Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-22T23:59:52.243Z Has data issue: false hasContentIssue false

β-Carboline harmine reverses the effects induced by stress on behaviour and citrate synthase activity in the rat prefrontal cortex

Published online by Cambridge University Press:  29 May 2013

Helena Mendes Abelaira
Affiliation:
Laboratório de Neurociências, Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
Gislaine Zilli Réus*
Affiliation:
Laboratório de Neurociências, Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
Giselli Scaini
Affiliation:
Laboratório de Bioenergética Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
Emilio Luiz Streck
Affiliation:
Laboratório de Bioenergética Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
José Alexandre Crippa
Affiliation:
Departamento de Neurociências e Ciências do Comportamento, Instituto de Ciência e Tecnologia Translacional em Medicina, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
João Quevedo
Affiliation:
Laboratório de Neurociências, Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
*
Gislaine Z. Réus, Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil. Fax: +55 48 3431-2736; E-mail: [email protected]

Abstract

Objectives

The present study was aimed at evaluating the effects of the administration of β-carboline harmine on behaviour and citrate synthase activity in the brain of rats exposed to chronic mild stress (CMS) procedure.

Methods

To this aim, after 40 days of exposure to CMS procedure, rats were treated with harmine (15 mg/kg/day) for 7 days, then memory, anhedonia and citrate synthase activity were assessed.

Result

Our findings demonstrated that stressed rats treated with saline increased the sucrose intake, and the stressed rats treated with harmine reversed this effect. Neither stress nor harmine treatment altered memory performance in rats. In addition, chronic stressful situations induced increase in citrate synthase activity in the prefrontal cortex, but not in the hippocampus and striatum. Treatment with harmine reversed the increase in citrate synthase activity in the prefrontal cortex.

Conclusion

These findings support the hypothesis that harmine could be involved in controlling the energy metabolism.

