Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-03T14:08:51.923Z Has data issue: false hasContentIssue false

Decreased beta 1 (12–15 Hertz) power modulates the transfer of suicidal ideation to suicide in major depressive disorder

Published online by Cambridge University Press:  22 August 2023

Chenguang Jiang
Affiliation:
Department of Psychiatry, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu Province, China
Zixuan Huang
Affiliation:
Department of Music and Wellbeing, School of Music, University of Leeds, Leeds, UK
Zhenhe Zhou
Affiliation:
Department of Psychiatry, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu Province, China
Limin Chen*
Affiliation:
Department of Psychiatry, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu Province, China
Hongliang Zhou*
Affiliation:
Department of Clinical Psychology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
*
Corresponding authors: Limin Chen; Email: [email protected]; Hongliang Zhou; Email: [email protected]
Corresponding authors: Limin Chen; Email: [email protected]; Hongliang Zhou; Email: [email protected]

Abstract

Background:

Suicide prevention for major depressive disorder (MDD) is a worldwide challenge, especially for suicide attempt (SA). Viewing suicide as a state rather than a lifetime event provided new perspectives on suicide research.

Objective:

This study aimed to verify and complement SAs biomarkers of MDD with a recent SA sample.

Methods:

This study included 189 participants (60 healthy controls; 47 MDD patients with non-suicide (MDD-NSs), 40 MDD patients with suicide ideation (MDD-SIs) and 42 MDD patients with SA (MDD-SAs)). MDD patients with an acute SA time was determined to be within 1 week since the last SA. SUICIDALITY Part in MINI was applied to evaluate suicidality. Absolute powers in 14 frequency bands were extracted from subject’s resting-state electroencephalography data and compared within four groups. The relationship among suicidality, the number of SA and powers in significant frequency bands were investigated.

Results:

MDD-SIs had increased powers in delta, theta, alpha and beta band on the right frontocentral channels compared to MDD-NSs, while MDD-SAs had decreased powers in delta, beta and gamma bands on widely the right frontocentral and parietooccipital channels compared to MDD-SIs. Beta 1 power was the lowest in MDD-SAs and was modulated by the number of SA. The correlation between suicidality and beta 1 power was negative in MDD-SAs and positive in MDD-SIs.

Conclusion:

Reduced beta 1 (12–15 Hz) power could be essential in promoting suicidal behaviour in MDD. Research on recent SA samples contributes to a better understanding of suicide mechanisms and preventing suicidal behaviour in MDD.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Scandinavian College of Neuropsychopharmacology

