Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T08:23:22.382Z Has data issue: false hasContentIssue false

Molecular targets of lithium action

Published online by Cambridge University Press:  24 June 2014

B Corbella*
Affiliation:
Clinical Institute of Psychiatry and Psychology, University of Barcelona, Barcelona, Spain
E Vieta
Affiliation:
Clinical Institute of Psychiatry and Psychology, University of Barcelona, Barcelona, Spain
*
B. Corbella, Clinical Institute of Psychiatry and Psychology, Hospital Clinic, University of Barcelona, IDIBAPS, Barcelona, Spain

Abstract

Lithium is an effective drug for both the treatment and prophylaxis of bipolar disorder. However, the precise mechanism of lithium action is not yet well understood. Extensive research aiming to elucidate the molecular mechanisms underlying the therapeutic effects of lithium has revealed several possible targets. The behavioral and physiological manifestations of the illness are complex and are mediated by a network of interconnected neurotransmitter pathways. Thus, lithium's ability to modulate the release of serotonin at presynaptic sites and modulate receptor-mediated supersensitivity in the brain remains a relevant line of investigation. However, it is at the molecular level that some of the most exciting advances in the understanding of the long-term therapeutic action of lithium will continue in the coming years. The lithium cation possesses the selective ability, at clinically relevant concentrations, to alter the PI second-messenger system, potentially altering the activity and dynamic regulation of receptors that are coupled to this intracellular response. Subtypes of muscarinic receptors in the limbic system may represent particularly sensitive targets in this regard. Likewise, preclinical data have shown that lithium regulates arachidonic acid and the protein kinase C signaling cascades. It also indirectly regulates a number of factors involved in cell survival pathways, including cAMP response element binding protein, brain-derived neurotrophic factor, bcl-2 and mitogen-activated protein kinases, and may thus bring about delayed long-term beneficial effects via under-appreciated neurotrophic effects. Identification of the molecular targets for lithium in the brain could lead to the elucidation of the pathophysiology of bipolar disorder and the discovery of a new generation of mood stabilizers, which in turn may lead to improvements in the long-term outcome of this devastating illness (1).

Type
Research Article
Copyright
Copyright © 2003 Blackwell Munksgaard

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Vieta, E. Other new therapies for bipolar disorders. In: Trimble, MR, Schnitz, B, eds. Seizures, affective disorders, and anticonvulsant drugs. Surrey: Clarius Press, 2002: 167180. Google Scholar
Shou, M. Lithium treatment at 52. J Affect Disord 2001;67: 2132.CrossRefGoogle Scholar
Lenox, RH, Watson, DG. Lithium and the brain: a psychopharmacological strategy to a molecular basis for manic depressive illness. Clin Chem 1994;40: 309314.Google ScholarPubMed
Lenox, RH, McNamara, RK, Papke, RL, Manji, HK. Neurobiology of lithium: an update. J Clin Psychiatry 1998;59: 3747.Google ScholarPubMed
Lennox, R, Mangi, XX. Lithium. In: Schatzberg, A, Nemeroff, C, eds. Psychopharmacology. Washington: The American Psychiatry Press, 1998: 379427. Google Scholar
Manji, HK, Duman, RS. Impairments of neuroplasticity and cellular resilience in severe mood disorders. implications for the development of novel therapeutics. Psychopharmacol Bull 2001;35: 549.Google ScholarPubMed
Chuang, DM, Chen, RW, Chalecka-Franaszek, Eet al. Neuroprotective effects of lithium in cultured cells and animal models diseases. Bipolar Disord 2002;4: 129136. CrossRefGoogle ScholarPubMed
Wang, JF, Bown, CD, Chen, B, Young, LT. Identification of mood stabilizer-regulated genes by diferential-display PCR. Int J Neuropsychopharmacol 2001;4: 6574.CrossRefGoogle Scholar
Detera-Wadleigh, SD. Lithium-related genetics of bipolar disorder. Ann Med 2001;33: 272285.CrossRefGoogle ScholarPubMed
Manji, HK, Chen, G. PKC, MAP kinases and bcl-2 family of proteins as long-term targets for mood disorders. Mol Psychiatry 2002;7(Suppl. 1):S46S56.CrossRefGoogle Scholar
Baraban, J. Towards a crystal-clear view of lithium's site of action. Proc Natl Acad Sci USA 1994;91: 57385739.CrossRefGoogle Scholar
Jope, RS, Williams, MB. Lithium and brain signal transduction systems. Biochem Pharmacol 1994;47: 429441.CrossRefGoogle ScholarPubMed
