Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T04:33:19.088Z Has data issue: false hasContentIssue false

Increased Na+,K+-ATPase activity in the rat brain after meningitis induction by Streptococcus pneumoniae

Published online by Cambridge University Press:  24 June 2014

Tatiana Barichello*
Affiliation:
Laboratório de Microbiologia Experimental and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Programa de Pós-Graduaçã em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
Jaqueline S. Generoso
Affiliation:
Laboratório de Microbiologia Experimental and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Programa de Pós-Graduaçã em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
Andreza L. Cipriano
Affiliation:
Laboratório de Microbiologia Experimental and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Programa de Pós-Graduaçã em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
Renata Casagrande
Affiliation:
Laboratório de Microbiologia Experimental and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Programa de Pós-Graduaçã em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
Allan Collodel
Affiliation:
Laboratório de Microbiologia Experimental and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Programa de Pós-Graduaçã em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
Geovana D. Savi
Affiliation:
Laboratório de Microbiologia Experimental and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Programa de Pós-Graduaçã em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
Emilene B. S. Scherer
Affiliation:
Laboratório de Neuroproteção e Doenças Metabólicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
Janaína Kolling
Affiliation:
Laboratório de Neuroproteção e Doenças Metabólicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
Angela T. S. Wyse
Affiliation:
Laboratório de Neuroproteção e Doenças Metabólicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
*
Professor Tatiana Barichello, Laboratório de Microbiologia Experimental, PPGCS, UNASAU, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil. Tel: +55 48 3431 2643; Fax: +55 48 3443 4817; E-mail: [email protected]

Extract

Barichello T, Generoso JS, Cipriano AL, Casagrande R, Collodel A, Savi GD, Scherer EBS, Kolling J, Wyse ATS. Increase Na+,K+-ATPase activity in the rat brain after meningitis induction by Streptococcus pneumoniae.

Background: Pneumococcal meningitis is the most severe infection of the central nervous system with a mortality rate up to 20% and an adverse neurological result in up to 50% of survivors. A complicated series of interactions among the host immune response and oxidants seems to be responsible for meningitis associated brain dysfunctions. Na+,K+-ATPase is an essential enzyme responsible for generating and maintaining the membrane potential necessary for neural excitability, however, the Na+,K+-ATPase activity is altered in several illness;

Objective: The aim of this study is to evaluate the Na+,K+-ATPase activity in hippocampus and cortex of the rats submitted to pneumococcal meningitis.

Methods: Animals received 10 µl sterile saline as a placebo or an equivalent volume of Streptococcus pneumoniae to the concentration of 5 × 109cfu/ml and were killed at 24, 48, 72 and 96 h after meningitis induction. The brain structures, hippocampus and cortex, were immediately isolated on dry ice and stored at −80°C to analyse Na+,K+-ATPase activity.

Results: In the hippocampus, we verified the increase of Na+,K+-ATPase activity at 48, 72 and 96 h (p < 0.05) and in the cortex at 24 h (p < 0.05) after pneumococcal meningitis induction.