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adaikkan, C and Tsai, LH (2020) Gamma entrainment: impact on neurocircuits, glia, and therapeutic opportunities. Trends in Neurosciences 43(1), 2441.CrossRefGoogle ScholarPubMed
Andreou, C, Frielinghaus, H, Rauh, J, Mußmann, M, Vauth, S, Braun, P, Leicht, G and Mulert, C (2017) Theta and high-beta networks for feedback processing: a simultaneous EEG-fMRI study in healthy male subjects. Translational Psychiatry 7(1), e1016e1016.CrossRefGoogle ScholarPubMed
Arikan, MK, Gunver, MG, Tarhan, N and Metin, B (2019) High-Gamma: a biological marker for suicide attempt in patients with depression. Journal of Affective Disorders 254, 16.CrossRefGoogle ScholarPubMed
Ballard, ED, Gilbert, JR, Wusinich, C and Zarate, CA Jr (2021) New methods for assessing rapid changes in suicide risk. Frontiers in Psychiatry 12, 598434.CrossRefGoogle ScholarPubMed
Benschop, L, Baeken, C, Vanderhasselt, MA, Van de Steen, F, Van Heeringen, K and Arns, M (2019) Electroencephalogram resting state frequency power characteristics of suicidal behavior in female patients with major depressive disorder. Journal of Clinical Psychiatry 80, 18m12661.Google ScholarPubMed
Buzsáki, G and Wang, XJ (2012) Mechanisms of gamma oscillations. Annual Review of Neuroscience 35(1), 203225.CrossRefGoogle ScholarPubMed
Cáceda, R, Bush, K, James, GA, Stowe, ZN and Kilts, CD (2018) Modes of resting functional brain organization differentiate suicidal thoughts and actions: a preliminary study. Journal of Clinical Psychiatry 79, 17m11901.Google ScholarPubMed
Cáceda, R, Durand, D, Cortes, E, Prendes-Alvarez, S, Moskovciak, T, Harvey, PD and Nemeroff, CB (2014) Impulsive choice and psychological pain in acutely suicidal depressed patients. Psychosomatic Medicine 76(6), 445451.CrossRefGoogle ScholarPubMed
Cáceda, R, Kordsmeier, NC, Golden, E, Gibbs, HM and Delgado, PL (2017) Differential processing of physical and psychological pain during acute suicidality. Psychotherapy and Psychosomatics 86(2), 116118.CrossRefGoogle ScholarPubMed
Chen, TC and Lin, IM (2020) The learning effects and curves during high beta down-training neurofeedback for patients with major depressive disorder. Journal of Affective Disorders 266, 235242.CrossRefGoogle ScholarPubMed
Chesney, E, Goodwin, GM and Fazel, S (2014) Risks of all-cause and suicide mortality in mental disorders: a meta-review. World Psychiatry 13(2), 153160.CrossRefGoogle ScholarPubMed
De Pascalis, V, Sommer, K and Scacchia, P (2018) Resting frontal asymmetry and reward sensitivity theory motivational traits. Scientific Reports 8(1), 13154.CrossRefGoogle ScholarPubMed
Deisenhammer, EA, Ing, CM, Strauss, R, Kemmler, G, Hinterhuber, H and Weiss, EM (2009) The duration of the suicidal process: how much time is left for intervention between consideration and accomplishment of a suicide attempt? The Journal of Clinical Psychiatry 70(1), 1924.CrossRefGoogle ScholarPubMed
Dell’Acqua, C, Ghiasi, S, Messerotti Benvenuti, S, Greco, A, Gentili, C and Valenza, G (2021) Increased functional connectivity within alpha and theta frequency bands in dysphoria: a resting-state EEG study. Journal of Affective Disorders 281, 199207.CrossRefGoogle ScholarPubMed
Dombrovski, AY and Hallquist, MN (2017) The decision neuroscience perspective on suicidal behavior: evidence and hypotheses. Current Opinion in Psychiatry 30(1), 714.CrossRefGoogle ScholarPubMed
Dong, M, Zeng, LN, Lu, L, Li, XH, Ungvari, GS, Ng, CH, Chow, IHI, Zhang, L, Zhou, Y and Xiang, YT (2019) Prevalence of suicide attempt in individuals with major depressive disorder: a meta-analysis of observational surveys. Psychological Medicine 49(10), 16911704.CrossRefGoogle ScholarPubMed
Duan, M, Wang, L, Liu, X, Su, F, An, L and Liu, S (2021) Abnormal brain activity in fronto-central regions in mental disorders with suicide: an EEG study. Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2021, 10351038.Google ScholarPubMed
Engel, AK and Fries, P (2010) Beta-band oscillations--signalling the status quo? Current Opinion in Neurobiology 20(2), 156165.CrossRefGoogle ScholarPubMed