Manji, HK, Lenox, RH. Ziskind-Somerfeld Research Award. Protein kinase C signaling in the brain: molecular transduction of mood stabilization in the treatment of manic-depressive illness. Biol Psychiatry 1999;46: 13281351.CrossRefGoogle ScholarPubMed
Williams, RS, Harwood, AJ. Lithium therapy and signal transduction. Trends Pharmacol Sci 2000;21: 6164.CrossRefGoogle ScholarPubMed
Price, LH, Heninger, GR. Lithium in the treatment of mood disorders. N Engl J Med 1994;331: 591598.Google ScholarPubMed
Gilman, AG, Rall, TW, Nies, AS, Taylor, P. The Pharmacological Basis of Therapeutics. New York: Pergamon, 1990. Google Scholar
Ikonomov, OC, Manji, HK. Molecular mechanisms underlying mood stabilization in manic-depressive illness. Am J Psychiatry 1999;156: 15061514.CrossRefGoogle ScholarPubMed
Manji, HK, Moore, GJ, Chen, G. Bipolar disorder: leads from the molecular and cellular mechanisms of action of mood stabilizers. Br J Psychiatry 2001;41: s107s119. CrossRefGoogle ScholarPubMed
Shiah, IS, Yatham, LN. Serotonin in mania and in the mechanism of action of mood stabilizers: a rewiew of clinical studies. Bipolar Disord 2000;2: 7792.CrossRefGoogle Scholar
Williams, R, Cheng, L, Mudge, A, Harwood, A. A common mechanism of action for three mood-stabilizers drugs. Nature 2002;417: 292295.CrossRefGoogle Scholar
Li, X, Ketter, TA, Frye, MA. Sybaptic, intrecellular, and neuroprotective mechanisms of anriconvulsivants: are they relevant for the treatment and course of bipolar disorders?. J Affect Disord 2002;69: 114.CrossRefGoogle Scholar
Phiel, CJ, Klein, PS. Molecular targets of lithium action. Annu Rev Pharmacol Toxicol 2001;41: 789813.CrossRefGoogle ScholarPubMed
Salinas, PC, Hall, AC. Lithium and synaptic plasticity. Bipolar Disord 1999;1: 8790.CrossRefGoogle ScholarPubMed
Chen, G, Masana, MI, Manji, HK. Lithium regulates PKC-mediated intracellular cross-talk and gene expression in the CNS in vivo. Bipolar Disord 2000;2: 217236.CrossRefGoogle ScholarPubMed
Eldar-Finkelman, H. Glycogen synthase kinase 3: an emerging therapeutic target. Trends Mol Med 2002;8: 126132.CrossRefGoogle Scholar
Morgan, TH. The relation between normal and abnormal development of the embryo of the frog, as determined by the effect of lithium chloride in solution. Arch Entwickl 1902;XVI: 691716. Google Scholar
Maeda, Y. Influence of ionic conditions on cell differentiation and morphogenesis of the cellular slime molds. Dev Growth Differ 1970;12: 217227.CrossRefGoogle ScholarPubMed
Van Lookeren Campagne, MM, Wang, M, Spek, W, Peters, D, Schaap, P. Lithium respecifies cyclic AMP-induced cell-type specific gene expression in Dictyostelium. Dev Genet 1988;9: 589596.CrossRefGoogle ScholarPubMed
Kao, KR, Masui, Y, Elinson, RP. Lithium-induced respecification of pattern in Xenopus laevis embryos. Nature 1986;322: 371373. CrossRefGoogle ScholarPubMed
Stachel, SE, Grunwald, DJ, Myers, PZ. Lithium perturbation and goosecoid expression identify a dorsal specification pathway in the pregastrula zebrafish. Development 1993;117: 12611274.Google ScholarPubMed
Livingston, BT, Wilt, FH. Lithium evokes expression of vegetal-specific molecules in the animal blastomeres of sea urchin embryos. Proc Natl Acad Sci USA 1989;86: 36693673.CrossRefGoogle ScholarPubMed
Choi, WS, Sung, CK. Effects of lithium and insulin on glycogen synthesis in L6 myocytes: additive effects on inactivation of glycogen synthase kinase-3. Biochim Biophys Acta 2000;1475: 225230.CrossRefGoogle ScholarPubMed
Summers, SA, Kao, AW, Kohn, ADet al. The role of glycogen synthase kinase 3beta in insulin-stimulated glucose metabolism. J Biol Chem 1999;274: 17 934–17 940. CrossRefGoogle ScholarPubMed
Furnsinn, C, Noe, C, Herdlicka, Ret al. More marked stim-ulation by lithium than insulin of the glycogenic pathway in rat skeletal muscle. Am J Physiol Endocrinol Metab 1997;273: E514E520. Google Scholar
Rodriguez-Gil, JE, Guinovart, JJ, Bosch, F. Lithium restores glycogen synthesis from glucose in hepatocytes from diabetic rats. Arch Biochem Biophys 1993;301: 411415.CrossRefGoogle ScholarPubMed
Bosch, F, Gomez-Foix, AM, Arino, J, Guino-vart, JJ. Effects of lithium ions on glycogen synthase and phosphorylase in rat hepatocytes. J Biol Chem 1986;261: 16 92716 931. Google ScholarPubMed
O'Connel, RA. Lithium carbonate: psychiatric indications and medical complications. NY State J Med 1974;74: 649653. Google ScholarPubMed
Shopsin, B, Friedmann, R, Gershon, S. Lithium and leukocytosis. Clin Pharma-Col Ther 1971;12: 923928. CrossRefGoogle ScholarPubMed
Boggs, DR, Joyce, RA. The hematopoietic effects of lithium. Semin Hematolog 1983;20: 129138. Google ScholarPubMed
Ballin, A, Lehman, D, Sirota, P, Litvinjuk, U, Meytes, D. Increased number of peripheral blood CD34 C cells in lithium-treated patients. Br J Haematol 1998;100: 219221.CrossRefGoogle Scholar
