Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-16T15:24:17.379Z Has data issue: false hasContentIssue false

Magnetic resonance imaging studies on autism and childhood-onset schizophrenia in children and adolescents – a review

Published online by Cambridge University Press:  24 June 2014

Bertine Lahuis*
Affiliation:
Department of Child and Adolescent Psychiatry, University of Utrecht, the Netherlands
Chantal Kemner
Affiliation:
Department of Child and Adolescent Psychiatry, University of Utrecht, the Netherlands
Herman Van Engeland
Affiliation:
Department of Child and Adolescent Psychiatry, University of Utrecht, the Netherlands
*
Department of Child and Adolescent Psychiatry, ume Utrecht PO Box 85500, 3508 GA Utrecht, the Netherlands e-mail: [email protected]

Abstract

Objective:

To find out whether the neurodevelopmental disorders autism and childhood-onset schizophrenia have a common developmental pathway and whether the abnormalities detected are ‘disorder-specific’, by reviewing magnetic resonance imaging (MRI) studies.

Methods:

As a result of a Medline search, we were able to access 28 studies on autism and 12 studies on childhood-onset schizophrenia, which focused on children and adolescents.

Results:

Larger lateral ventricles were found to be a common abnormality in both disorders. ‘Disorder-specific’ abnormalities in patients with autism were larger brains, a larger thalamic area, and a smaller right cingulate gyrus. Subjects with childhood-onset schizophrenia were found to have smaller brains, a smaller amygdalum and thalamus, and a larger nucleus caudatus. In subjects with childhood-onset schizophrenia, abnormalities appeared to progress over a limited period of time.

Conclusions:

Because the study designs varied so much, the results should be interpreted cautiously. Before abnormalities found in the disorders can be designated as equal or ‘disorder-specific’, it will be essential to perform large longitudinal and cross-sectional follow-up studies.