Farooq, S, Tunmore, J, Wajid Ali, M and Ayub, M (2021) Suicide, self-harm and suicidal ideation during COVID-19: a systematic review. Psychiatry Research 306, 114228.CrossRefGoogle ScholarPubMed
Giakoumatos, CI, Tandon, N, Shah, J, Mathew, IT, Brady, RO, Clementz, BA, Pearlson, GD, Thaker, GK, Tamminga, CA, Sweeney, JA and Keshavan, MS (2013) Are structural brain abnormalities associated with suicidal behavior in patients with psychotic disorders? Journal of Psychiatric Research 47(10), 13891395.CrossRefGoogle ScholarPubMed
Gibbs, HM, Davis, L, Han, X, Clothier, J, Eads, LA and Cáceda, R (2016) Association between C-reactive protein and suicidal behavior in an adult inpatient population. Journal of Psychiatric Research 79, 2833.CrossRefGoogle Scholar
Hamilton, M (1959) The assessment of anxiety states by rating. British Journal of Medical Psychology 32(1), 5055.CrossRefGoogle ScholarPubMed
Hamilton, M (1960) A rating scale for depression. Journal of Neurology, Neurosurgery & Psychiatry 23(1), 5662.CrossRefGoogle ScholarPubMed
Hill, NTM, Robinson, J, Pirkis, J, Andriessen, K, Krysinska, K, Payne, A, Boland, A, Clarke, A, Milner, A, Witt, K, Krohn, S and Lampit, A (2020) Association of suicidal behavior with exposure to suicide and suicide attempt: a systematic review and multilevel meta-analysis. PLOS Medicine 17(3), e1003074.CrossRefGoogle ScholarPubMed
Hofman, D and Schutter, DJ (2012) Asymmetrical frontal resting-state beta oscillations predict trait aggressive tendencies and behavioral inhibition. Social Cognitive and Affective Neuroscience 7(7), 850857.CrossRefGoogle ScholarPubMed
Hunter, AM, Leuchter, AF, Cook, IA and Abrams, M (2010) Brain functional changes (QEEG cordance) and worsening suicidal ideation and mood symptoms during antidepressant treatment. Acta Psychiatrica Scandinavica 122(6), 461469.CrossRefGoogle ScholarPubMed
Iznak, AF, Iznak, EV, Damyanovich, EV and Oleichik, IV (2021) Differences of EEG frequency and spatial parameters in depressive female adolescents with suicidal attempts and non-suicidal self-injuries. Clinical EEG and Neuroscience 52(6), 406413.CrossRefGoogle ScholarPubMed
Jang, J, Lee, G, Seo, J, Na, EJ and Hong, JJ (2020) Suicidal attempts, insomnia, and major depressive disorder among family members of suicide victims in South Korea. Journal of Affective Disorders 272, 423431.CrossRefGoogle ScholarPubMed
Jenkinson, N and Brown, P (2011) New insights into the relationship between dopamine, beta oscillations and motor function. Trends in Neurosciences 34(12), 611618.CrossRefGoogle ScholarPubMed
Johnston, JAY, Wang, F, Liu, J, Blond, BN, Wallace, A, Liu, J, Spencer, L, Cox Lippard, ET, Purves, KL, Landeros-Weisenberger, A, Hermes, E, Pittman, B, Zhang, S, King, R, Martin, A, Oquendo, MA and Blumberg, HP (2017) Multimodal neuroimaging of frontolimbic structure and function associated with suicide attempts in adolescents and young adults with bipolar disorder. American Journal of Psychiatry 174(7), 667675.CrossRefGoogle Scholar
Karch, S, Loy, F, Krause, D, Schwarz, S, Kiesewetter, J, Segmiller, F, Chrobok, AI, Keeser, D and Pogarell, O (2016) Increased event-related potentials and alpha-, beta-, and gamma-activity associated with intentional actions. Frontiers in Psychology 7, 7.CrossRefGoogle ScholarPubMed
Kleiman, EM, Turner, BJ, Fedor, S, Beale, EE, Huffman, JC and Nock, MK (2017) Examination of real-time fluctuations in suicidal ideation and its risk factors: results from two ecological momentary assessment studies. Journal of Abnormal Psychology 126(6), 726738.CrossRefGoogle ScholarPubMed
Klonsky, ED, May, AM and Saffer, BY (2016) Suicide, suicide attempts, and suicidal ideation. Annual Review of Clinical Psychology 12(1), 307330.CrossRefGoogle ScholarPubMed
Knipe, D, Padmanathan, P, Newton-Howes, G, Chan, LF and Kapur, N (2022) Suicide and self-harm. Lancet 399(10338), 19031916.CrossRefGoogle ScholarPubMed
Kober, SE, Witte, M, Stangl, M, Väljamäe, A, Neuper, C and Wood, G (2015) Shutting down sensorimotor interference unblocks the networks for stimulus processing: an SMR neurofeedback training study. Clinical Neurophysiology 126(1), 8295.CrossRefGoogle ScholarPubMed