McGrath, HE, Wade, PM, Kister, VK, Que-senberry, PJ. Lithium stimulation of HPP-CFC and stromal growth factor production in murine Dexter culture. J Cell Physiol 1992;151: 276286.CrossRefGoogle ScholarPubMed
Korycka, A, Robak, T. The effect of lithium chloride on granulocyte-macrophage progenitor cells (CFU-GM) and clonogenic leukaemic blasts (CFU-L) in the cultures in vitro. Arch Immunol Ther Exp 1991;39: 495500. Google ScholarPubMed
Quesenberry, PJ, Coppola, MA, Gualtieri, RJet al. Lithium stimulation of murine hematopoiesis in liquid culture: an effect mediated by marrow stromal cells. Blood 1984;63: 121127.Google ScholarPubMed
Rybakowski, JK. Antiviral and immunomodulatory effect of lithium. Pharmacopsychiatry 2000;33: 159164.Google ScholarPubMed
Lenox, RH, Hahn, CG. Overview of the mechanism of action of lithium in the brain: fifty-year update. J Clin Psychiatry 2000;61: 515.Google ScholarPubMed
Manji, HK, McNamara, R, Chen, G, Lenox, RH. Signalling pathways in the brain. cellular transduction of mood stabilisation in the treatment of manic-depressive illness. Aust NZ J Psychiatry 1999;33 (Suppl.):S65S83. CrossRefGoogle ScholarPubMed
Lenox, RH, Watson, DG. Lithium and the brain: a psychopharmological strategy to a molecular basis for manic depressive illness. Clin Chem 1994;40: 309314.Google Scholar
Manji, H, Potter, W, Lenox, R. Signal tranduction pathways: molecular targets for lithium's actions. Arch General Psychiatry 1995b;52: 531543. CrossRefGoogle Scholar
Goodwin, FK, Jamison, KR. Manic-depressive illness. New York: Oxford University Press, 1990. Google ScholarPubMed
Klemfuss, H, Kripke, DF. Effects of lithium on circadian rhythms. In: Lemmer, B, ed. Chronopharmacology, cellular and biochemical interactions. New York: lvlaral Dekker, 1989: 281297. Google Scholar
Welsh, DK, Nino-Murcia, G, Gander, PHet al. Regular 48-hour cycling of sleep duration and mood in a 35-year-old woman: use of lithium in time isolation. Biol Psychiatry 1986;21: 527537.CrossRefGoogle Scholar
Kafka, MS, Wirz-Justice, A, Naber, Det al. Circadian rhythms in rat brain neurotransmitter receptors. Federation Proc 1983;42: 27962801. Google ScholarPubMed
McEachron, DL, Kripke, DF, Hawkins, Ret al. Lithium delays biochemical circadian rhythms in rats. Neuropsychobiology 1982;8: 1229.CrossRefGoogle ScholarPubMed
Wirz-Justice, A, Groos, GA, Wehr, TA. The neuropharmacology of circadian timekeeping in mammals. In: Aschoff, J, Daan, S, Groos, GA, eds. Vertebrate cit. radian systems: structure and physiology. New York: Springer-Verlag, 1982: 126. Google Scholar
Johnsson, A, Engelmann, W, Pflug, Bet al. Period lengthening of human circadian rhythms by lithium carbonate, a prophylactic for depressive disorders. Int J Chronobiol (London) 1983;8: 129147. Google ScholarPubMed
Kripke, DF, Judd, LL, Hubbard, Bet al. The effect of lithium carbonate on the circadian rhythm of sleep in normal human subjects. Biol Psychiatry 1979;14: 545548.Google ScholarPubMed
Kupfer, DJ, Reynolds, CF III,Weiss, BLet al. Lithium carbonate and sleep in affective disorders. Arch General Psychiatry 1974;30: 7984. CrossRefGoogle ScholarPubMed
Wehr, TA, Goodwin, FK. Rapid cycling in manic-depressives induced by tricyclic antidepressants. Arch General Psychiatry 1979;36: 555559. CrossRefGoogle ScholarPubMed
Lewy, AJ, Sack, RL, Miller, LSet al. Antidepressant and circadian phase-shifting effects of light. Science 1987;235: 352354.CrossRefGoogle Scholar
Arendt, J, Aldhous, M, Marks, V. Alleviation of jet lag by melatonin: preliminary results of controlled double blind trial. Br Med J 1986;292: 11701174. CrossRefGoogle ScholarPubMed
Rao, ML, Mager, T. Influence of the pineal gland on the pituitary function in humans. Psychoendocrinology 1987;12: 141147. CrossRefGoogle ScholarPubMed
Seggie, J, Carney, PA, Parker, Jet al. Effect of chronic lithium on sensitivity to light in male and female bipolar patients. Prog Neuropsychopharmacol Biol Psychiatry 1989;13: 543549.CrossRefGoogle ScholarPubMed
Kaschka, WP, Moknisch, T, Korth, M. Early physiological effects of lithium treatment. electrooculographic and adaptometric findings in patients with affective and schizoaffective psychoses. Pharmacopsychiatry 1987;20: 203207.CrossRefGoogle ScholarPubMed
Williams, MB, Jope, RS. Circadian variation in rat brain AP-1 DNA binding activity after cholinergic stimulation: modulation by lithium. Psychopharmacology 1995;122: 363368.CrossRefGoogle ScholarPubMed
Abe, M, Herzog, ED, Block, GD. Lithium lengthens the circadian period of individual suprachiasmatic nucleus neurons. Neuroreport 2000;28: 32613264. CrossRefGoogle Scholar