Type
Review Article
Copyright
Copyright © 2003 Blackwell Munksgaard

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th edn. Washington DC: American Psychiatric Association, 1994. Google Scholar
Kolvin, I. Studies in the childhood psychoses, I. Diagnostic criteria and classification. Br J Psychiatry 1971;118: 381384.CrossRefGoogle ScholarPubMed
Rutter, M. Autistic children: infancy to adulthood. Sem Psychiatry 1970;2: 435450. Google ScholarPubMed
Alaghband-Rad, J, McKenna, K, Gordon, CTet al. Childhood-onset schizophrenia: the severity of premorbid course. J Am Acad Child Adolesc Psychiatry 1995;34: 12731283.CrossRefGoogle ScholarPubMed
Chua, SE, Murray, RM. De ontwikkelingsneurologische theorie van Schizofrenie: bewijsmateriaal betreffende structuur en neuropsychologie. Acta Neuropsychiatrica 1996;8: 2534. CrossRefGoogle Scholar
Hollis, C. Child and adolescent (juvenile onset) schizophrenia. A case control study of premorbid developmental impairments. Br J Psychiatry 1995;166: 489495.CrossRefGoogle ScholarPubMed
Olin, SS, Mednick, SA. Risk factors of psychosis: Identifying vulnerable populations premorbidly. Schizophr Bull 1996;22: 223240.CrossRefGoogle ScholarPubMed
Watkins, JM, Asarnow, RF, Tanguay, PE. Symptom development in childhood-onset schizophrenia. J Child Psychol Psychiatry 1988;29: 865878.CrossRefGoogle ScholarPubMed
Rumsey, JM, Rapoport, JL, Sceery, WR. Autistic children as adults: Psychiatric, social, and behavioral outcomes. J Am Acad Child Psychiatry 1985;24: 465473.CrossRefGoogle ScholarPubMed
Rumsey, JM, Andreasen, NC, Rapoport, JL. Thought, language, communication, and affective flattening in autistic adults. Arch General Psychiatry 1986;43: 771777. CrossRefGoogle ScholarPubMed
Piven, J, Nehme, E, Simon, Jet al. Magnetic resonance imaging in autism: measurement of the cerebellum, pons, and fourth ventricle. Biol Psychiatry 1992; 31: 491504.CrossRefGoogle ScholarPubMed
Piven, J, Arndt, S, Bailey, Jet al. An MRI study of brain size in autism. Am J Psychiatry 1995;152: 11451149.Google ScholarPubMed
Piven, J, Arndt, S, Bailey, Jet al. Regional enlargement in autism: a magnetic resonance imaging study. J Am Acad Child Adolesc Psychiatry 1996;35: 530536.CrossRefGoogle ScholarPubMed
Piven, J, Saliba, K, Bailey, Jet al. An MRI study of autism: The cerebellum revisited. Neurology 1997;49: 546551.CrossRefGoogle ScholarPubMed
Filipek, PA, Richelme, C, Kennedy, DNet al. Morphometric analysis of the brain in developmental language disorders and Autism (Abstract). Ann Neurol 1992;32: 475. Google Scholar
Courchesne, E, Press, GA, Yeung-Courchesne, R. Parietal lobe abnormalities detected with MR in patients with infantile autism. Am J Roentgenol 1993;160: 387393. CrossRefGoogle ScholarPubMed
Gaffney, GR, Kuperman, S, Tsai, LYet al. Midsagittal magnetic resonance imaging of autism. Br J Psychiatry 1987;151: 831833.CrossRefGoogle ScholarPubMed
Gaffney, GR, Tsai, LY, Kuperman, Set al. Cerebellar structure in Autism. Am J Dis Child 1987;141: 13301332.Google ScholarPubMed
Garber, HJ, Ritvo, ER, Chiu, LCet al. A magnetic imaging study of autism: normal fourth ventricle size and absence of pathology. Am J Psychiatry 1989;146: 532534.Google ScholarPubMed
Holtthum, JR, Minshew, NJ, Sanders, RSet al. Magnetic resonance imaging of the posterior fossa in autism. Biol Psychiatry 1992;32: 10911101.CrossRefGoogle Scholar
Kleiman, MD, Neff, S, Rosman, NP. The brain in infantile autism: are posterior structures abnormal? Neurology 1992;42: 753760.CrossRefGoogle ScholarPubMed
Gaffney, GR, Kuperman, S, Tsai, LYet al. Forebrain structure in infantile autism. J Am Acad Child Adolesc Psychiatry 1989;28: 534537.CrossRefGoogle ScholarPubMed
Hashimoto, T, Tayama, M, Murakawa, Ket al. Development of the brainstem and cerebellum in autistic patients. J Autism Dev Disord 1995;25: 118.CrossRefGoogle ScholarPubMed
Murakami, JW, Courchesne, E, Press, GAet al. Reduced cerebellar hemisphere size and its relationship to vermal hypoplasia in autism. Arch Neurol 1989; 46: 689694.CrossRefGoogle ScholarPubMed
