, E. Anosognosia and mania associated with right thalamic haemorrhage. J Neurol Neurosurg Psychiatry 2000;68:107108.CrossRefGoogle Scholar
Migliorelli, R, Teson, A, Sabe, Let al. Anosognosia in Alzheimer’s disease: a study of associated factors. J Neuropsychiatry Clin Neurosci 1995;7:338344.Google ScholarPubMed
Soza Ried, AM, Aviles, M. Asymmetries of vestibular dysfunction in major depression. Neuroscience 2007;144:128134.CrossRefGoogle ScholarPubMed
Shiroyama, T, Kayahara, T, Yasui, Y, Nomura, J, Nakano, K. Projections of the vestibular nuclei to the thalamus in the rat: a Phaseolus vulgaris leucoagglutinin study. J Comp Neurol 1999;407:318332.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Barmack, NH. Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res Bull 2003;60:511541.CrossRefGoogle ScholarPubMed
Halmagyi, GM, Cremer, PD, Anderson, J, Murofushi, T, Curthoys, IS. Isolated directional preponderance of caloric nystagmus: I. Clinical significance. Am J Otol 2000;21:559567.Google ScholarPubMed
De La Iglesia, HO, Meyer, J, Carpino, A Jr, Schwartz, WJ. Antiphase oscillation of the left and right suprachiasmatic nuclei. Science 2000;290:799801.CrossRefGoogle ScholarPubMed
Pettigrew, JD. Searching for the switch: neural bases for perceptual rivalry alternations. Brain Mind 2001;2:85118.CrossRefGoogle Scholar
Blanke, O, Perrig, S, Thut, G, Landis, T, Seeck, M. Simple and complex vestibular responses induced by electrical cortical stimulation of the parietal cortex in humans. J Neurol Neurosurg Psychiatry 2000;69:553556.CrossRefGoogle ScholarPubMed
Duque-Parra, JE. Perspective on the vestibular cortex throughout history. Anat Rec B New Anat 2004;280:1519.CrossRefGoogle ScholarPubMed
Eickhoff, SB, Weiss, PH, Amunts, K, Fink, GR, Zilles, K. Identifying human parieto-insular vestibular cortex using fMRI and cytoarchitectonic mapping. Hum Brain Mapp 2006;27:611621.CrossRefGoogle ScholarPubMed
Kahane, P, Hoffmann, D, Minotti, L, Berthoz, A. Reappraisal of the human vestibular cortex by cortical electrical stimulation study. Ann Neurol 2003;54:615624.CrossRefGoogle ScholarPubMed
Petit, L, Beauchamp, MS. Neural basis of visually guided head movements studied with fMRI. J Neurophysiol 2003;89:25162527.CrossRefGoogle ScholarPubMed
Guldin, WO, Grüsser, O-J. Is there a vestibular cortex? Trends Neurosci 1998;21:254259.CrossRefGoogle Scholar
Karnath, H-O, Dieterich, M. Spatial neglect – a vestibular disorder? Brain 2006;129:293305.CrossRefGoogle ScholarPubMed
Bense, S, Stephan, T, Yousry, TA, Brandt, T, Dieterich, M. Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI). J Neurophysiol 2001;85:886899.Google Scholar
Fink, GR, Marshall, JC, Weiss, PHet al. Performing allocentric visuospatial judgments with induced distortion of the egocentric reference frame: an fMRI study with clinical implications. Neuroimage 2003;20:15051517.CrossRefGoogle ScholarPubMed
Lobel, E, Kleine, JF, Bihan, DL, Leroy-Willig, A, Berthoz, A. Functional MRI of galvanic vestibular stimulation. J Neurophysiol 1998;80:26992709.Google ScholarPubMed
Bucher, SF, Dieterich, M, Seelos, KC, Brandt, T. Sensorimotor cerebral activation during optokinetic nystagmus: a functional MRI study. Neurology 1997;49:13701377.CrossRefGoogle ScholarPubMed
Bense, S, Stephan, T, Bartenstein, P, Schwaiger, M, Brandt, T, Dieterich, M. Fixation suppression of optokinetic nystagmus modulates cortical visual-vestibular interaction. Neuroreport 2005;16:887890.CrossRefGoogle ScholarPubMed
Bense, S, Janusch, B, Schlindwein, Pet al. Direction-dependent visual cortex activation during horizontal optokinetic stimulation (fMRI study). Hum Brain Mapp 2006;27:296305.CrossRefGoogle Scholar
Dieterich, M, Bense, S, Stephan, T, Yousry, TA, Brandt, T. fMRI signal increases and decreases in cortical areas during small-field optokinetic stimulation and central fixation. Exp Brain Res 2003;148:117127.CrossRefGoogle ScholarPubMed
Brandt, T, Bartenstein, P, Janek, A, Dieterich, M. Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parietoinsular vestibular cortex. Brain 1998;121:17491758.CrossRefGoogle Scholar
Deutschländer, A, Bense, S, Stephan, T, Schwaiger, M, Dieterich, M, Brandt, T. Rollvection versus linearvection: comparison of brain activations in PET. Hum Brain Mapp 2004;21:143153.CrossRefGoogle ScholarPubMed