Schibler, U. Circadian rhythms: new cogwheels in the clock-works. Nature 1998;393: 620621.CrossRefGoogle Scholar
Zylka, MJ, Shearman, LP, Weaver, DR, Reppert, SM. Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 1998;20: 11031110.CrossRefGoogle ScholarPubMed
Price, LH, Charney, DS, Delgado, PLet al. Lithium and serotonin function: implications for the serotonin hypothesis of depression. Psychopharmacology (Berl) 1990;100: 312.CrossRefGoogle Scholar
Ahluwalia, P, Singhal, RL. Effect of low-dose lithium administration and subsequent withdrawal on biogenic amines in rat brain. Br J Pharmacol 1980;71: 601607.CrossRefGoogle ScholarPubMed
Shukla, GS. Combined lithium and valproate treatment and subsequent withdrawal: serotonergic mechanism of their interaction in discrete brain regions. Prog Neuropsychopharmacol Biol Psychiatry 1985;9: 153156.CrossRefGoogle ScholarPubMed
Goodnick, P. Effects of lithium on indices of 5-HT and catecholamines in the clinical content: a review. Lithium 1990;1: 6573. Google Scholar
Newman, ME, Drummer, D, Lerer, B. Single and combined effects of desipramine and lithium on serotonergic receptor number and second messenger function in rat brain. J Pharmacol Exp Ther 1990;252: 826831.Google ScholarPubMed
Odagaki, Y, Koyama, T, Matsubara, Set al. Effects of chronic lithium treatment on serotonin binding sites in rat brain. J Psychiatr Res 1990;24: 271277.CrossRefGoogle ScholarPubMed
Friedman, E, Wang, HY. Effect of chronic lithium treatment, 5-hydroxytryptamine autoreceptors and release of 5-[3H]hydroxytryptamine from rat brain cortical, hippocampal, and hypothalamic slices. J Neurochem 1988;90: 195201. CrossRefGoogle Scholar
Goodwin, GM, Desouza, RJ, Wood, AJet al. Lithium decreases 5-HTIA and 5-HT2 receptor and alpha-2 adrenoceptor mediated function in mice. Psychopharmacology (Berl) 1986;90: 482487.CrossRefGoogle Scholar
Mork, A, Geisler, A. Effects of GTP on hormone-stimulated adenylate cyclase activity in cerebral cortex, striatum, and hippocampus from rats treated chronically with lithium. Biol Psychiatry 1989;26: 279288.CrossRefGoogle ScholarPubMed
Wang, HY, Friedman, E. Chronic lithium: desensitization of autoreceptors mediating serotonin release. Psychopharmacology (Berl) 1988;94: 312314.CrossRefGoogle ScholarPubMed
Blier, P, De Montigny, C. Short-term lithium administration enhances serotonergic neurotransmission: electrophysiological evidence in the rat CNS. Psychopharmacology (Berl) 1985;113: 6977. Google ScholarPubMed
Blier, P, De Montigny, C, Tardif, D. Short-term lithium treatment enhances responsiveness of postsynaptic 5-HTIA receptors without altering 5-HT autoreceptor sensitivity: an electrophysiological study in the rat brain. Synapse 1987;1: 225232.CrossRefGoogle Scholar
Manji, HK, Hsiao, JK, Risby, EDet al. The mechanisms of action of lithium. Arch General Psychiatry 1991;48: 505512. CrossRefGoogle ScholarPubMed
Berrettini, WH, Nurnberger, JI, Scheinin, Met al. Cerebrospinal fluid and plasma monoamines and their metabolites in euthymic bipolar patients. Biol Psychiatry 1985;20: 257269.CrossRefGoogle ScholarPubMed
Cowen, PJ, McCance, SL, Cohen, PRet al. Lithium increases 5Hq: mediated neuroendocrine responses in tricyclic resistant depression. Psychopharmacology (Berl) 1989;99: 230232.CrossRefGoogle Scholar
Glue, PW, Cowen, PJ, Nutt, DJet al. The effect of lithium on 5-HT mediated neuroendocrine response and platelet 5-HT receptors. Psychopharmacology (Berl) 1986;90: 398402.CrossRefGoogle Scholar
McCance, SL, Cohen, PR, Cowen, PJ. Lithium increases 5-HTmediated prolactin release. Psychopharmacology (Bert) 1989;99: 276281. CrossRefGoogle ScholarPubMed
Meltzer, HY, Lowy, M, Robertson, Aet al. Effect of 5hydroxytryptophan on serum cortisol levels in major affective disorders III: effect of antidepressants and lithium carbonate. Arch General Psychiatry 1984;41: 391397. CrossRefGoogle Scholar
Muhlbauer, HD, Muller-Oerlinghausen, B. Fenfluramine stimulation of serum cortisol in patients with major affective disorders and healthy controls: further evidence for a central serotonergic action of lithium in man. J Neural Transm 1985;61: 8194.CrossRefGoogle ScholarPubMed
Bschor, T, Adli, M, Baethge, Cet al. Lithium Augmentation increases the ACTH and cortisol response in the combined DEX/CRH test in uniopolar major depression. Neuropsychopharmacology 2002;27: 470.CrossRefGoogle Scholar
Bunney, WE, Garland-Bunney, BL. Mechanism of action of lithium i n affective illness: basic and clinical implications. In: Meltzer, HY, ed. Psychopharmacology: the third generation of progress. New York: Raven, 1987: 553565. Google Scholar