Conclusion: The Na+,K+-ATPase activity is under the control of a diversity of intracellular messengers that are able to modulate the function of the particular isozymes in a precise way. Furthermore, we verified that pneumococcal meningitis increased the Na+,K+-ATPase activity in hippocampus and cortex; this increase can be correlated with a compensatory mechanism in illness pathophysiology.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Grandgirard, D, Leib, SL. Strategies to prevent neuronal damage in pediatric bacterial meningitis. Curr Opin Pediatr 2006;18:112118.CrossRefGoogle Scholar
2.Meli, DN, Christen, S, Leib, SL, Täauber, MG.Current concepts in the pathogenesis of meningitis caused by Streptococcus pneumoniae. Curr Opin Infect Dis 2002;15:253257.CrossRefGoogle ScholarPubMed
3.Nau, R, Soto, A, Bruck, W. Apoptosis of neurons in the dentate gyrus in humans suffering from bacterial meningitis. J Neurophatol Exp Neurol 1999;58:265274.CrossRefGoogle ScholarPubMed
4.Weisfelt, M, Van De Beek, D, Spanjaard, L, Reitsma, JB, De Gans, J. Comunnity-acquired bacterial meningitis in older people. J Am Geriatr Soc 2006;54:15001507.CrossRefGoogle ScholarPubMed
5.Hoogman, M, Van De Beek, D, Weisfelt, DM, De Gans, J, Schmand, B. Cognitive outcome in adults after bacterial meningitis. J Neurol Neurosurg Psychiatry 2007;78:10921096.CrossRefGoogle ScholarPubMed
6.Coimbra, RS, Voisin, V, De Saizieu, AB, Lindberg, RL, Wittwer, M, Leppert, D, Leib, SL.Gene expression in cortex and hippocampus during acute pneumococcal meningitis. BMC Biol 2006;4:15.CrossRefGoogle ScholarPubMed
7.Plata-Salaman, CR.Brain cytokines and disease. Acta Neuropsychiatry 2002;14:262278.CrossRefGoogle ScholarPubMed
8.Koedel, U, Scheld, WM, Pfister, HW.Pathogenesis and pathophysiology of pneumococcal meningitis. Lancet Infect Dis 2002;2:721736.CrossRefGoogle ScholarPubMed
9.Barichello, T, Santos, I, Savi, GD et al. TNF-alpha, IL-1betha, IL-6, and Cinc-1 levels in rat brain after meningitis induced by Streptococcus pneumoniae. J Neuroimmunol 2010;221:4245.CrossRefGoogle Scholar
10.Barichello, T, Savi, GD, Silva, GZ et al. Antibiotic therapy prevents, in part, the oxidative stress in the rat brain after meningitis induced by Streptococcus pneumoniae. Neurosci Lett 2010;478:9396.CrossRefGoogle ScholarPubMed
11.Moe, GW, Marin-Garcia, J, Konig, A, Goldenthal, M, Lu, X, Feng, Q. In vivo TNF-alpha inhibition ameliorates cardiac mitochondrial dysfunction, oxidative stress, and apoptosis in experimental heart failure. Am J Physiol Heart Circ Physiol 2004;287:H1813H1820.CrossRefGoogle ScholarPubMed
12.Mariappan, N, Soorappan, RN, Haque, M, Sriramula, S, Francis, J. TNF-induced mitochondrial oxidative stress and cardiac dysfunction: restoration by superoxide dismutase mimetic Tempol. Am J Physiol Heart Circ Physiol 2007;293:H2726H2737.CrossRefGoogle Scholar
13.Stanley, WC, Hoppel, CL.Mitochondrial dysfunction in heart failure: potential for therapeutic interventions? Cardiovasc Res 2000;45:805806.CrossRefGoogle ScholarPubMed
14.Lopez-Campistrous, A, Hao, L, Xiang, W et al. Mitochondrial dysfunction in the hypertensive rat brain: respiratory complexes exhibit assembly defects in hypertension. Hypertension 2008;51:412419.CrossRefGoogle ScholarPubMed
15.Iannello, S, Milazzo, P, Belfiore, F. Animal and human tissue Na,K-ATPase in obesity and diabetes: a new proposed enzyme regulation. Am J Med Sci 2007;333:19.CrossRefGoogle ScholarPubMed
16.Mobasheri, A, Avila, J, Cózar-Castellano, I et al. Na+, K+-ATPase isozyme diversity; comparative biochemistry and physiological implications of novel functional interactions. Biosci Rep 2000;20:5191.CrossRefGoogle ScholarPubMed
17.Blanco, G, Mercer, Rw. Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 1998;275:633650.Google ScholarPubMed
18.Wyse, ATS, Streck, EL, Worm, P, Wajner, A, Ritter, F, Netto, CA. Preconditioning prevents the inhibition of Na+,K+-ATPase activity after brain ischemia. Neurochem Res 2000;25:971975.CrossRefGoogle Scholar
19.Hattori, N, Kitagawa, K, Higashida, T et al. CI-ATPase and Na+/K(+)-ATPase activities in Alzheimer's disease brains. Neurosci Lett 1998;254:141144.CrossRefGoogle ScholarPubMed
20.Luca, RD, Fraga, DB, Ghedim, FV et al. Na+, K+-ATPase activity is increased in rats subjected to chronic administration of ketamine. Acta Neuropsychiatry 2011;23:215218.CrossRefGoogle ScholarPubMed
21.Dodrill, MW, Beezhold, DH, Meighan, T, Kashon, ML, Fedan, JS.Lipopolysaccharide increases Na(+),K(+)-pump, but not ENaC, expression in guinea-pig airway epithelium. Eur J Pharmacol 2011;651:176186.CrossRefGoogle Scholar