Krepel, N, Benschop, L, Baeken, C, Sack, AT and Arns, M (2021) An EEG signature of suicidal behavior in female patients with major depressive disorder? A non-replication. Biological Psychology 161, 108058.CrossRefGoogle ScholarPubMed
Lee, JY, Park, SM, Kim, YJ, Kim, DJ, Choi, SW, Kwon, JS and Choi, JS (2017a) Resting-state EEG activity related to impulsivity in gambling disorder. Journal of Behavioral Addictions 6(3), 387395.CrossRefGoogle ScholarPubMed
Lee, SM, Jang, KI and Chae, JH (2017b) Electroencephalographic correlates of suicidal ideation in the theta band. Clinical EEG and Neuroscience 48(5), 316321.CrossRefGoogle ScholarPubMed
Levy, DJ and Glimcher, PW (2012) The root of all value: a neural common currency for choice. Current Opinion in Neurobiology 22(6), 10271038.CrossRefGoogle ScholarPubMed
Lieberman, A, Rogers, ML, Graham, A and Joiner, TE (2021) Examining correlates of suicidal ideation between those with and without psychosis in a psychiatric inpatient sample. Journal of Affective Disorders 294, 254260.CrossRefGoogle Scholar
Liu, D and Dan, Y (2019) A motor theory of sleep-wake control: Arousal-action circuit. Annual Review of Neuroscience 42(1), 2746.CrossRefGoogle ScholarPubMed
Lukito, S, Norman, L, Carlisi, C, Radua, J, Hart, H, Simonoff, E and Rubia, K (2020) Comparative meta-analyses of brain structural and functional abnormalities during cognitive control in attention-deficit/hyperactivity disorder and autism spectrum disorder. Psychological Medicine 50(6), 894919.CrossRefGoogle ScholarPubMed
Marlow, NM, Xie, Z, Tanner, R, Jo, A and Kirby, AV (2021) Association between disability and suicide-related outcomes among U.S. adults. American Journal of Preventive Medicine 61(6), 852862.CrossRefGoogle ScholarPubMed
Mazza, MG, De Lorenzo, R, Conte, C, Poletti, S, Vai, B, Bollettini, I, Melloni, EMT, Furlan, R, Ciceri, F, Rovere-Querini, P and Benedetti, F (2020) Anxiety and depression in COVID-19 survivors: role of inflammatory and clinical predictors. Brain Behavior and Immunity 89, 594600.CrossRefGoogle ScholarPubMed
Meerwijk, EL, Ford, JM and Weiss, SJ (2015) Resting-state EEG delta power is associated with psychological pain in adults with a history of depression. Biological Psychology 105, 106114.CrossRefGoogle ScholarPubMed
Meerwijk, EL and Weiss, SJ (2018) Tolerance for psychological pain and capability for suicide: contributions to suicidal ideation and behavior. Psychiatry Research 262, 203208.CrossRefGoogle ScholarPubMed
Neal, LB and Gable, PA (2017) Regulatory control and impulsivity relate to resting frontal activity. Social Cognitive and Affective Neuroscience 12(9), 13771383.CrossRefGoogle ScholarPubMed
Norman, LJ, Carlisi, C, Lukito, S, Hart, H, Mataix-Cols, D, Radua, J and Rubia, K (2016) Structural and functional brain abnormalities in attention-deficit/hyperactivity disorder and obsessive-compulsive disorder: a comparative meta-analysis. JAMA Psychiatry 73(8), 815825.CrossRefGoogle ScholarPubMed
Olié, E, Ding, Y, Le Bars, E, de Champfleur, NM, Mura, T, Bonafé, A, Courtet, P and Jollant, F (2015) Processing of decision-making and social threat in patients with history of suicidal attempt: a neuroimaging replication study. Psychiatry Research: Neuroimaging 234(3), 369377.CrossRefGoogle ScholarPubMed
Rakús, T, Hubčíková, K, Bruncvik, L, Pechanová, Z and Brunovský, M (2021) Electrophysiological correlates of suicidality. Psychiatria Danubina, 33, 266279.CrossRefGoogle ScholarPubMed
Ribeiro, JD, Bender, TW, Buchman, JM, Nock, MK, Rudd, MD, Bryan, CJ, Lim, IC, Baker, MT, Knight, C, Gutierrez, PM and Joiner, TE Jr (2015) An investigation of the interactive effects of the capability for suicide and acute agitation on suicidality in a military sample. Depression and Anxiety 32(1), 2531.CrossRefGoogle Scholar
Rogers, ML, Gorday, JY and Joiner, TE (2021) Examination of characteristics of ruminative thinking as unique predictors of suicide-related outcomes. Journal of Psychiatric Research 139, 17.CrossRefGoogle ScholarPubMed