Eroglu, L, Hizal, A, Koyuncuoglu, H. The effect of long-term concurrent administration of chlorpromazine and lithium on the striatal and frontal cortical dopamine metabolism in rats. Psychopharmacology (Berl) 1981;73: 8486.CrossRefGoogle ScholarPubMed
Carli, M, Anand-Srivastava, MB, Molina-Holgado, Eet al. Effects of chronic lithium treatments on central dopaminergic receptor systems: G proteins as possible targets. Neurochem Int 1994;24: 1322.CrossRefGoogle ScholarPubMed
Acquas, E, Fibiger, HC. Chronic lithium attenuates dopamine D1-receptor mediated increases in acetylcholine in rat frontal cortex. Psychopharmacology 1996;125: 162167.CrossRefGoogle ScholarPubMed
Verimer, T, Goodale, DB, Long, JPet al. Lithium effects on haloperidol-induced pre- and postsynaptic dopamine receptor supersensitivity. J Pharm Pharmacol 1980;32: 665666.CrossRefGoogle ScholarPubMed
Swerdlow, NR, Lee, D, Koob, GFet al. Effects of chronic dietary lithium on behavioral indices of dopamine denervation supersensitivity in the rat. J Pharmacol Exp Ther 1985;235: 324329.Google ScholarPubMed
Staunton, DA, Magistretti, PJ, Shoemaker, WJet al. Effects of chronic lithium treatment on dopamine receptors in the rat corpus striatum, I. locomotor activity and behavioral supersensitivity. Brain Res 1982;232: 391400.CrossRefGoogle ScholarPubMed
Staunton, DA, Magistretti, PJ, Shoemaker, WJet al. Effects of chronic lithium treatment on dopamine receptors in the rat corpus striatum, 11: no effect on denervation or neuroleptic-induced supersensitivity. Brain Res 1982;212: 401412. CrossRefGoogle Scholar
van Kammen, DP, Docherty, JP, Marder, SRet al. Lithium attenuates the activation-euphoria but not the psychosis induced by d-amphetamine in schizophrenia. Psychopharmacology (Berl) 1985;87: 111115.CrossRefGoogle ScholarPubMed
Huey, LY, Janowsky, DS, Judd, LLet al. Effects of lithium carbonate on methylphenidate-induced mood, behaviour, and cognitive processes. Psychopharmacology (Berl) 1981;73: 161164.CrossRefGoogle ScholarPubMed
Seeger, TF, Gardner, EL, Bridger, WF. Increase in mesolimbic electrical self-stimulation after chronic haloperidol: reversal by 1-dopa or lithium. Brain Res 1981;215: 404409.CrossRefGoogle ScholarPubMed
Tanimoto, K, Maeda, K, Yamaguchi, Net al. Effect of lithium on prolactin responses to thyrotropin releasing hormone in patients with manic state. Psychopharmacology (Berl) 1981;72: 129133.CrossRefGoogle ScholarPubMed
Cameron, OG, Smith, CB. Comparison of acute and chronic lithium treatment on 3H-norepinephrine uptake by rat brain slices. Psychopharmacology (Berl) 1980;67: 8185.CrossRefGoogle ScholarPubMed
Berrettini, WH, Vogel, WH, Ladman, RK. Effects of lithium therapy on MAO in manic-depressive illness. Am J Psychiatry 1979;136: 836838.Google ScholarPubMed
Schultz, JE, Siggins, GR, Schocker, FWet al. Effects of prolonged treatment with lithium and tricyclic antidepressants on discharge frequency, norepinephrine responses and beta receptor binding in rat cerebellum: electrophysiological and biochemical comparison. J Pharmacol Exp Ther 1981;216: 2838.Google ScholarPubMed
Kovacs, P, Hernadi, I. Iontophoresis of lithium antagonizes noradrenergic action on prefrontal neurons of the rat. Brain Res 2002;947: 150156.CrossRefGoogle ScholarPubMed
Dilsaver, SC, Coffman, JA. Cholinergic hypothesis of depression: a reappraisal. J Clin Psychopharmacol 1989;9: 173179.CrossRefGoogle ScholarPubMed
Lerer, B, Stanley, M. Effect of chronic lithium on cholinergically mediated responses and [‘H]QNB binding in rat brain. Brain Res 1985;344: 211219.CrossRefGoogle Scholar
Levy, A, Zohar, J, Belmaker, RH. The effect of chronic lithium pretreatment on rat brain muscarinic receptor regulation. Neuropharmacology 1983;21: 11991201. CrossRefGoogle ScholarPubMed
Tollefson, GD, Senogles, S. A cholinergic role in the mechanism of lithium in mania. Biol Psychiatry 1982;18: 467479. Google ScholarPubMed
Ellis, J, Lenox, RH. Chronic lithium treatment prevents atropine-induced supersensitivity of the muscarinic phosphoinositide response in rat hippocampus. Biol Psychiatry 1990;28: 609619.CrossRefGoogle ScholarPubMed
Liles, WC, Nathanson, NM. Alteration in the regulation of neuronal muscarinic acetylcholine receptor number induces by chronic lithium in neuroblastoma cells. Brain Res 1988;439: 8894.CrossRefGoogle Scholar
Dilsaver, SC, Hariharan, M. Amitriptyline-induced supersensitivity of a central muscarinic mechanism: lithium blocks amitriptyline-induced supersensitivity. Psychiatr Res 1988;25: 181186. CrossRefGoogle ScholarPubMed
Ormandy, G., Lope RS. Analysis of the convulsant-potentiating effects of lithium in rats. Exp Neurol 1991;111: 356361.CrossRefGoogle Scholar