22.Mccarter, FD, Nierman, SR, James, JH et al. Role of skeletal muscle Na+-K+ ATPase activity in increased lactate production in sub-acute sepsis. Life Sci 2002;70:18751888.CrossRefGoogle ScholarPubMed
23.Kreydiyyeh, SI, Al-Sadi, R.The signal transduction pathway that mediates the effect of interleukin-1 beta on the Na+-K+-ATPase in LLC-PK1 cells. Pflugers Arch 2004;448:231238.CrossRefGoogle ScholarPubMed
24.Park, WS, Chang, YS, Lee, M.7-Nitroindazole, but not aminoguanidine, attenuates the acute inflammatory responses and brain injury during the early phase of Escherichia coli meningitis in the newborn piglet. Biol Neonate 2001;80:5359.CrossRefGoogle Scholar
25.Sellner, J, Täauber, MG, Leib, SL. Pathogenesis and pathophysiology of bacterial CNS infections. Handb Clin Neurol 2010;96:116.CrossRefGoogle ScholarPubMed
26.Grandgirard, D, Schürch, C, Cottagnoud, P, Leib, SL. Prevention of brain injury by the nonbacteriolytic antibiotic daptomycin in experimental pneumococcal meningitis. Antimicrob Agents Chemother 2007;51:21732178.CrossRefGoogle ScholarPubMed
27.Barichello, T, Pereira, JS, Savi, GD et al. A kinetic study of the cytokine/chemokines levels and disruption of blood-brain barrier in infant rats after pneumococcal meningitis. J Neuroimmunol 2011;33:1217.CrossRefGoogle Scholar
28.La Scolea, LJ Jr, Dryja, D. Quantitation of bacteria in cerebrospinal fluid and blood of children with meningitis and its diagnostic significance. J Clin Microbiol 1984;19:187190.CrossRefGoogle ScholarPubMed
29.Grandgirard, D, Steiner, O, Täauber, MG, Leib, SL. An infant mouse model of brain damage in pneumococcal meningitis. Acta Neuropathol 2007;114:609617.CrossRefGoogle ScholarPubMed
30.Jones, DH, Matus, AI.Isolation of plasma synaptic membrane from brain by combination flotation-sedimentation density gradient centrifugation. Biochim Biophys Acta 1974;356:276287.CrossRefGoogle ScholarPubMed
31.Wyse, ATS, Wajner, M, Brusque, A, Wannmacher, M. Alanine reverses the inhibitory effect of phenylalanine and its metabolites on Na+, K+-ATPase in synaptic plasma membranes from cerebral cortex of rats. Biochem Soc Trans 1995;23:227.CrossRefGoogle ScholarPubMed
32.Chan, KM, Delfer, D, Junger, KD.A direct colorimetric assay for Ca2+-stimulated ATPase activity. Anal Biochem 1986;157:375380.CrossRefGoogle ScholarPubMed
33.Bradford, MM.A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-die-binding. Anal Biochem 1976;72:248254.CrossRefGoogle Scholar
34.Nau, R, Bruck, W. Neuronal injury in bacterial meningitis: Mechanisms and implications for therapy. Trends Neurosci 2002;25:3845.CrossRefGoogle ScholarPubMed
35.Barichello, T, Savi, GD, Simões, LR et al. Evaluation of mitochondrial respiratory chain in the brain of rats after pneumococcal meningitis. Brain Res Bull 2010;82:302307.CrossRefGoogle ScholarPubMed
36.Ji, L, Chauhan, A, Brown, WT, Chauhan, V. Increased activities of Na+/K+-ATPase and Ca2+/Mg2+-ATPase in the frontal cortex and cerebellum of autistic individuals. Life Sci 2009;16:788793.CrossRefGoogle Scholar
37.Molloy, CA, Morrow, AL, Meinzen-Derr, J et al. Elevated cytokine levels in children with autism spectrum disorder. J Neuroimmunol 2006;172:198205.CrossRefGoogle ScholarPubMed
38.Ashwood, P, Wakefield, AJ. Immune activation of peripheral blood and mucosal cd3+ lymphocyte cytokine profiles in children with autism and gastrointestinal symptoms. J Neuroimmunol 2006;173:126134.CrossRefGoogle ScholarPubMed
39.Croonenberghs, J, Bosmans, E, Deboutte, D, Kenis, G, Maes, M. Activation of the inflammatory response system in autism. Neuropsychobiology 2002;45:16.CrossRefGoogle ScholarPubMed
40.Basu, S, Fenton, MJ. Toll-like receptors: function and roles in lung disease. Am J Physiol Lung Cell Mol Physiol 2004;286:887892.CrossRefGoogle ScholarPubMed
41.Hotchkiss, RS, Karl, IE.Reevaluation of the role of cellular hypoxia and bioenergetic failure in sepsis. JAMA 1992;267:15031510.CrossRefGoogle ScholarPubMed
42.Jones, SB, Westfall, MV, Sayeed, MM.Plasma catecholamines during E. coli bacteremia in conscious rats. Am J Physiol 1988;254:470477.Google Scholar
43.Kling, DE, Cavicchio, AJ, Sollinger, CA, Madoff, LC, Schnitzer, JJ, Kinane, TB.Lactic acid is a potential virulence factor for group B Streptococcus. Microb Pathog 2009;46:4352.CrossRefGoogle ScholarPubMed
44.Scheiner-Bobis, G.The Na(+), K(+)-ATPase: more than just a sodium pump. Cardiovasc Res 2011;89:68.CrossRefGoogle Scholar
45.Brandt, CT.Experimental studies of pneumococcal meningitis. Dan Med Bull 2010;57:122.Google ScholarPubMed