Hashimoto, T, Murakawa, K, Miyazaki, Met al. Magnetic resonance imaging of the brain structures in the posterior fossa in retarded autistic children. Acta Paediatr 1992;81: 10301034.CrossRefGoogle ScholarPubMed
Hashimoto, T, Tayama, M, Miyazaki, Met al. Reduced brainstem size in children with autism. Brain Dev 1992;14: 9497.CrossRefGoogle ScholarPubMed
Ritvo, ER, Freeman, BJ, Scheibel, ABet al. Lower Purkinje cell counts in the cerebella of four autistic subjects: initial findings of the UCLA-NSAC autopsy research report. Am J Psychiatry 1986;143: 862866.Google ScholarPubMed
Piven, J, Bailey, J, Ranson, BJet al. An MRI study of the corpus callosum in autism. Am J Psychiatry 1997;154: 10511056.Google ScholarPubMed
Courchesne, E, Yeung-Courchesne, R, Press, BAet al. Hypoplasia of cerebellar vermal lobules VI and VII in autism. N Engl J Med 1988;318: 13491354.CrossRefGoogle ScholarPubMed
Hashimoto, T, Tayama, M, Miyazaki, Met al. Brainstem and cerebellar vermis involvement in autistic children. J Child Neurol 1993;8: 149153.CrossRefGoogle ScholarPubMed
Courchesne, E, Saitoh, O, Yeung-Courchesne, Ret al. Abnormality of cerebellar vermian lobules VI and VII in patients with infantile autism: identification of hypoplastic and hyperplastic subgroups with MR imaging. Am J Roentgenol 1994;162: 123130. CrossRefGoogle ScholarPubMed
Saitoh, O, Courchesne, E, Egaas, Bet al. Cross-sectional area of the posterior hippocampus in autistic patients with cerebellar and corpus callosum abnormalities. Neurology 1995;45: 317324.CrossRefGoogle ScholarPubMed
Egaas, B, Courchesne, E, Saitoh, O. Reduced size of the corpus callosum in autism. Arch Neurol 1995;52: 794801.CrossRefGoogle ScholarPubMed
Piven, J, Bailey, J, Ranson, BJet al. No difference in hippocampus volume detected on magnetic resonance imaging in autistic individuals. J Autism Dev Disord 1998;28: 105110.CrossRefGoogle ScholarPubMed
Gaffney, GR, Kuperman, S, Tsai, LYet al. Morphological evidence for brainstem involvement in infantile autism. Biol Psychiatry 1988;24: 578586.CrossRefGoogle ScholarPubMed
Hashimoto, T, Tayama, M, Miyazaki, Met al. Brainstem involvement in high functioning autistic children. Acta Neurol Scand 1993;88: 123128.CrossRefGoogle ScholarPubMed
Hsu, M, Yeung-Courchesne, R, Courchesne, Eet al. Absence of magnetic resonance imaging evidence of pontine abnormality in infantile autism. Arch Neurol 1991;48: 11601163.CrossRefGoogle ScholarPubMed
Haznedar, MM, Buchsbaum, MS, Metzger M. Anterior cingulate gyrus volume and glucose metabolism in autistic disorder. Am J Psychiatry 1997;154: 10471050.Google ScholarPubMed
Filipek, PA, Semrud-Clikeman, M, Steingard, RJet al. Volume tric MRI analysis comparing subjects having attention-deficit hyperactivity disorder with normal controls. Neurology 1997;48: 589601.CrossRefGoogle Scholar
Frazier, JA, Giedd, JN, Hamburger, SDet al. Brain anatomic magnetic resonance imaging in childhood-onset schizophrenia. Arch General Psychiatry 1996;53: 617624. CrossRefGoogle ScholarPubMed
Gordon, CT, Frazier, JA, McKenna, Ket al. Childhood-onset schizophrenia: an NIMH study in progress. Schizophr Bull 1994;20: 697712.CrossRefGoogle ScholarPubMed
Jacobsen, LK, Giedd, JN, Vaituzis, AC. Temporal lobe morphology in childhood-onset schizophrenia. Am J Psychiatry 1996;153: 355360.Google ScholarPubMed
Jacobsen, LK, Giedd, JN, Cigcem Tanrikut, BAet al. Three-dimensional cortical morphometry of the planum temporale in childhood-onset schizophrenia. Am J Psychiatry 1997;154: 685687.Google ScholarPubMed
Jacobsen, LK, Giedd, JN, Rajapakse, JC. Quantitative magnetic resonance imaging of the corpus callosum in childhood-onset schizophrenia. Psychiatry Res 1997;68: 7786.CrossRefGoogle ScholarPubMed
Jacobsen, LK, Giedd, JN, Castellanos, FXet al. Progressive reduction of temporal lobe structures in childhood-onset schizophrenia. Am J Psychiatry 1998;155: 678685.CrossRefGoogle ScholarPubMed
Rapoport, JL, Giedd, J, Kumra, S. Childhood-onset schizophrenia. Arch General Psychiatry 1997;54: 897903. CrossRefGoogle ScholarPubMed
Hendren, RL, Hodde-Vargas, J, Yeo, RAet al. Neuropsychophysiological study of children at risk for schizophrenia: a preliminary report. J Am Acad Child Adolesc Psychiatry 1995;34: 12841291.CrossRefGoogle ScholarPubMed