Dieterich, M, Brandt, T. Brain activation studies on visual-vestibular and ocular motor interaction. Curr Opin Neurol 2000;13:1318.CrossRefGoogle ScholarPubMed
Stephan, T, Deutschländer, A, Nolte, Aet al. Functional MRI of galvanic vestibular stimulation with alternating currents at different frequencies. Neuroimage 2005;26:721732.CrossRefGoogle ScholarPubMed
Karnath, H-O. Subjective body orientation in neglect and the interactive contribution of neck muscle proprioreception and vestibular stimulation. Brain 1994;114:10011012.CrossRefGoogle Scholar
Karnath, H-O, Christ, K, Hartje, W. Decrease of contralateral neglect by neck muscle vibration and spatial orientation of trunk midline. Brain 1993;116:383396.CrossRefGoogle ScholarPubMed
Karnath, H-O, Fetter, M, Dichgans, J. Ocular exploration of space as a function of neck proprioceptive and vestibular input: observations in normal subjects and patients with spatial neglect after parietal lesions. Exp Brain Res 1996;109:333342.CrossRefGoogle ScholarPubMed
Pizzamiglio, L, Frasca, R, Guariglia, C, Incoccia, C, Antonucci, G. Effect of optokinetic stimulation in patients with visual neglect. Cortex 1990;26:534540.CrossRefGoogle ScholarPubMed
Mattingley, JB, Bradshaw, JL, Bradshaw, JA. Horizontal visual motion modulates focal attention in left unilateral spatial neglect. J Neurol Neurosurg Psychiatry 1994;57:12281235.CrossRefGoogle ScholarPubMed
Vallar, G, Guariglia, C, Magnotti, L, Pizzamiglio, L. Optokinetic stimulation affects both vertical and horizontal deficits of position sense in unilateral neglect. Cortex 1995;31:669683.CrossRefGoogle ScholarPubMed
Schindler, I, Kerkhoff, G. Convergent and divergent effects of neck proprioceptive and visual motion stimulation on visual space processing in neglect. Neuropsychologia. 2004;42:11491155.CrossRefGoogle ScholarPubMed
Kerkhoff, G, Keller, I, Ritter, V, Marquardt, C. Repetitive optokinetic stimulation induces lasting recovery from visual neglect. Restor Neurol Neurosci 2006;24:357369.Google ScholarPubMed
Rorsman, I, Magnusson, M, Johansson, BB. Reduction of visuo-spatial neglect with vestibular galvanic stimulation. Scand J Rehabil Med 1999;31:117124.Google ScholarPubMed
Dieterich, M, Bucher, SF, Seelos, KC, Brandt, T. Horizontal or vertical optokinetic stimulation activates visual motion-sensitive, ocular motor and vestibular cortex areas with right hemispheric dominance. An fMRI study. Brain 1998;121:14791495.CrossRefGoogle ScholarPubMed
Galati, G, Pappata, S, Pantano, P, Lenzi, GL, Samson, Y, Pizzamiglio, L. Cortical control of optokinetic nystagmus in humans: a positron emission tomography study. Exp Brain Res 1999;126:149159.CrossRefGoogle ScholarPubMed
Bucher, SF, Dieterich, M, Wiesmann, Met al. Cerebral functional magnetic resonance imaging of vestibular, auditory, and nociceptive areas during galvanic stimulation. Ann Neurol 1998;44:120125.CrossRefGoogle ScholarPubMed
Vogt, BA, Finch, DM, Olson, CR. Functional heterogeneity in cingulate cortex: the anterior executive and posterior evaluative regions. Cereb Cortex 1992;2:435443.Google ScholarPubMed
Devinsky, O, Morrell, MJ, Vogt, BA. Contributions of anterior cingulate cortex to behaviour. Brain 1995;118:279306.CrossRefGoogle ScholarPubMed
Isomura, Y, Takada, M. Neural mechanisms of versatile functions in primate anterior cingulate cortex. Rev Neurosci 2004;15:279291.CrossRefGoogle ScholarPubMed
Mega, MS, Cummings, JL. The cingulate and cingulate syndromes. In: Trimble, MR, Cummings, JL, eds. Contemporary behavioral neurology. Boston: Butterworth-Heinemann, 1997: 189214.Google Scholar
Weissman, DH, Gopalakrishnan, A, Hazlett, CJ, Woldorff, MG. Dorsal anterior cingulate cortex resolves conflict from distracting stimuli by boosting attention toward relevant events. Cereb Cortex 2005;15:229237.CrossRefGoogle ScholarPubMed
Yücel, M, Harrison, BJ, Wood, SJet al. State, trait and biochemical influences on human anterior cingulate function. Neuroimage 2007;34:17661773.CrossRefGoogle ScholarPubMed
Holroyd, CB, Nieuwenhuis, S, Yeung, Net al. Dorsal anterior cingulate cortex shows fMRI response to internal and external error signals. Nat Neurosci 2004;7:497498.CrossRefGoogle ScholarPubMed
Williams, ZM, Bush, G, Rauch, SL, Cosgrove, GR, Eskandar, EN. Human anterior cingulate neurons and the integration of monetary reward with motor responses. Nat Neurosci 2004;7:13701375.CrossRefGoogle ScholarPubMed
