Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-22T23:35:48.299Z Has data issue: false hasContentIssue false

Neuropeptides as psychotropic drugs

Published online by Cambridge University Press:  18 September 2015

Summary

Neuropeptides are endogenous substances present in nerve cells and involved in nervous system functions. Neuropeptides are synthetized in large precursor proteins and several are formed in the same precursor. Neuropeptides affect learning and memory processes, social, sexual and maternal behavior, pain and addiction, body temperature, food and water intake e.a. In addition, neuropeptides possess trophic influences on the nervous system, neuroleptic-like andpsychostimulant-like activities. Disturbances in classical neurotransmitter activity as found in Parkinson's disease, psychoses, and dementia, may also be caused by disturbances in neuropeptide activity. In fact, alterations in the concentration of a number of neuropeptides in schizophrenia, depression, and dementia have been found.

Much work has been done during the last decade on the influence of neuropeptides in schizophrenia, autism, depression, and in various disorders associated with memory disturbances. These studies concern neuropeptides related to adrenocorticotropic hormone (ACTH) and melanocyte stimulating hormone (MSH), vasopressin- and endorphin-type neuropeptides, thyrotropic releasing hormone (TRH), and the C-terminal part of oxytocin Pro-Leu-Gly-NH2 (PLG). Several of these exert positive effects but in not more than 25% the response is clinically relevant. This may have to do with the severity of the disease and its chronicity. The modest effects may also be caused by the poor bioavailability of peptides and insufficient pharmacotherapeutic experience regarding dose, and duration of treatment.

Type
Research Article
Copyright
Copyright © Scandinavian College of Neuropsychopharmacology 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literatuur