Jacobsen, LK, Giedd, JN, Berquin, PCet al. Quantitative morphology of the cerebellum and fourth ventricle in childhood-onset schizophrenia. Am J Psychiatry 1997;154: 16631669.CrossRefGoogle ScholarPubMed
Yeo, RA, Hodde-Vargas, J, Hendren RL. Brain abnormalities in schizophrenia-spectrum children: implications for a neurodevelopmental perspective. Psychiatry Res 1997;76: 113.CrossRefGoogle ScholarPubMed
Woody, RC, Bolyard, BS, Eisenhauer, Get al. CT scan and MRI findings in a child with schizophrenia. J Child Neurol 1987;2: 105110.CrossRefGoogle Scholar
Hendren, RL, Hodde-Vargas, JE, Vargas, LAet al. Magnetic resonance imaging of severely disturbed children- A preliminary study. J Am Acad Child Adolesc Psychiatry 1991;30: 466470.CrossRefGoogle ScholarPubMed
Giedd, JN, Snell, JW, Lange, Net al. Quantitative magnetic resonance imaging of human brain development: ages 4–18. Cerebr Cortex 1996;6: 551560. CrossRefGoogle ScholarPubMed
Zipursky, RB, Lim, KO, Sullivan, EV. Widespread cerebral grey matter volume in schizophrenia. Arch General Psychiatry 1992;49: 195205. CrossRefGoogle ScholarPubMed
Andreasen, NC, Flaum, M, Swayze V. Intelligence and brain structure in normal individuals. Am J Psychiatry 1993;150: 130134.Google ScholarPubMed
Bauman, ML, Kemper, TL. Developmental cerebellar abnormalities: a consistent finding in early infantile autism. Neurology 1986;36: 190. Google Scholar
Willerman, L, Schultz, R, Rutledge, JNet al. In vivo brain size and intelligence. Intelligence 1991;15: 223228. CrossRefGoogle Scholar
Andreasen, NC, Nasrallah, HA, Dunn, Vet al. Structural abnormalities in the frontal system in schizophrenia. Arch General Psychiatry 1986;43: 137144. CrossRefGoogle ScholarPubMed
Andreasen, NC, Ehrhardt, JC, Swayze, Vet al. Magnetic resonance imaging of the brain in schizophrenia: The pathophysiologic significance of structural abnormalities. Arch General Psychiatry 1990;47: 3544. CrossRefGoogle ScholarPubMed
Pearlson, GD, Kim, WS, Kubos, KLet al. Ventricle-brain ratio, computed tomographic density and brain area in 50 schizophrenics. Arch General Psychiatry 1989;46: 690697. CrossRefGoogle ScholarPubMed
Pearlson, GD, Batra, PE, Schraml, FVet al. Brain size in schizophrenia. Arch General Psychiatry 1991;48: 180181. CrossRefGoogle Scholar
Jernigan, TL, Butters, N, Ditraglia, Get al. Reduced cerebral grey matter observed in alcoholics using magnetic resonance imaging. Alcohol Clin Exp Res 1991;15: 418427.CrossRefGoogle ScholarPubMed
Pfefferbaum, A, Lim, KO, Zipursky, RBet al. Brain grey and white matter volume loss accelerates with aging in chronic alcoholics: a quantitative MRI study. Alcohol Clin Exp Res 1992;16: 10781089.CrossRefGoogle ScholarPubMed
Chakos, Mh, Leiberman, JA, Bilder, RM. Caudate volume increases in first episode schizophrenia after treatment. Am J Psychiatry 1994;151: 14301436.Google Scholar
Witelson, SF, Goldtsmidth, Ch. The relationship of hand preference to anatomy of the corpus callosum in man. Brain Res 1991;545: 175182.CrossRefGoogle Scholar
Filipek, PA. Brief report: neuroimaging in autism: the state of the science 1995. J Autism Dev Disord 1995;26: 211215. CrossRefGoogle Scholar
Bauman, M, Kemper, TL. Histoanatomic observations of the brain in early infantile autism. Neurology 1985;35: 866874.CrossRefGoogle ScholarPubMed
Castellanos, FX, Giedd, JN, Marsh, WLet al. Quantitative brain magnetic resonance imaging in attention-deficit hyperactivity disorder. Arch General Psychiatry 1996;53: 607616. CrossRefGoogle ScholarPubMed
Cannon, TD, Van Erp, TG M, Huttunen, Met al. Regional gray matter, white matter, and cerebrospinal fluid distributions in schizophrenic patients, their siblings, and controls. Arch General Psychiatry 1998;55: 10841091. CrossRefGoogle ScholarPubMed
Bailey, A, Luthert, P, Bolton, Pet al. Autism and megalencephaly. Lancet 1993;341: 12251226.CrossRefGoogle ScholarPubMed
Altshuler, LL, Casanova, MF, Goldberg, TEet al. The hippocampus and parahippocampus in schizophrenic, suicide, and control brains. Arch General Psychiatry 1990;47: 10291034. CrossRefGoogle ScholarPubMed