Bush, G, Luu, P, Posner, MI. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 2000;4:215222.CrossRefGoogle ScholarPubMed
Koski, L, Paus, T. Functional connectivity of the anterior cingulate cortex within the human frontal lobe: a brain-mapping meta-analysis. Exp Brain Res 2000;133:5585.CrossRefGoogle ScholarPubMed
Paus, T. Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat Rev Neurosci 2001;2:417424.CrossRefGoogle ScholarPubMed
Picard, N, Strick, PL. Motor areas of the medial wall: a review of their location and functional activation. Cereb Cortex 1996;6:342353.CrossRefGoogle ScholarPubMed
Drevets, WC. Functional neuroimaging studies of depression: the anatomy of melancholia. Annu Rev Med 1998;49:341361.CrossRefGoogle ScholarPubMed
Mayberg, HS. Modulating dysfunctional limbic-cortical circuits in depression: towards development of brain-based algorithms for diagnosis and optimised treatment. Br Med Bull 2003;65:193207.CrossRefGoogle ScholarPubMed
Seminowicz, DA, Mayberg, HS, Mcintosh, ARet al. Limbic-frontal circuitry in major depression: a path modeling metanalysis. Neuroimage 2004;22:409418.CrossRefGoogle ScholarPubMed
Malhi, GS, Sachdev, P. Novel physical treatments for the management of neuropsychiatric disorders. J Psychosom Res 2002;53:709719.CrossRefGoogle ScholarPubMed
Fitzgerald, PB, Brown, TL, Daskalakis, ZJ. The application of transcranial magnetic stimulation in psychiatry and neurosciences research. Acta Psychiatr Scand 2002;105:324340.CrossRefGoogle ScholarPubMed
Simons, W, Dierick, M. Transcranial magnetic stimulation as a therapeutic tool in psychiatry. World J Biol Psychiatry 2005;6:625.CrossRefGoogle Scholar
Bittar, RG, Kar-Purkayastha, I, Owen, SLet al. Deep brain stimulation for pain relief: a meta-analysis. J Clin Neurosci 2005;12:515519.CrossRefGoogle ScholarPubMed
Bittar, RG. Neuromodulation for movement disorders. J Clin Neurosci 2006;13:315318.CrossRefGoogle ScholarPubMed
Kopell, BH, Greenberg, B, Rezai, AR. Deep brain stimulation in psychiatric disorders. J Clin Neurophysiol 2004;21:5167.CrossRefGoogle ScholarPubMed
Henry, TR. Therapeutic mechanisms of vagus nerve stimulation. Neurology 2002;59:S3S14.CrossRefGoogle ScholarPubMed
Groves, DA, Brown, VJ. Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects. Neurosci Biobehav Rev 2005;29:493500.CrossRefGoogle ScholarPubMed
Rubens, AB. Caloric stimulation and unilateral visual neglect. Neurology 1985;35:10191024.CrossRefGoogle ScholarPubMed
Rode, G, Tilikete, C, Luauté, J, Rossetti, Y, Vighetto, A, Boisson, D. Bilateral vestibular stimulation does not improve visual hemineglect. Neuropsychologia 2002;40:11041106.CrossRefGoogle Scholar
André, J-M, Martinet, N, Paysant, J, Beis, J-M, Le Chapelain, L. Temporary phantom limbs evoked by vestibular caloric stimulation in amputees. Neuropsychiatry Neuropsychol Behav Neurol 2001;14:190196.Google ScholarPubMed
Dieterich, M, Bense, S, Lutz, Set al. Dominance for vestibular cortical function in the non-dominant hemisphere. Cereb Cortex 2003;13:9941007.CrossRefGoogle ScholarPubMed
Schindler, I, Kerkhoff, G, Karnath, H-O, Keller, I, Goldenberg, G. Neck muscle vibration induces lasting recovery in spatial neglect. J Neurol Neurosurg Psychiatry 2002;73:412419.CrossRefGoogle ScholarPubMed
Johannsen, L, Akermann, H, Karnath, H-O. Lasting amelioration of spatial neglect by treatment with neck muscle vibration even without concurrent training. J Rehabil Med 2003;35:249253.CrossRefGoogle ScholarPubMed
Michel, C. Simulating unilateral neglect in normals: myth or reality? Restor Neurol Neurosci 2006;24:419430.Google ScholarPubMed
Kerkhoff, G, Rossetti, Y. Plasticity in spatial neglect – recovery and rehabilitation. Restor Neurol Neurosci 2006;24:201206.Google ScholarPubMed
Luauté, J, Halligan, P, Rode, G, Rossetti, Y, Boisson, D. Visuo-spatial neglect: a systematic review of current interventions and their effectiveness. Neurosci Biobehav Rev 2006;30:961982.CrossRefGoogle ScholarPubMed
Adair, JC, Na, DL, Schwartz, RL, Heilman, KM. Caloric stimulation in neglect: evaluation of response as a function of neglect type. J Int Neuropsychol Soc 2003;9:983988.CrossRefGoogle ScholarPubMed
Geminiani, G, Bottini, G. Mental representation and temporary recovery from unilateral neglect after vestibular stimulation. J Neurol Neurosurg Psychiatry 1992;55:332333.CrossRefGoogle ScholarPubMed
