No CrossRef data available.
Published online by Cambridge University Press: 18 September 2015
Three principles of neuronal interaction within cortically distributed networks are discussed. PET-rCBF activation methods provide an opportunity to acquire insight in the distribution of functionally related areas of the human brain in vivo. The distinction of visual areas, activated by either motion or color within an observed scenery, points at a segregation in neuronal information processing. Such a segregation extends into both a dorsal and a ventral route towards consequently the parietal and temporal cortex.
Simultaneous activation over the dorsal and ventral route, which for example occurs in relation to the perception of complex motion (optic flow), or motion perception after lesion of V5, suggests integration by means of cross-connectivity. The third principle, i.e. “top-down” integration, appears by analysis of V5-V1 interaction, attentional effects on V4, frontal activation in prosopagnosia, and by analysis of hallucinations. Such “top-down” integration indicates the presence of momentaneous effect on cortical areas, intimately related to the primary sensory cortex, by neuronal activity of remote “association” cortex, the latter being connected by direct (synaps-restricted) bypass from early stations of information processing.