Bogarts, B, Falkai, P, Haupts, Met al. Post-mortem volume measurements of limbic systems and basal ganglia structures in chronic schizophrenics: initial results from a new brain collection. Schizophr Res 1990;3: 295301.CrossRefGoogle Scholar
Heckers, S, Heinsen, H, Heinsen, Yet al. Cortex, white matter, and basal ganglia in schizophrenia: a volume tric post mortem study. Biol Psychiatry 1991;29: 556566.CrossRefGoogle Scholar
Bogarts, B, Falkai, P, Greve, Bet al. Volumes of thalamic, limbic structures and basal ganglia in chronic schizophrenia. A controlled post-mortem study from the New Düsseldorf Brain Collection. Schizophr Res 1993;9: 146147. CrossRefGoogle Scholar
Baumgardner, TL, Singer, HS, Denckla, MBet al. Corpus callosum morphology in children with Tourette syndrome and attention deficit hyperactivity disorder. Neurology 1996;47: 477482.CrossRefGoogle ScholarPubMed
Berquin, PC, Giedd, JN, Jacobsen, LKet al. Cerebellum in attention-deficit hyperactivity disorder. Neurology 1998;50: 10871093.CrossRefGoogle ScholarPubMed
Castellanos, FX, Giedd, JN, Eckburg, Pet al. Quantitative morphology of the caudate nucleus in attention deficit hyperactivity disorder. Am J Psychiatry 1994;151: 17911796.Google ScholarPubMed
Giedd, JN, Castellanos, FX, Casey, BJet al. Quantitative morphology of the corpus callosum in attention deficit hyperactivity disorder. Am J Psychiatry 1994;151: 665669.Google ScholarPubMed
Hynd, GW, Semrud-Clikeman, M, Lorys, ARet al. Brain morphology in developmental dyslexia and attention deficit disorder/hyperactivity. Arch Neurol 1990; 47: 919926.CrossRefGoogle ScholarPubMed
Hynd, GW, Semrud-Clikeman, M, Lorys, ARet al. Corpus callosum morphology in attention deficit- hyperactivity disorder: morphometric analysis of MRI. J Learn Disabil 1991;24: 141146.CrossRefGoogle ScholarPubMed
Hynd, GW, Hern, KL, Novey, ESet al. Attention deficit-hyperactivity disorder and asymmetry of the caudate nucleus. J Child Neurol 1993;8: 339347.CrossRefGoogle ScholarPubMed
Mataro, M, Garcia-Sanchez, C, Junque, Cet al. Magnetic resonance imaging measurement of the caudate nucleus in adolescents with attention-deficit hyperactivity disorder and its relationship with neuropsychological and behavioral measures. Arch Neurol 1997;54: 963968.CrossRefGoogle ScholarPubMed
Semrud-Clikeman, M, Filipek, PA, Biederman, Jet al. Attention-deficit hyperactivity disorder: magnetic resonance imaging morphometric analysis of the corpus callosum. J Am Acad Child Adolesc Psychiatry 1994;33: 875881.CrossRefGoogle ScholarPubMed
Duara, R, Kushch, A, Gross-Glenn, Ket al. Neuroanatomic differences between dyslexic and normal readers on magnetic resonance imaging scans. Arch Neurol 1991;48: 410416.CrossRefGoogle ScholarPubMed
Hynd, GW, Hall, J, Novey, ESet al. Dyslexia and the corpus callosum morphology. Arch Neurol 1995;52: 3238.CrossRefGoogle ScholarPubMed
Kushch, A, Gross-Glenn, K, Jallad, Bet al. Temporal lobe surface area measurements on the MRI in normal and dyslexic readers. Neuropsychologia 1993;31: 811821.CrossRefGoogle ScholarPubMed
Larsen, JP, Hoien, T, Lundberg, Iet al. MRI Evaluation of the size of the planum temporale in adolescents with developmental dyslexia. Brain Lang 1990;39: 289301.CrossRefGoogle ScholarPubMed
Larsen, JP, Hoien, T, Odegaard, H. Magnetic resonance imaging of the corpus callosum in developmental dyslexia. Cogn Neuropsychol 1992;9: 123134. CrossRefGoogle Scholar
Leonard, CM, Voeller, KK S, Lombardino, LJet al. Anomalous cerebral structure in dyslexia revealed with magnetic resonance imaging. Arch Neurol 1993;50: 461469.CrossRefGoogle ScholarPubMed
Schultz, RT, Cho, NK, Staib, Lhet al. Brain morphology in normal and dyslexic children: the influence of sex and age. Ann Neurol 1994;35: 732742.CrossRefGoogle ScholarPubMed
Weickert, CS, Weinberger, DR. A candidate molecule approach to defining developmental pathology in schizophrenia. Schiz Bull 1998;24: 303316. CrossRefGoogle ScholarPubMed
Woods, BT. Is schizophrenia a progressive neurodevelopmental disorder? Toward a unitary pathogenetic mechanism. Am J Psychiatry 1998;155: 16611670.CrossRefGoogle Scholar
Tamminga, CA. Images in neuroscience. Am J Psychiatry 1999;156: 1. Google Scholar