Rode, G, Perenin, MT. Temporary remission of representational hemineglect through vestibular stimulation. Neuroreport 1994;5:869872.CrossRefGoogle ScholarPubMed
Vallar, G, Sterzi, R, Bottini, G, Cappa, S, Rusconi, ML. Temporary remission of left hemianesthesia after vestibular stimulation. A sensory neglect phenomenon. Cortex 1990;26:123131.CrossRefGoogle ScholarPubMed
Bottini, G, Paulesu, E, Gandola, Met al. Left caloric vestibular stimulation ameliorates right hemianesthesia. Neurology 2005;65:12781283.CrossRefGoogle ScholarPubMed
Rode, G, Perenin, M-T, Honoré, J, Boisson, D. Improvement of the motor deficit of neglect patients through vestibular stimulation: evidence for a motor neglect component. Cortex 1998;34:253261.CrossRefGoogle ScholarPubMed
Bisiach, E, Rusconi, ML, Vallar, G. Remission of somatoparaphrenic delusion through vestibular stimulation. Neuropsychologia 1991;29:10291031.CrossRefGoogle ScholarPubMed
Rode, G, Charles, N, Perenin, M-T, Vighetto, A, Trillet, M, Aimard, G. Partial remission of hemiplegia and somatoparaphrenia through vestibular stimulation in a case of unilateral neglect. Cortex 1992;28:203208.CrossRefGoogle Scholar
Pridmore, S, Oberoi, G, Marcolin, M, George, M. Transcranial magnetic stimulation and chronic pain: current status. Australas Psychiatry 2005;13:258265.CrossRefGoogle ScholarPubMed
Lefaucheur, JP. The use of repetitive transcranial magnetic stimulation (rTMS) in chronic neuropathic pain. Neurophysiol Clin 2006;36:117124.CrossRefGoogle Scholar
Pleger, B, Janssen, F, Schwenkreis, P, Völker, B, Maier, C, Tegenthoff, M. Repetitive transcranial magnetic stimulation of the motor cortex attenuates pain perception in complex regional pain syndrome type I. Neurosci Lett 2004;356:8790.CrossRefGoogle ScholarPubMed
Bittar, RG, Otero, S, Carter, H, Aziz, TZ. Deep brain stimulation for phantom limb pain. J Clin Neurosci 2005;12:399404.CrossRefGoogle ScholarPubMed
Kirchner, A, Birklein, F, Stefan, H, Handwerker, HO. Vagusstimulation – Eine Behandlungsoption für chronische Schmerzen? Schmerz 2001;15:272277.CrossRefGoogle Scholar
Hord, ED, Evans, MS, Mueed, S, Adamolekun, B, Naritoku, DK. The effect of vagus nerve stimulation on migraines. J Pain 2003;4:530534.CrossRefGoogle ScholarPubMed
Mauskop, A. Vagus nerve stimulation relieves chronic refractory migraine and cluster headaches. Cephalalgia 2005;25:8286.CrossRefGoogle ScholarPubMed
Privitera, MD, Welty, TE, Ficker, DM, Welge, J. Vagus nerve stimulation for partial seizures. Cochrane Database Syst Rev 2002; CD002896.CrossRefGoogle ScholarPubMed
Rush, AJ, Sackeim, HA, Marangell, LBet al. Effects of 12 months of vagus nerve stimulation in treatment-resistant depression: a naturalistic study. Biol Psychiatry 2005;58:355363.CrossRefGoogle ScholarPubMed
Shih, JJ, Devier, D, Behr, A. Late onset laryngeal and facial pain in previously asymptomatic vagus nerve stimulation patients. Neurology 2003;60:1214.CrossRefGoogle ScholarPubMed
Le Chapelain, L, Beis, J-M, Paysant, J, André, J-M. Vestibular caloric stimulation evokes phantom limb illusions in patients with paraplegia. Spinal Cord 2001;39:8587.CrossRefGoogle ScholarPubMed
Ramachandran, VS, McGeoch, PD, Williams, L. Can vestibular caloric stimulation be used to treat Dejerine-Roussy Syndrome? Med Hypotheses 2007 (in press).Google ScholarPubMed
Williams, LE, Ramachandran, VS. Novel experimental approaches to reflex sympathetic dystrophy/complex regional pain syndrome type 1 (RSD/CRPS -1) and obsessive-compulsive disorder (OCD). Program No. 49.8/J3. 2006 Neuroscience Meeting Planner. Atlanta: Society for Neuroscience 2006, Online.Google Scholar
Galer, BS, Jensen, M. Neglect-like symptoms in complex regional pain syndrome: results of a self-administered survey. J Pain Symptom Manage 1999;18:213217.CrossRefGoogle ScholarPubMed
Frettlöh, J, Hüppe, M, Maier, C. Severity and specificity of neglect-like symptoms in patients with complex regional pain syndrome (CRPS) compared to chronic limb pain of other origins. Pain 2006;124:184189.CrossRefGoogle ScholarPubMed
Sumitani, M, Rossetti, Y, Shibata, Met al. Prism adaptation to optical deviation alleviates pathologic pain. Neurology 2007;68:128133.CrossRefGoogle ScholarPubMed
Frassinetti, F, Angeli, V, Meneghello, F, Avanzi, S, Làdavas, E. Long-lasting amelioration of visuospatial neglect by prism adaptation. Brain 2002;125:608623.CrossRefGoogle ScholarPubMed