Schmaal, L, van Harmelen, AL, Chatzi, V, Lippard, ETC, Toenders, YJ, Averill, LA, Mazure, CM and Blumberg, HP (2020) Imaging suicidal thoughts and behaviors: a comprehensive review of 2 decades of neuroimaging studies. Molecular Psychiatry 25(2), 408427.CrossRefGoogle ScholarPubMed
Sher, L (2021) Post-COVID syndrome and suicide risk. QJM: An International Journal of Medicine 114(2), 9598.CrossRefGoogle ScholarPubMed
Si, TM, Shu, L, Dang, WM, Su, YA and Zhang, WH (2009) Evaluation of the reliability and validity of Chinese version of the mini-international neuropsychiatric interview in patients with mental disorders. Chinese Mental Health Journal 23(7), 493497.Google Scholar
Smith, K (2014) Mental health: a world of depression. Nature 515(7526), 181181.CrossRefGoogle ScholarPubMed
Struve, FA (1986) Clinical electroencephalography and the study of suicide behavior. Suicide and Life-Threatening Behavior 16(2), 133165.CrossRefGoogle Scholar
Suominen, K, Isometsä, E, Henriksson, M, Ostamo, A and Lönnqvist, J (1997) Hopelessness, impulsiveness and intent among suicide attempters with major depression, alcohol dependence, or both. Acta Psychiatr Scand 96(2), 142149.CrossRefGoogle ScholarPubMed
Thompson, C and Ong, ELC (2018) The association between suicidal behavior, attentional control, and frontal asymmetry. Frontiers in Psychiatry 9, 79.CrossRefGoogle ScholarPubMed
Turecki, G and Brent, DA (2016) Suicide and suicidal behaviour. Lancet 387(10024), 12271239.CrossRefGoogle ScholarPubMed
Urry, HL, van Reekum, CM, Johnstone, T, Kalin, NH, Thurow, ME, Schaefer, HS, Jackson, CA, Frye, CJ, Greischar, LL, Alexander, AL and Davidson, RJ (2006) Amygdala and ventromedial prefrontal cortex are inversely coupled during regulation of negative affect and predict the diurnal pattern of cortical secretion among older adults. Journal of Neuroscience 26(16), 44154425.CrossRefGoogle ScholarPubMed
Vance, A and Winther, J (2021) Irritability and inattention not sad low mood predict impulsiveness in children and adolescents with major depressive disorder and persistent depressive disorder. J Nerv Ment Dis 209(6), 454458.CrossRefGoogle Scholar
Vanyukov, PM, Szanto, K, Siegle, GJ, Hallquist, MN, Reynolds, CF, Aizenstein, HJ and Dombrovski, AY (2015) Impulsive traits and unplanned suicide attempts predict exaggerated prefrontal response to angry faces in the elderly. The American Journal of Geriatric Psychiatry 23(8), 829839.CrossRefGoogle ScholarPubMed
Volow, MR, Zung, WW and Green, RL Jr (1979) Electroencephalographic abnormalities in suicidal patients. Journal of Clinical Psychiatry 40(5), 213216.Google ScholarPubMed
Wagner, J, Makeig, S, Gola, M, Neuper, C and Müller-Putz, G (2016) Distinct β band oscillatory networks subserving motor and cognitive control during gait adaptation. Journal of Neuroscience 36(7), 22122226.CrossRefGoogle ScholarPubMed
Yoon, SH, Shim, SH and Kim, JS (2022) Electrophysiological changes between patients with suicidal ideation and suicide attempts: an event-related potential study. Frontiers in Psychiatry 13, 900724.CrossRefGoogle ScholarPubMed
Young, A, Hunt, T and Ericson, M (2021) The slowest shared resonance: a review of electromagnetic field oscillations between central and peripheral nervous systems. Frontiers in Human Neuroscience 15, 796455.CrossRefGoogle ScholarPubMed
Yu, M, Cullen, N, Linn, KA, Oathes, DJ, Seok, D, Cook, PA, Duprat, R, Aselcioglu, I, Moore, TM, Davatzikos, C, Oquendo, MA, Weissman, MM, Shinohara, RT and Sheline, YI (2021) Structural brain measures linked to clinical phenotypes in major depression replicate across clinical centres. Molecular Psychiatry 26(7), 27642775.CrossRefGoogle ScholarPubMed
Zhang, R, Geng, X and Lee, TMC (2017) Large-scale functional neural network correlates of response inhibition: an fMRI meta-analysis. Brain Structure & Function 222(9), 39733990.CrossRefGoogle ScholarPubMed
Zimmerman, M, Martinez, JH, Young, D, Chelminski, I and Dalrymple, K (2013) Severity classification on the Hamilton Depression Rating Scale. J Affect Disord 150(2), 384388.CrossRefGoogle ScholarPubMed
Supplementary material: File

Jiang et al. supplementary material

Jiang et al. supplementary material
Download Jiang et al. supplementary material(File)
File 71.9 KB