Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T15:08:35.079Z Has data issue: false hasContentIssue false

The crossroads of anticipatory attention and motor preparation

Published online by Cambridge University Press:  18 September 2015

Samenvatting

In een drietal artikelen wordt de overeenkomst besproken tussen Processen die ten grondslag liggen aan twee verschillende functies: anticipatoire attentie en motorische preparatie. Beide functies zijn van belang voor een optimale afstemming op onze omgeving. Het achterste gedeelte van de hersenschors houdt zieh voornamelijk bezig met binnenkomende informatie uit de buiten-wereld en het eigen lichaam, terwijl het voorste deel essentieel is voor onze acties en readies. Als bekend is wanneer wij met relevante informatie worden geconfronteerd en vermoed kan worden hoe daarop moet worden gereageerd, worden modali-teitsspeeifieke sensorische en motorische kanalen geopend om zo een snelle en adequate reactie te garanderen. In deze tekst wordt gepostuleerd dat de achterste en voorste cortexhelften op vergelijkbare wijze vanuit de thalamus worden geactiveerd als onder-deel van anticipatoire attentie en motorische preparatie. Cruciaal is de inhiberende invloed die de nucleus reticularis (NR) uitoefent op de onderliggende thalamuskernen. De NR staat onder een dubbele controle: exciterend vanuit de prefrontale cortex en inhiberend vanuit het neostriatum. Aangegeven wordt hoe selectie in de informatieverwerking via deze balans kan worden gerealiseerd, zowel in het sensorische als het motorische domein. Nadat in Deel I een overzicht is gegeven van de relevante anatomische structuren, wordt hier het model voor anticipatoire attentie en motorische preparatie gepresenteerd. In het volgende artikel wordt neuropsychologische evidentie gepresenteerd, waarna het psychofysiologisch onderzoek aan de orde komt dat heeft geleid tot de formule ring van het model.

Type
Research Article
Copyright
Copyright © Scandinavian College of Neuropsychopharmacology 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literatuur