Luauté, J, Halligan, P, Rode, G, Jacquin-Courtois, S, Boisson, D. Prism adaptation first among equals in alleviating left neglect: a review. Restor Neurol Neurosci 2006;24:409418.Google ScholarPubMed
Redding, GM, Wallace, B. Prism adaptation and unilateral neglect: review and analysis. Neuropsychologia 2006;44:120.CrossRefGoogle ScholarPubMed
Rainville, P, Duncan, GH, Price, DD, Carrier, B, Bushnell, MC. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 1997;277:968971.CrossRefGoogle Scholar
Apkarian, AV, Bushnell, MC, Treede, R-D, Zubieta, J-K. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 2005;9:463484.CrossRefGoogle ScholarPubMed
Büchel, C, Bornhövd, K, Quante, M, Glauche, V, Bromm, B, Weiller, C. Dissociable neural responses related to pain intensity, stimulus intensity, and stimulus awareness within the anterior cingulate cortex: a parametric single-trial laser functional magnetic resonance imaging study. J Neurosci 2002;22:970976.Google ScholarPubMed
Tolle, TR, Kaufmann, T, Siessmeier, Tet al. Region-specific encoding of sensory and affective components of pain in the human brain: a positron emission tomography correlation analysis. Ann Neurol 1999;45:4047.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Kwan, CL, Crawley, AP, Mikulis, DJ, Davis, KD. An fMRI study of the anterior cingulate cortex and surrounding medial wall activations evoked by noxious cutaneous heat and cold stimuli. Pain 2000;85:359374.CrossRefGoogle Scholar
Ballantine, HT Jr, Cassidy, WL, Flanagan, NB, Marino, R Jr. Stereotaxic anterior cingulotomy for neuropsychiatric illness and intractable pain. J Neurosurg 1967;26:488495.CrossRefGoogle ScholarPubMed
Corkin, S, Hebben, N. Subjective estimates of chronic pain before and after psychosurgery or treatment in a pain unit. Pain 1981;11:S150.CrossRefGoogle Scholar
Faillace, LA, Allen, RP, McQueen, JD, Northrup, B. Cognitive deficits from bilateral cingulotomy for intractable pain in man. Dis Nerv Syst 1971;32:171175.Google ScholarPubMed
Foltz, EL, White, LE Jr. Pain “relief” by frontal cingulumotomy. J Neurosurg 1962;19:89100.CrossRefGoogle ScholarPubMed
Foltz, EL, White, LE. The role of rostral cingulumotomy in “pain” relief. Int J Neurol 1968;6:353373.Google ScholarPubMed
Hassenbusch, SJ, Pillay, PK, Barnett, GH. Radiofrequency cingulotomy for intractable cancer pain using stereotaxis guided by magnetic resonance imaging. Neurosurgery 1990;27:220223.CrossRefGoogle ScholarPubMed
Hurt, RW, Ballantine, HT Jr. Stereotactic anterior cingulate lesions for persistent pain: a report on 68 cases. Clin Neurosurg 1974;21:334351.Google ScholarPubMed
Pillay, PK, Hassenbusch, SJ. Bilateral MRI-guided stereotactic cingulotomy for intractable pain. Stereotact Funct Neurosurg 1992;59:3338.CrossRefGoogle ScholarPubMed
Santo, JL, Arias, LM, Barolat, G, Schwartzman, RJ, Grossman, K. Bilateral cingulumotomy in the treatment of reflex sympathetic dystrophy. Pain 1990;41:5559.CrossRefGoogle ScholarPubMed
Sharma, T. Absence of cognitive deficits from bilateral cingulotomy for intractable pain in humans. Tex Med 1973;69:7982.Google ScholarPubMed
Wilson, DH, Chang, AE. Bilateral anterior cingulectomy for the relief of intractable pain. Report of 23 patients. Confin Neurol 1974;36:6168.CrossRefGoogle ScholarPubMed
Wilkinson, HA, Davidson, KM, Davidson, RI. Bilateral anterior cingulotomy for chronic noncancer pain. Neurosurgery 1999;45:11291136.CrossRefGoogle ScholarPubMed
Yen, CP, Kung, SS, Su, YF, Lin, WC, Howng, SL, Kwan, AL. Stereotactic bilateral anterior cingulotomy for intractable pain. J Clin Neurosci 2005;12:886890.CrossRefGoogle ScholarPubMed
Ballantine, HT Jr, Bouckoms, AJ, Thomas, EK, Giriunas, IE. Treatment of psychiatric illness by stereotactic cingulotomy. Biol Psychiatry 1987;22:807819.CrossRefGoogle ScholarPubMed
Cosgrove, GR, Rauch, SL. Stereotactic cingulotomy. Neurosurg Clin N Am 2003;14:225235.CrossRefGoogle ScholarPubMed
Jung, HH, Kim, C-H, Chang, JH, Park, YG, Chung, SS, Chang, JW. Bilateral anterior cingulotomy for refractory obsessive-compulsive disorder: long-term follow-up results. Stereotact Funct Neurosurg 2006;84:184189.CrossRefGoogle ScholarPubMed
Sachdev, P, Sachdev, J. Sixty years of neurosurgery for psychiatric disorders: its present status and its future. Aust N Z J Psychiatry 1997;31:457464.CrossRefGoogle ScholarPubMed