Hirvonen, MR, Paljarri, L, Naukkarinen, Aet al. Potentiation of malaoxon-induced convulsions by lithium: early neuronal injury, phosphoinositide signaling and calcium. Toxicol Appl Pharmacol 1990;104: 276289.CrossRefGoogle ScholarPubMed
Terry, JB, Padzemik, TL, Nelson, SR. Effect of LiCl pretreatment on cholinomimetic-induced seizures and seizure-induced brain edema in rats. Neurosci Lett 1990;114: 123127.CrossRefGoogle ScholarPubMed
Tricklebank, MD, Singh, L, Jackson, Aet al. Evidence that a proconvulsant action of lithium is mediated by inhibition of myo-inositol phosphatase in mouse brain. Brain Res 1991;558: 145148.CrossRefGoogle ScholarPubMed
Kofman, O, Belmaker, RH, Grisaru, Net al. Myo-inositol attenuates two specific behavioral effects of acute lithium in rats. Psychopharmacol Bull 1991;27: 185190.Google ScholarPubMed
Pontzer, NJ, Crews, FT. Desensitization of muscarinic stimulated hippocampal cell firing is related to phosphoinositide hydrolysis and inhibited by lithium. J Pharmacol Exp Ther 1990;253: 921929.Google ScholarPubMed
Evans, MS, Zorumski, CF, Clifford, DB. Lithium enhances neuronal muscarinic excitation by presynaptic facilitation. Neuroscience 1990;38: 457468.CrossRefGoogle ScholarPubMed
Chaudhary, G, Gupta, YK. Lithium does not synergize the peripheral cholinomimetics as seen in the central nervous system. Life Sci 2001;23: 21152121. CrossRefGoogle Scholar
Bernasconi, R. The GABA hypothesis of affective illness. influence of clinically effective antimanic drugs on GABA turnover. In: Emrich, HM, Adenhoff, JB, Lux, HM, eds. Basic mechanisms in the action of lithium. Amsterdam: Eacerpta Medica, 1982: 183192. Google Scholar
Lloyd, KG, Morselli, PL, Bartholini, G. GABA and affective disorders. Med Biol (Helsinki) 1987;65: 159165. Google ScholarPubMed
Nemeroff, CB. Neuropeptides and psychiatric disorders. Washington, DC; American Psychiatric Press, 1991. Google Scholar
Berrettini, WH, Nurnberger, JI Jr,Hare, Tet al. Plasma and OF GABA in affective illness. Br J Psychiatry 1982;141: 483487.CrossRefGoogle ScholarPubMed
Berrettini, WH, Nurnberger, JI Jr,Hare, TAet al. Reduced plasma and C SF gamma-aminobutyric acid in affective illness. Biol Psychiatry 1983;18: 185194.Google Scholar
Berrettini, WH, Nurnberger, JI Jr,Chan, JSet al. Propiomelanocortin-related peptides in cerebrospinal fluid: a study of manic-depressive disorder. Psychiatr Res 1985;16: 287302. CrossRefGoogle ScholarPubMed
Ahluwalia, P, Grewaal, DS, Singhal, RL. Brain GABAergic and dopaminergic systems following lithium treatment and withdrawal. Progr Neuro-Psychopharmacol 1981;5: 527530. CrossRefGoogle ScholarPubMed
Maggi, A, Enna, SJ. Regional alterations in rat brain neurotransmitter systems following chronic lithium treatment. J Neurochem 1980;34: 888892.CrossRefGoogle ScholarPubMed
Post, RM, Ballenger, JC, Hare, TAet al. Cerebrospinal fluid GABA in normals and patients with affective disorders. Brain Res Bull 1980;5(Suppl. 2):755759.CrossRefGoogle Scholar
Sivam, SP, Takeuchi, K, Li, Set al. Lithium increases dynorphin A (1–8) and prodynorphin mRNA levels in the basal ganglia of rats. Brain Res 1988;427: 155163.CrossRefGoogle ScholarPubMed
Burns, G, Herz, A, Nikolarakis, KE. Stimulation of hypothalamic opioid peptide release by lithium is mediated by opioid autoreceptors: evidence from a combined in vitro, ex vivo study Neuroscience 1990; 36: 691697.CrossRefGoogle ScholarPubMed
Mocha, RF, Herz, A. Motivational properties of kappa and mu opioid receptor agonists studied with place and taste preference conditioning. Psychopharmacology (Berl) 1985;86: 274280.CrossRefGoogle Scholar
Shippenberg, TS, Herz, A. Influence of chronic lithium treatment upon the motivational effects of opioids. alteration in the effects of mu- but not kappa-opioid receptor ligands. 1 Pharmacol Exp Ther 1991;256: 11011106. Google Scholar
Shippenberg, TS, Millan, MJ, Mucha, RFet al. Involvement of beta-endorphin and mu-opioid receptors in mediating the aversive effect of lithium in the rat. Eur J Pharmacol 1988;154: 135144.CrossRefGoogle ScholarPubMed
Blancquaen, JP, Lefebvre, RA, Willems, JL. Antiaversive properties of opioids in the conditioned taste aversion test in the rat. Pharmacol Biochem Behav 1987;27: 437441.CrossRefGoogle Scholar
Mathe, AA, Jousisto-Hanson, J, Stenfors, Cet al. Effect of lithium on tachykinins, calcitonin gene-related peptide, and neuropeptide Y in rat brain. J Neurosci Res 1990;26: 233237.CrossRefGoogle ScholarPubMed
Husum, H, Vasquez, P, Mathe, A. Changed concentrations of tchykinins nd neuropepid Y in brain of a rat model of depression: lithium treatment normalizes tachykinins. Neuropsychopharmacology 2001: 2418324191. Google Scholar