1.De Wied, D, Jolles, J.Neuropeptides derived from proopiocortin: behavioral, physiological and neurochemical effects. Physiol Rev 1982; 62: 9761057.CrossRefGoogle ScholarPubMed
2.Spruijt, BM, Oestreicher, AB, Tonnaer, JADM.Neuropeptides and brain aging. In: De Wied, D, ed. Neuropeptides: Basics and Perspectives. Amsterdam, Elsevier Science Publishers, 1990; 353–90.Google Scholar
3.Wiegant, VM, Verhoef, J, Burbach, JPH, Van Amerongen, A, Gaffori, O, Sitsen, JMA, De Wied, D.Na-acetyl-Y-endorphin is an endogenous non opioid neuropeptide with biological activity. Life Sci 1985; 36: 2277–85.CrossRefGoogle ScholarPubMed
4.O'Donohue, TL, Handelmann, GE, Miller, RL, Jacobowitz, DM.N-acetylation regulates the behavioral activity of a-melanotropin in a multineurotransmitter neuron. Science 1982; 215; 1125–27.CrossRefGoogle Scholar
5.Edwards, PM, Gispen, WH.Melanocortin peptides and neural plasticity. In: Traber, J, Gispen, WH, eds. Senile Dementia of the Alzheimer Type. Berlin/Heidelberg: Springer Verlag, 1985: 231–40.CrossRefGoogle Scholar
6.Watson, SJ, Akil, H, Richard, CW III, Barchas, JD.Evidence for two separate opiate peptide neuronal systems. Nature 1978; 275: 226–8.CrossRefGoogle ScholarPubMed
7.De Kloet, ER.Brain corticosteroid receptor balance in homeostatic control. Front Neuroendocrinol 1991; 12: 95164.Google Scholar
8.Pigache, RM, Rigter, H.Effects of a peptide related to ACTH on mood and vigilance in man. In: Rees, L, Van Wimersma Greidanus, TjB, eds. Frontiers in Hormone Research. Vol. 8. Basel: Karger, 1981: 193207.Google Scholar
9.Kragh Sørensen, P, Lolk, A.Neuropeptides and dementia. Progr Brain Res 1987; 72: 269–77.CrossRefGoogle ScholarPubMed
10.Buitelaar, JK.Psychopharmacology of Autism. Utrecht: Thesis 1991.Google Scholar
11.De Wied, D.Neurohypophyseal hormone influences on learning and memory processes. In: Lynch, G, McGaugh, JL, Weinberger, NM, eds. New York: Guilford Press, 1984: 289312.Google Scholar
12.De Wied, D, Joels, M, Bürbach, JPH, De Jong, W, De Kloet, ER, Gaffori, OWJ, Urban, IJA, Van Ree, JM, Van Wimersma Greidanus, TjB, Veldhuis, HD, Versteeg, DHG, Wiegant, VM.Vasopressin effects on the central nervous system. In: Negro-Villar, A, Conn, PM, eds. Peptide Hormones: Effects and Mechanisms of Action. Boca Raton: CRC Press, 1988: 97140.Google Scholar
13.Fliers, E, Swaab, DF.Neuropeptide changes in aging and Alzheimer's disease. Progr Brain Res 1986; 70: 141–50.CrossRefGoogle ScholarPubMed
14.Swaab, DF, Fliers, E, Partiman, TS.The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia. Brain Res 1985; 342: 3744.CrossRefGoogle ScholarPubMed
15.Legros, JJ, Gilot, G, Seron, X, Ciaessens, J, Adam, A, Moeglen, JM, Audibert, A, Berchier, P.Influence of vasopressin on learning and memory. The Lancet 1978; 1: 41–2.CrossRefGoogle ScholarPubMed
16.Oliveros, JC, Jandali, MK, Timsit-Berfhier, M, Remy, R, Benghezal, A, Audibert, A, Moeglen, JM.Vasopressin in amnesia. The Lancet 1978; I: 42.CrossRefGoogle Scholar
17.Van Ree, JM, Hijman, R, Jolles, J, De Wied, D.Vasopressin and related peptides: animal and human studies. Progr Neuropsychop-harmacol Biol Psych 1985; 9: 551–9.CrossRefGoogle ScholarPubMed
18.Bruins, J.Desglycinamide-(Arg8)-vasopressin and cognitive processes in healthy subjects. Utrecht: Thesis 1991.CrossRefGoogle Scholar
19.Burbach, JPH, Kovács, GL, De Wied, D, Van Nispen, JW, Greven, HM.A major metabolite of arginine-vasopressin in the brain is a highly potent neuropeptide. Science 1983; 221: 1310–12.CrossRefGoogle Scholar
20.Van Ree, JM, Jolles, J, Verhoeven, WMA.. Neuropeptides and psychopathology. In: De Wied, D, ed. Neuropeptides: Basics and Perspectives. Amsterdam: Elsevier Science Publishers, 1990: 313–51.Google Scholar
21.Bloom, F, Segal, D, Ling, N, Guillemin, R.Endorphins: profound behavioral effects in rats suggest new etiological factors in mental illness. Science 1976; 194: 630–32.CrossRefGoogle ScholarPubMed
22.Terenius, L, Wählstrom, Lindstrom C, Widerlöo, E.Increased CSF levels of endorphins in chronic psychosis. Neurosci Lett 1976; 3: 157–62.CrossRefGoogle ScholarPubMed
23.Pickar, D, Bunney, WE Jr, Douillet, P, Sethi, BB, Sharma, M, Vartanian, ME, Lideman, RP, Naber, D, Leibi, K, Yamashita, I, Koyama, T, Verhoeven, WMA, Vartanian, F, Morozov, PV, Ngo Khac, T.Repeated naloxone administration in schizophrenia: a phase II World Health Organisation study. Biol Psychiat 1989; 25: 440.CrossRefGoogle Scholar
24.De Wied, D, Kovács, GL, Bohus, B, Van Ree, JM, Greven, HM.Neuroleptic activity of the neuropeptide β-LPH 62-77 ([des-Tyr1]ϒ-endorphin; DTϒE). Eur J Pharmacol 1978; 49: 427–36.CrossRefGoogle Scholar
25.Van Ree, JM, De Wied, D.Neuroleptic-like profile of ϒ-type endorphins as related to schizophrenia. Trends Pharmacol Sei 1982; 3: 358–61.CrossRefGoogle Scholar
26.Crow, TJ.What is wrong with dopaminergic transmission in schizophrenia. Trends Neurosci 1979; 2: 52–5.CrossRefGoogle Scholar
27.Van Ree, JM, Verhoeven, WMA, De Wied, D.Animal and clinical research on neuropeptides and schizophrenia. Progr Brain Res 1987; 72: 249–67.CrossRefGoogle ScholarPubMed
28.Ronken, E, Tonnaer, JADM, De Boer, Th, Wiegant, VM.Autoradiographic evidence for binding sites for des-enkephalin-y-endorphin (ORG 5878) in rat forebrain. Eur J Pharmacol 1989; 162: 189–91.CrossRefGoogle ScholarPubMed
29.Verhoeven, WMA, Van Ree, JM, De Wied, D.Neuroleptic-like peptides in schizophrenia. In: Burrows, GD, Norman, TR, Rubinstein, G, eds, Handbook of Studies on Schizophrenia. Part 2: Management and Research. Amsterdam: Elsevier, 1986: 253–74.Google Scholar
30.Van Ree, JM, Verhoeven, WMA, Claas, FHJ, De Wied, D.Antipsychotic action of ϒ-type endorphins: animal and human studies. Progr Brain Res 1986; 65: 221–35.CrossRefGoogle ScholarPubMed
31.Wiegant, VM, Verhoef, J, Bürbach, JPH, De Wied, D.Increased concentration of α- and ϒ-endorphin in post mortem hypothalamic tissue of schizophrenic patients. Life Sci 1988; 42: 1733–42.CrossRefGoogle ScholarPubMed
32.Sweep, CGJ, Boersma, CJC, Wiegant, VM.Effects of chronic treatment with haloperidol and bromocriptine on the processing of β-endorphin to ϒ- and α-endorphin in discrete regions of the rat pituitary gland and brain. Neuropharmacol 1990; 29: 61–8.CrossRefGoogle ScholarPubMed
33.Nair, NPV, Lai, S, Bloom, DM.Cholecystokinin and schizophrenia. Progr Brain Res 1986; 65: 237–58.CrossRefGoogle ScholarPubMed
34.Prange, AJ, Garbutt, JC, Loosen, PT, Bissette, G, Nemeroff, CB.The role of peptides in affective disorders: a review. Progr Brain Res 1987; 72: 235–47.CrossRefGoogle ScholarPubMed
35.Kastin, AJ, Ehrensing, RH, Banks, WA, Zadina, JE.Possible therapeutic implications of the effects of some peptides on the brain. Progr Brain Res 1987; 72: 223–34.CrossRefGoogle ScholarPubMed
36.Schenk, GK, Enders, P, Engelmeier, MP, Ewert, T, Herdemerten, S, Köhler, KH, Lodemann, E, Matz, D, Pach, J.Administration of the morphine antagonist naloxone in psychic disorders. Arzeim Forsch 1974; 28: 1274.Google Scholar
37.Dunn, AJ, Berridge, CW.Physiological and behavioral responses to CRF administration: Is CRF a mediator of anxiety or stress responses? Brain Res Rev 1990; 15: 71100.CrossRefGoogle ScholarPubMed
38.Nemeroff, CB.The role of corticotropin-releasing factor in the pathogenesis of major depression. Pharmacopsychiat 1988; 21: 7682.CrossRefGoogle ScholarPubMed