Tow, PM, Whitty, CWM. Personality changes after operations on the cingulate gyrus in man. J Neurol Neurosurg Psychiatry 1953;16:186193.CrossRefGoogle ScholarPubMed
Gureje, O. Psychiatric aspects of pain. Curr Opin Psychiatry 2007;20:4246.CrossRefGoogle Scholar
Rommel, O, Willweber-Strumpf, A, Wagner, P, Surall, D, Malin, J-P, Zenz, M. Psychische Veränderungen bei Patienten mit komplexem regionalem Schmerzsyndrom (CRPS). Schmerz 2005;19:272284.CrossRefGoogle Scholar
Williams, LJ, Jacka, FN, Pasco, JA, Dodd, S, Berk, M. Depression and pain: an overview. Acta Neuropsychiatr 2006;18:7987.CrossRefGoogle ScholarPubMed
Benrud-Larson, LM, Wegener, ST. Chronic pain in neurorehabilitation populations: prevalence, severity and impact. Neurorehabilitation 2002;14:127137.Google ScholarPubMed
Van Leeuwen, MT, Blyth, FM, March, LM, Nicholas, MK, Cousins, MJ. Chronic pain and reduced work effectiveness: the hidden cost to Australian employers. Eur J Pain 2006;10:161166.CrossRefGoogle ScholarPubMed
Nikolajsen, L, Jensen, TS. Phantom limb. In: McMahon, SB, Koltzenburg, M, eds. Wall and Melzack’s textbook of pain. Philadelphia: Elsevier, 2006: 961971.CrossRefGoogle Scholar
Siddall, PJ, Loeser, JD. Pain following spinal cord injury. Spinal Cord 2001;39:6373.CrossRefGoogle ScholarPubMed
Oaklander, AL, North, RB. Failed back surgery syndrome. In: Loeser, JD, ed. Bonica’s management of pain. Philadelphia: Lippincott Williams & Wilkins, 2001: 15401549.Google Scholar
Rasche, D, Siebert, S, Stippich, Cet al. Epidurale Rückenmarkstimulation bei Postnukleotomiesyndrom. Pilotstudie zur Therapieevaluation mit der funktionellen Magnetresonanztomographie (fMRT). Schmerz 2005;19:497500,502–505.CrossRefGoogle Scholar
Kim, JS. Pattern of sensory abnormality in cortical stroke. Evidence for a dichotomized sensory system. Neurology 2007;68:174180.CrossRefGoogle ScholarPubMed
Maarrawi, J, Peyron, R, Mertens, Pet al. Differential brain opioid receptor availability in central and peripheral neuropathic pain. Pain 2007;127:183194.CrossRefGoogle ScholarPubMed
Brooks, JCW, Tracey, I. The insula: a multidimensional integration site for pain. Pain 2007;128:12.CrossRefGoogle ScholarPubMed
Bauman, ML, Kemper, TL. The neurobiology of autism. Baltimore: Johns Hopkins University Press, 1994.Google ScholarPubMed
Gomot, M, Bernard, FA, Davis, MHet al. Change detection in children with autism: an auditory event-related fMRI study. Neuroimage 2006;29:475484.CrossRefGoogle ScholarPubMed
Kana, RK, Keller, TA, Minshew, NJ, Just, MA. Inhibitory control in high-functioning autism: decreased activation and underconnectivity in inhibition networks. Biol Psychiatry 2007 (in press).Google ScholarPubMed
Levitt, JG, O’Neill, J, Blanton, REet al. Proton magnetic resonance spectroscopic imaging of the brain in childhood autism. Biol Psychiatry 2003;54:13551366.CrossRefGoogle ScholarPubMed
Mundy, P. Annotation: the neural basis of social impairments in autism: the role of the dorsal medial-frontal cortex and anterior cingulate system. J Child Psychol Psychiatry 2003;44:793809.CrossRefGoogle ScholarPubMed
Ornitz, EM. The modulation of sensory input and motor output in autistic children. J Autism Child Schizophr 1974;4:197215.CrossRefGoogle ScholarPubMed
Ornitz, EM, Atwell, CW, Kaplan, AR, Westlake, JR. Brain-stem dysfunction in autism. Results of vestibular stimulation. Arch Gen Psychiatry 1985;42:10181025.CrossRefGoogle ScholarPubMed
Goldberg, MC, Landa, R, Lasker, A, Cooper, L, Zee, DS. Evidence of normal cerebellar control of the vestibulo-ocular reflex (VOR) in children with high-functioning autism. J Autism Dev Disord 2000;30:519524.CrossRefGoogle ScholarPubMed
Kaplan, M, Edelson, SM, Seip, J-AL. Behavioral changes in autistic individuals as a result of wearing ambient transitional prism lenses. Child Psychiatry Hum Dev 1998;29:6576.CrossRefGoogle ScholarPubMed
Sachdev, PS, Malhi, GS. Obsessive-compulsive behaviour: a disorder of decision-making. Aust N Z J Psychiatry 2005;39:757763.Google Scholar
Viard, A, Flament, MF, Artiges, Eet al. Cognitive control in childhood-onset obsessive-compulsive disorder: a functional MRI study. Psychol Med 2005;35:10071017.CrossRefGoogle ScholarPubMed