Type
Original Articles
Copyright
Copyright © Scandinavian College of Neuropsychopharmacology 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Poindexter, EH, Carpenter, RD. The isolation of harmane and norharmane from tobacco and cigarette smoke. Phytochemistry 1962;1:215221.CrossRefGoogle Scholar
2.Airaksinen, MM, Kari, I. B-carbolines, psychoactive compounds in the mammalian body: part I. Occurrence, origin and metabolism. Med Biol 1981;59:2134.Google Scholar
3.Beck, O, Faull, KF. Concentrations of the enantiomers of 5-hydroxymethtryptoline in mammalian urine: implications for in vivo biosynthesis. Biochem Pharmacol 1986;35:26362639.CrossRefGoogle ScholarPubMed
4.Nishigata, H, Yoshida, D, Matsumoto, T. Determination of the yield of norharman and harman in the pyrolytic products of proteins. Agric Biol Chem 1980;44:209211.Google Scholar
5.Loew, GH, Nienow, J, Lawson, JA, Toll, L, Uyeno, ET. Theoretical structure-activity studies of h-carboline analogs. Requirements for benzodiazepine receptor affinity and antagonist activity. Mol Pharmacol 1985;28:1731.Google ScholarPubMed
6.Lutes, J, Lorden, JF, Beales, M, Lotmans, GA. Tolerance to the tremorogenic effects of harmaline: evidence for altered olivo-cerebellar function. Neuropharmacology 1988;27:849855.CrossRefGoogle Scholar
7.Li, WK. Extraction of alkaloids from Peganum harmala L. and study on their antihydatid chemical composition. J Lanzhou Med Coll 1996;22:1618.Google Scholar
8.Wang, X, Wang, H, He, A. Study on the antitumor effect of total harmala. J Chin Med Univ 1996;25:240242.Google Scholar
9.Farzin, D, Mansouri, N. Antidepressant-like effect of harmane and other β-carbolines in the mouse forced swim test. Eur Neuropsychopharmacol 2006;16:324328.CrossRefGoogle ScholarPubMed
10.Preskorn, SH, Baker, B, Kolluri, S, Menniti, FS, Krams, M, Landen, JW. An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-Methyl-D-Aspartate antagonist, CP-101,606, in patients with treatment-refractory major depressive disorder. J Clin Psychopharmacol 2008;28:631637.CrossRefGoogle ScholarPubMed
11.Fortunato, JJ, Reus, GR, Kirsch, TRet al. Effects of beta-carboline harmine on behavioural and physiological parameters observed in the chronic mild stress model: further evidence of antidepressant properties. Brain Res Bull 2010;81:491496.CrossRefGoogle ScholarPubMed
12.Réus, GZ, Stringari, RB, Gonç alves, CLet al. Administration of harmine and imipramine alters creatine kinase and mitochondrial respiratory chain activities in the rat brain. Depress Res Treat 2012;2012:987397.Google ScholarPubMed
13.Gardner, A, Salmaso, D, Nardo, Det al. Mitochondrial function is related to alterations at brain SPECT in depressed patients. CNS Spectr 2008;13:805814.CrossRefGoogle ScholarPubMed
14.Agostinho, FR, Scaini, G, Ferreira, GKet al. Effects of olanzapine, fluoxetine and olanzapine/fluoxetine on creatine kinase activity in rat brain. Brain Res Bull 2009;80:337340.CrossRefGoogle ScholarPubMed
15.Abelaira, HM, Réus, GZ, Ribeiro, KFet al. Effects of acute and chronic treatment elicited by lamotrigine on behavior, energy metabolism, neurotrophins and signaling cascades in rats. Neurochem Int 2011;59:11631174.CrossRefGoogle ScholarPubMed
16.Arbel, I, Kadar, T, Silbermann, M, Levy, A. The effects of longterm corticosterone administration on hippocampal morphology and cognitive performance of middle-aged rats. Brain Res 1994;657:227235.CrossRefGoogle ScholarPubMed
17.Belanoff, JK, Gross, K, Yager, A, Schatzberg, AF. Corticosteroids and cognition. J Psychiatr Res 2001;35:127145.CrossRefGoogle ScholarPubMed
18.Bodnoff, SR, Humphreyz, AG, Lehman, JC, Diamond, DM, Rose, GM, Meaney, MJ. Enduring effects of chronic corticosterone treatment on spatial learning, synaptic plasticity, and hippocampal neuropathology in young and mid-aged rats. J Neurosci 1995;15:6169.CrossRefGoogle Scholar
19.Conrad, CD, Galea, LAM, Kuroda, Y, McEwen, BS. Chronic stress impairs rat spatial memory on the Y-maze, and this effect is blocked by tianeptine pretreatment. Behav Neurosci 1996;110:13211334.CrossRefGoogle ScholarPubMed
20.Dachir, S, Kadar, T, Robinzon, B, Levy, A. Cognitive deficits induced in young rats by long-term corticosterone administration. Behav Neural Biol 1993;60:103109.CrossRefGoogle ScholarPubMed
21.Krugers, HJ, Douma, BRK, Andringa, G, Bohus, B, Korf, J, Luiten, PGM. Exposure to chronic psychological stress and corticosterone in the rat: effects on spatial discrimination learning and hippocampal protein kinase Cg immunoreactivity. Hippocampus 1997;7:427436.3.0.CO;2-F>CrossRefGoogle Scholar
22.Fortunato, JF, Réus, GZ, Kirsch, TRet al. Acute harmine administration induces antidepressive-like effects and increases BDNF levels in the rat hippocampus. Prog Neuro-Psychoph 2009;33:14251430.CrossRefGoogle ScholarPubMed
23.Gamaro, GD, Manoli, LP, Torres, IL, Silveira, R, Dalmaz, C. Effects stress on feeding behavior and on monoamine levels in structures. Neurochem Int 2003;42:107114.CrossRefGoogle ScholarPubMed
24.Katz, RJ, Roth, KA, Carroll, BJ. Animal models and human depressive disorders. Neurosci Biobehav Rev 1981;5:231246.CrossRefGoogle ScholarPubMed
25.Kosten, TA, Gallowaym, MP, Duman, RS, Russell, DS, D'Sa, C. Repeated unpredictable stress and antidepressants differentially regulate expression of the bcl-2 family of apoptotic genes in rat cortical, hippocampal, and limbic brain structures. Neuropsychopharmacoly 2008;33:15451558.CrossRefGoogle ScholarPubMed
26.Lucca, G, Comim, CM, Valvassori, SSet al. Effects of chronic mild stress on the oxidative parameters in the rat brain. Neurochem Int 2008;54:358362.CrossRefGoogle Scholar
27.Vianna, MR, Alonso, M, Violo, Het al. Role of hippocampal signaling pathways in long-term memory formation of nonassociative learning task in the rat. Learnnig Memory 2000;7:333340.CrossRefGoogle ScholarPubMed
28.Lowry, OH, Rosebough, NG, Farr, AL, Randall, RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951;193:265275.CrossRefGoogle ScholarPubMed
29.Shepherd, D, Garland, PB. The kinetic properties of citrate synthase from rat liver mitochondria. Biochem J 1969;114:597610.CrossRefGoogle ScholarPubMed
30.Willner, P. Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 2005;52:90110.CrossRefGoogle ScholarPubMed
31.Moura, DJ, Rorig, C, Vieira, DLet al. Effects of beta-carboline alkaloids on the object recognition task in mice. Life Sci 2006;79:20992104.CrossRefGoogle ScholarPubMed
32.Della, F, Abelaira, HM, Réus, GZet al. Tianeptine treatment induces antidepressive-like effects and alters BDNF and energy metabolism in the brain of rats. Behav Brain Res 2013;28:93105.Google Scholar