Avissar, S, Schreiber, G, Danon, A, Belmaker, RH. Lithium inhibits adrenergic and cholinergic increases in GTP binding in rat cortex. Nature 1988;331: 440442.CrossRefGoogle ScholarPubMed
Berridge, MJ, Downes, CP, Hanley, MR. Neural and developmental actions of lithium: a unifying hypothesis. Cell 1989;59: 411419.CrossRefGoogle ScholarPubMed
York, JD, Ponder, JW, Majerus, PW. Definition of a metal-dependent/Li C-inhibited phosphomonoesterase protein family based upon a conserved three dimensional core structure. Proc Natl Acad Sci USA 1995;92: 51495153.CrossRefGoogle Scholar
Baraban, JM, Worley, PF, Snyder, SH. Second messenger system, and psychoactive drug focus on the phosphoinositide system and lithium. Am J Psychiatry 1989;146: 12511260.Google ScholarPubMed
O'Donnell, T, Rotzinger, S, Nakashima, TT, Hanstock, CC, Ulrich, M, Silverstone, PH. Chronic lithium and sodium valproate both decrese the concentration of myo-inositol and increase the concentration of inositol monophosphates in rat brain. Brain Res 2000;880: 8491.CrossRefGoogle Scholar
Shamir, A, Shaltiel, G, Agam, G. Inracerebroventricular antisense to inositol monophosphaase-1 reduces enzyme activity but does not affect Li-sensitive behavior. Prog Neuropsychopharmacol Biol Psychiatry 2002;26: 103106.CrossRefGoogle Scholar
Hallcher, LM, Sherman, WR. The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J Biol Chem 1980;255: 1089610901.Google ScholarPubMed
Sherman, WR, Gish, BG, Honchar, MPet al. Effects of lithium on phosphoinositide metabolism in vivo. Federation Proc 1986;45: 26392646. Google ScholarPubMed
Sherman, WR. Lithium and the phosphoinositide signalling system. In: Birch, NJ, ed. Lithium and the cell. London: Academic Press, 1991: 121157. .CrossRefGoogle Scholar
Berridge, MJ, Irvine, RF. Inositol phosphates and cell signalling. Nature 1989;341: 197205.CrossRefGoogle ScholarPubMed
Nahorski, SR, Ragan, CI, Challis, RA. Lithium and phosphoinositide cycle. an example of uncompetitive inhibition and its pharmacological consequences. Trends Pharmacol Sci 1991;12: 197303. CrossRefGoogle ScholarPubMed
Nahorscki Jenkinson, S, Challiss, RA. Disruption of phosphoinositide signalling by lithium. Biochem Soc Transactions 1992;20: 439444. Google Scholar
Fisher, SK, Heacock, AM, Agranoff, BW. Inositol lipids and signal transduction in the nervous system: an update. J Neurochem 1992;58: 1838.CrossRefGoogle ScholarPubMed
Mahan, LC, Burch, RM, Monsma, FJ Jret al. Expression of striatal Dt dopamine receptors coupled to inositol phosphate production and Ca z′ mobilization in Xenopus oocytes. Proc Natl Acad Sci USA 1990;87: 21962200.CrossRefGoogle Scholar
Kennedy, ED, Challiss, RJ, Nahorski, SR. Lithium reduces acumulation of inositol polyphosphate second mesanger following cholinergic stimulation of cerebral cortex slices. J Neurochem 1989;53: 16521655.CrossRefGoogle Scholar
Kennedy, ED, Challiss, RAJ, Ragan, CIet al. Reduced inositol polyphosphate accumulation and inositol supply induceby lithium in stimulated cerebral cortex slices. Biochem J 1990;267: 781786.CrossRefGoogle ScholarPubMed
Lenox, RH, Watson, DG, Ellis, J. Muscarinic receptor regulation and protein kinase C: sites for the action of chronic lithium in the hippocampus. Psychopharmacol Bull 1991;27: 191199.Google ScholarPubMed
Whitworth, P, Kendall, DA. Effects of lithium on inositol phospholipid hydrolysis and inhibition of dopamine, p. receptor-mediated cyclic AMP formation by carbachnl in rat brain slices. J Neurochem 1989;53: 536541.CrossRefGoogle Scholar
Casebolt, TL, Jope, RS. Long-term lithium treatment selectively reduces receptor-coupled inositol phospholipid hydrolysis in rat brain. Biol Psychiatry 1989;25: 329340.CrossRefGoogle ScholarPubMed
Kendall, DA, Nahorski, SR. Acute and chronic lithium treatments influence agonist- and depolarization-stimulated inositol phospholipid hydrolysis in rat cerebral cortex. J Pharmacol Exp Ther 1987;241: 10231027.Google ScholarPubMed
Godfrey, PP, McClue, SJ, White, AMet al. Subacute and chronic in vivo lithium treatment inhibits agonist- and sodium fluoride-stimulated inositol phosphate production in rat cortex. J Neurochem 1989;52: 498506.CrossRefGoogle ScholarPubMed
Varney, MA, Godfrey, PP, Drummond, AHet al. Chronic lithium treatment inhibits basal and agonist-stimulated responses in rat cerebral cortex and GH3 pituitary cells. Mol Pharmacol 1992;4: 671678. Google Scholar
Tricklebank, MD, Singh, L, Jackson, Aet al. Evidence that a proconvulsant action of lithium is mediated by inhibition of myo-inositol phosphatase in mouse brain. Brain Res 1991;558: 145148.CrossRefGoogle ScholarPubMed