Yücel, M, Wood, SJ, Fornito, A, Riffkin, J, Velakoulis, D, Pantelis, C. Anterior cingulate dysfunction: implications for psychiatric disorders? J Psychiatry Neurosci 2003;28:350354.Google ScholarPubMed
López-Ibor, JJ, López-Ibor, M-I. Research on obsessive-compulsive disorder. Curr Opin Psychiatry 2003;16:S85S91.CrossRefGoogle Scholar
Sharma, T. Abolition of opiate hunger in humans following bilateral anterior cingulotomy. Tex Med 1974;70:4952.Google ScholarPubMed
Sewards, TV, Sewards, MA. Representations of motivational drives in mesial cortex, medial thalamus, hypothalamus and midbrain. Brain Res Bull 2003;61:2549.CrossRefGoogle ScholarPubMed
Bush, G, Vogt, BA, Holmes, Jet al. Dorsal anterior cingulate cortex: a role in reward-based decision making. Proc Natl Acad Sci U S A 2002;99:523528.CrossRefGoogle ScholarPubMed
Cohen, MX, Heller, AS, Ranganath, C. Functional connectivity with anterior cingulate and orbitofrontal cortices during decision-making. Cogn Brain Res 2005;23:6170.CrossRefGoogle ScholarPubMed
Rogers, RD, Ramnani, N, Mackay, Cet al. Distinct portions of anterior cingulate cortex and medial prefrontal cortex are activated by reward processing in separable phases of decision-making cognition. Biol Psychiatry 2004;55:594602.CrossRefGoogle ScholarPubMed
Cohen, RA, Kaplan, RF, Zuffante, Pet al. Alteration of intention and self-initiated action associated with bilateral anterior cingulotomy. J Neuropsychiatry Clin Neurosci 1999;11:444453.CrossRefGoogle ScholarPubMed
Nitschke, JB, Mackiewicz, KL. Prefrontal and anterior cingulate contributions to volition in depression. Int Rev Neurobiol 2005;67:7394.CrossRefGoogle ScholarPubMed
Tucker, DM, Luu, P, Pribram, KH. Social and emotional self-regulation. Ann N Y Acad Sci 1995;769:213239.CrossRefGoogle ScholarPubMed
Minassian, A, Paulus, MP, Perry, W. Increased sensitivity to error during decision-making in bipolar disorder patients with acute mania. J Affect Disord 2004;82:203208.CrossRefGoogle ScholarPubMed
Mayberg, HS, Lozano, AM, Voon, Vet al. Deep brain stimulation for treatment-resistant depression. Neuron 2005;45:651660.CrossRefGoogle ScholarPubMed
Marin, RS, Wilkosz, PA. Disorders of diminished motivation. J Head Trauma Rehabil 2005;20:377388.CrossRefGoogle Scholar
Kalivas, PW, Barnes, CD, eds. Limbic motor circuits and neuropsychiatry. Boca Raton: CRC Press, 1993.Google Scholar
Aston-Jones, GS, Desimone, R, Driver, J, Luck, SJ, Posner, MI. Attention. In: Zigmond, MJ, Bloom, FE, Landis, SC, Roberts, JL, Squire, LR, eds. Fundamental neuroscience. San Diego: Academic Press, 1999: 13851409.Google Scholar
Damasio, AR, Anderson, SW. The frontal lobes. In: Heilman, KM, Valenstein, E, eds. Clinical neuropsychology. New York: Oxford University Press, 1993: 409460.Google Scholar
Damasio, AR, Van Hoesen, GW. Emotional disturbances associated with focal lesions of the limbic frontal lobe. In: Heilman, KM, Satz, P, eds. Neuropsychology of human emotion. New York: Guilford, 1983: 85110.Google Scholar
Braun, CMJ, Dumont, M, Duval, J, Hamel-Hébert, I. Speech rate as a sticky switch: a multiple lesion case analysis of mutism and hyperlalia. Brain Lang 2004;89:243252.CrossRefGoogle ScholarPubMed
Berardelli, A, Rothwell, JC, Hallett, M, Thompson, PD, Manfredi, M, Marsden, CD. The pathophysiology of primary dystonia. Brain 1998;121:11951212.CrossRefGoogle ScholarPubMed
Tarsy, D, Simon, DK. Dystonia. N Eng J Med 2006;355:818829.CrossRefGoogle Scholar
Bhatia, KP, Bhatt, MJ, Marsden, CD. The causalgia-dystonia syndrome. Brain 1993;116:843851.CrossRefGoogle ScholarPubMed
Van Hilten, JJ, Van De Beek, WJT, Roep, BO. Multifocal or generalised tonic dystonia of complex regional pain syndrome: a distinct clinical entity associated with HLA-DR13. Ann Neurol 2000;48:113116.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Bittar, RG, Yianni, J, Wang, Set al. Deep brain stimulation for generalised dystonia and spasmodic torticollis. J Clin Neurosci 2005;12:1216.CrossRefGoogle ScholarPubMed
Holloway, KL, Baron, MS, Brown, R, Cifu, DX, Carne, W, Ramakrishnan, V. Deep brain stimulation for dystonia: a meta-analysis. Neuromodulation 2006;9:253261.CrossRefGoogle ScholarPubMed
Rosengren, SM, Colebatch, JG. Cervical dystonia responsive to acoustic and galvanic vestibular stimulation. Mov Disord 2006;21:14951499.CrossRefGoogle ScholarPubMed