30.Evarts, EV.Pyramidal tract activity associated with a conditioned hand movement in the monkey. J Neurophysiol 1966; 29: 1011–27.CrossRefGoogle ScholarPubMed
31.Evarts, EV.Relation of pyramidal tract activity to force exerted during voluntary movement. J Neurophysiol 1968; 31: 1427.CrossRefGoogle ScholarPubMed
32.Georgopoulos, AP, Kalaska, JF, Caminiti, R, Massey, JT.On the relations between the direction of two dimensional arm movements and cell discharge in primate motor cortex. J Neurose 1982; 2: 1527–37.CrossRefGoogle ScholarPubMed
33.Deiber, L, Passingham, RE, Colebatch, JG, et al.Cortical areas and the selection of movement: a study with positron emission tomography. Exp Brain R 1991; 84: 393402.Google ScholarPubMed
34.Riehle, A, Requin, J. Monkey primary motor and premotor cortex: single-cell activity related to prior information about direction and extent of an intended movement. J Neurophysiol 1989; 61: 534–49.CrossRefGoogle ScholarPubMed
35.Wiesendanger, M. The riddle of supplementary motor area function. In: Mano, N, Hamada, I, DeLong, MR, red. Role of the Cerebellum and basal Ganglia in voluntary Movement. Amsterdam: Elsevier Sci Publ, 1993: 253–66.Google Scholar
36.Roland, PE, Larsen, B, Lassen, NA, Skinhoj, E. Supplementary motor area and other cortical areas in organization of voluntary movements in man. J Neurophysiol 1980; 43: 118–36.CrossRefGoogle ScholarPubMed
37.Deecke, L, Lang, W. Movement-related potentials and complex actions: coordinating role of the supplementary motor area. In: Eccles, JC, Creutzfeldt, O, red. The Principles of Design and Operation of the Brain, Berlin, New York: Springer, 1990: 303–36.Google Scholar
38.Lang, W, Obrig, H, Lindinger, G, Deecke, L. Changes of cortical activity when executing learned motor sequences. Exp Brain Res 1992; 89: 435–40.CrossRefGoogle ScholarPubMed
39.Tanji, J. Comparison of neuronal activities in the monkey supplementary and precentral motor areas. Behav Brain Res 1985; 18: 137–42.CrossRefGoogle ScholarPubMed
40.Tanji, J. Neuronal activity in the primate non-primary cortex is different from that in the primary motor cortex. In: Motor Areas of the Cerebral Cortex. Ciba Foundation Symposium 132. Chichester: Wiley, 1987: 142–50.Google Scholar
41.Ikeda, A, Lüders, HO, Burgess, RC, Shibasaki, H. Movement-related potentials recorded from supllementary motor area and primary motor area. Role of supplementary motor area in voluntary movements. Brain 1992; 115: 1017–43.CrossRefGoogle ScholarPubMed
42.Ikeda, A, Lüders, HO, Burgess, RC, Shibasaki, H. Movement-related potentials associated with single and repetitive movements recorded from human supplementary motor area. EEG clin Neurol 1993; 89: 269–77.Google ScholarPubMed
43.Jacobsen, CF. Studies of cerebral function in primates: I The functions of the frontal association areas in monkeys. Comp Psychol Monogr 1936; 13: 360.Google Scholar
44.Kolb, B, Wishaw, IQ.Fundamentals of Human Neuropsychology, third ed. New York: Freeman, 1990.Google Scholar
45.Milner, B. Some effects of frontal lobectomy in man. In: Warren, JM, Akert, K, red. The frontal granular Cortex and Behavior. New York: McGraw-Hill, 1964: 313–34.Google Scholar
46.Perret, E. The left frontal lobe lobe of man and the suppression of habitual responses in verbal categorial behavior. Neuropsychol 1974; 12: 323–30.CrossRefGoogle Scholar
47.Guitton, D, Buchtel, HA, Douglas, RM.Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades. Exp Brain Res 1985; 58: 455–72. Geciteerd bij Goldman-Rakic.CrossRefGoogle ScholarPubMed
48.Teuber, HL.The riddle of the frontal lobe in man. In Warren, JM, Akert, K, red. The frontal granular Cortex and Behavior. New York: McGraw-Hill, 1964: 410–44.Google Scholar
49.Held, R, Hein, A. Movement produced stimulation in the development of visually guided behavior. J comp Phys Psychol 1963; 56: 872–6.CrossRefGoogle ScholarPubMed
50.Bossom, J. The effect of brain lesions on prism adaptation in monkey. Psychon Sci 1965; 2: 45–6. Geciteerd bij Teuber.CrossRefGoogle Scholar
51.Brunia, CHM. Waiting in readiness: gating in attention and motor preparation. Psychophysiol 1990; 30: 327–40.CrossRefGoogle Scholar
52.Brodal, P. The central nervous System. Oxford: Oxf Univ Press, 1992.Google Scholar
53.Moruzzi, G, Magoun, HW.Brain stem reticular formation and activation of EEG. EEG clin Neurol 1949; 1: 455–73.CrossRefGoogle ScholarPubMed
54.Kanai, T, Szerb, JC.Mesencephalic reticular activating system and cortical acetylcholine output. Nature 1965; 205: 80–2.CrossRefGoogle ScholarPubMed
55.Bradley, PB.The effect of atropine and related drugs on the EEG and behavior. Progr Brain Res 1968; 28: 313.CrossRefGoogle Scholar
56.Vanderwolf, CH, Robinson, TE.Reticulo-cortical activity and behavior: a critique of arousal theory and a new synthesis. Beh Brain Sci 1981; 4: 459514.CrossRefGoogle Scholar
57.Groenewegen, HJ, Berendse, HW.The specificity of the “nonspecific” midline and thalamic nuclei. TINS 1994; 17:5257.Google ScholarPubMed
58.Magoun, HW.The waking Brain. Springfield: Thomas, 1963.Google Scholar
59.Robbins, TW.Psychopharmacological and neurobiological aspects of the energetics of information processing. In: Hockey, GRJ, Gaillard, AWK, Coles, MGH, red. Energetics and human Information Processing. Dordrecht: Nijhoff, 1986: 7190.CrossRefGoogle Scholar
60.Iversen, SD.Where in the brain do benzodiazepines act. In: Trimble, M, red. Benzodiazepines divided. Chichester: Wiley, 1983. Geciteerd bij Robbins.Google Scholar
61.Pribram, KH, McGuiness, D. Arousal, activation and effort in the control of attention. Psychol Rev 1975; 182: 116–49.CrossRefGoogle Scholar
62.Skinner, JE, Yingling, CD.Regulation of slow potential shifts in nucleus reticularis thalami by the mesencephalic reticular formation and the frontal granular cortex. EEG clin Neurol 1976; 40: 288–96.CrossRefGoogle ScholarPubMed