Leis, AA, Dimitrijevic, MR, Delapasse, JS, Sharkey, PC. Modification of cervical dystonia by selective sensory stimulation. J Neurol Sci 1992;110:7989.CrossRefGoogle ScholarPubMed
Karnath, H-O, Konczak, J, Dichgans, J. Effect of prolonged neck muscle vibration on lateral head tilt in severe spasmodic torticollis. J Neurol Neurosurg Psychiatry 2000;69:658660.CrossRefGoogle ScholarPubMed
Münchau, A, Bronstein, AM. Role of the vestibular system in the pathophysiology of spasmodic torticollis. J Neurol Neurosurg Psychiatry 2001;71:285288.CrossRefGoogle ScholarPubMed
Bove, M, Brichetto, G, Abbruzzese, G, Marchese, R, Schieppati, M. Neck proprioception and spatial orientation in cervical dystonia. Brain 2004;127:27642778.CrossRefGoogle ScholarPubMed
Bove, M, Brichetto, G, Abbruzzese, G, Marchese, R, Schieppati, M. Postural responses to continuous unilateral neck muscle vibration in standing patients with cervical dystonia. Mov Disord 2007;22:498503.CrossRefGoogle ScholarPubMed
Taylor, MA, Fink, M. Catatonia in psychiatric classification: a home of its own. Am J Psychiatry 2003;160:12331241.CrossRefGoogle ScholarPubMed
Northoff, G. What catatonia can tell us about “top-down modulation”: a neuropsychiatric hypothesis. Behav Brain Sci 2002;25:555604.CrossRefGoogle ScholarPubMed
Dhossche, DM, Wing, L, Ohta, M, Neumärker, K-L, eds. Catatonia in autism spectrum disorders. New York: Academic Press, 2006.Google ScholarPubMed
Bächtold, D, Baumann, T, Sándor, PS, Kritos, M, Regard, M, Brugger, P. Spatial- and verbal-memory improvement by cold-water caloric stimulation in healthy subjects. Exp Brain Res 2001;136:128132.Google ScholarPubMed
Churchland, PS. Neurophilosophy: toward a unified science of the mind-brain. Cambridge: MIT Press, 1986.Google Scholar
Bechara, A, Damasio, AR, Damasio, H, Anderson, SW. Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 1994;50:715.CrossRefGoogle ScholarPubMed
Knoch, D, Gianotti, LRR, Pascual-Leone, Aet al. Disruption of right prefrontal cortex by low-frequency repetitive transcranial magnetic stimulation induces risk-taking behavior. J Neurosci 2006;26:64696472.CrossRefGoogle ScholarPubMed
Baron-Cohen, S, Leslie, AM, Frith, U. Does the autistic child have a “theory of mind”? Cognition 1985;21:3746.CrossRefGoogle Scholar
Carruthers, P, Smith, PK, eds. Theories of mind. Cambridge: Cambridge University Press, 1996.Google Scholar
Frith, U, De Vignemont, F. Egocentrism, allocentrism, and Asperger syndrome. Conscious Cogn 2005;14:719738.CrossRefGoogle ScholarPubMed
Blanke, O, Mohr, C, Michel, CMet al. Linking out-of-body experience and self processing to mental own-body imagery at the temporoparietal junction. J Neurosci 2005;25:550557.CrossRefGoogle ScholarPubMed
Mast, FW, Merfeld, DM, Kosslyn, SM. Visual mental imagery during caloric vestibular stimulation. Neuropsychologia 2006;44:101109.CrossRefGoogle ScholarPubMed
Arzy, S, Seeck, M, Ortigue, S, Spinelli, L, Blanke, O. Induction of an illusory shadow person. Nature 2006;443:287.CrossRefGoogle ScholarPubMed
Lenggenhager, B, Smith, ST, Blanke, O. Functional and neural mechanisms of embodiment: importance of the vestibular system and the temporal parietal junction. Rev Neurosci 2006;17:643657.CrossRefGoogle ScholarPubMed
Pia, L, Tamietto, M. Unawareness in schizophrenia: neuropsychological and neuroanatomical findings. Psychiatry Clin Neurosci 2006;60:531537.CrossRefGoogle ScholarPubMed
Rickelman, BL. Anosognosia in individuals with schizophrenia: toward recovery of insight. Issues Ment Health Nurs 2004;25:227242.CrossRefGoogle ScholarPubMed
Shad, MU, Tamminga, CA, Cullum, M, Haas, GL, Keshavan, MS. Insight and frontal cortical function in schizophrenia: a review. Schizophr Res 2006;86:5470.CrossRefGoogle ScholarPubMed
Price, DD, Barrell, JJ, Rainville, P. Integrating experiential-phenomenological methods and neuroscience to study neural mechanisms of pain and consciousness. Conscious Cogn 2002;11:593608.CrossRefGoogle ScholarPubMed
Tibbetts, PE. The anterior cingulate cortex, akinetic mutism, and human volition. Brain Mind 2001;2:323341.CrossRefGoogle Scholar
Burns, K, Bechara, A. Decision making and free will: a neuroscience perspective. Behav Sci Law 2007;25:263280.CrossRefGoogle ScholarPubMed
Gomes, G. Free will, the self, and the brain. Behav Sci Law 2007;25:221234.CrossRefGoogle Scholar
Tancredi, LR. The neuroscience of “free will. Behav Sci Law 2007;25:295308.CrossRefGoogle Scholar