Kofman, O, Belmaker, RH, Grisaru, Net al. Myo-inositol attenuates two specific behavioral effects of acute lithium in rats. Psychopharmacol Bull 1991;27: 185190.Google ScholarPubMed
Moore Gj Bebchik, JM, Parrish, JKet al. Temporal dissociation between lithiu-induced CNS myo-inositol changes and clinical response in manic-depressive illness. Am J Psychiatry 1999;156: 19021908.Google Scholar
Shamir, A, Shaltiel, G, Agam, G. Inracerebroventricular antisense to inositol monophosphaase-1 reduces enzyme activity but does not affect Li-sensitive behavior. Prog Neuropsychopharmacol Biol Psychiatry 2002;26: 103106.CrossRefGoogle Scholar
Busa, WB, Gimlich, RL. Lithium-induced teratogenesis in frog embryos prevented by a polyphosphoinositide cycle intermediate or a diacylglycerol analog. Dev Biol 1989;132: 315324.CrossRefGoogle ScholarPubMed
Klein, PS, Melton, DA. A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci USA 1996;93: 845584559.CrossRefGoogle ScholarPubMed
Maslanski, JA, Leshko, L, Busa, WB. Lithium-sensitive production of inositol phosphates during amphibian embryonic mesoderm induction. Science 1992;256: 243245.CrossRefGoogle ScholarPubMed
Van Dijken, P, Bergsma, JC, Hiemstra, HS, De Vries, B, Van Der Kaay, J, Van Haastert, PJ. Dictyostelium discoideum contains three inositol monophosphatase activities with different substrate specificities and sensitivities to lithium. Biochem J 1996;314: 491495.CrossRefGoogle ScholarPubMed
Hedgepeth, CM, Conrad, LJ, Zhang, J, Huang, HC, Lee, VM, Klein, PS. Activation of the Wnt signaling pathway: a molecular mechanism for lithium action. Dev Biol 1997;185: 8291.CrossRefGoogle ScholarPubMed
Atack, JR, Cook, SM, Watt, AP, Fletcher, SR, Ragan, CI. In vitro and in vivo inhibition of inositol monophosphatase by the bisphosphonate L-690,330. J Neurochem 1993;60: 652658.CrossRefGoogle ScholarPubMed
Drayer, AL, Van der Kaay, J, Mayr, GW, Van Haastert, PJ. Role of phospholipase C in Dictyostelium: formation of inositol 1,4,5-trisphosphate and normal development in cells lacking phospholipase C activity. EMBO J 1994;13: 16011609.Google ScholarPubMed
Bone, R, Frank, L, Springer, JP, Atack, JR. Structural studies of metal binding by inositol monophosphatase: evidence for two-metal ion catalysis. Biochemistry 1994;33: 94689476.CrossRefGoogle ScholarPubMed
Pollack, SJ, Knowles, MR, Atack, JR, Broughton, HB, Ragan, CIet al. Probing the role of metal ions in the mechanism of inositol monophosphatase by site-directed mutagenesis. Eur J Biochem 1993;217: 281287.CrossRefGoogle ScholarPubMed
York, JD, Ponder, JW, Chen, ZW, Mathews, FS, Majerus, PW. Crystal structure of inositol polyphosphate 1-phosphatase at 2.3-°A resolution. Biochem 1994;33: 1316413171. CrossRefGoogle Scholar
Villeret, V, Huang, S, Fromm, HJ, Lips-comb, WN. Crystallographic evidence for the action of potassium, thallium, and lithium ions on fructose-1,6-bisphos-phatase. Proc Natl Acad Sci USA 1995;92: 89168920.CrossRefGoogle Scholar
Spiegelberg, BD, Xiong, JP, Smith, JJ, Gu, RF, York, JD. Cloning and characterization of a mammalian lithium-sensitive bisphosphate 3,0-nucleotidase inhibited by inositol 1,4–bisphosphate. J Biol Chem 1999; 274: 13 61913 628. CrossRefGoogle ScholarPubMed
Murguia, JR, Belles, JM, Serrano, R. A salt-sensitive 3′ (2),5′-bisphosphate nucleotidase involved in sulfate activation. Science 1995;267: 232234.CrossRefGoogle Scholar
Miyamoto, R, Sugiura, R, Kamitani, Set al. Tol1, a fission yeast phosphomonoesterase, is an in vivo target of lithium, and its deletion leads to sulfite auxotrophy. J Bacteriol 2000;182: 36193625.CrossRefGoogle Scholar
Quintero, FJ, Garciadeblas, B, Rodriguez-Navarro, A. The SAL1 gene of Arabidopsis, encoding an enzyme with 3′(2′),5′- bisphosphate nucleotidase and inositol polyphosphate 1-phosphatase activities, increases salt tolerance in yeast. Plant Cell 1996;8: 529537.Google Scholar
Lopez-Coronado, JM, Belles, JM, Lesage, F, Serrano, R, Rodriguez, PL. A novel mammalian lithium-sensitive enzyme with a dual enzymatic activity, 3,0-phosphoadenosine 5,0-phosphate phosphatase and inositol-polyphosphate 1-phosphatase. J Biol Chem 1999;274: 16 03416 039. CrossRefGoogle Scholar
Yenush, L, Belles, JM, Lopez-Coronado, JM, Gil-Mascarell, R, Serrano, R, Rodriguez, PL. A novel target of lithium therapy. FEBS Lett 2000;467: 321325.CrossRefGoogle ScholarPubMed
Patel, S, Yenush, L, Rodriguez, PL, Serrano, R, Blundell, TL. Crystal structure of an ebzyme displaying both isositol-polyphosphate-1-phosphatase activities: a novel target of lithium therapy. J Mol Biol 2002;315: 677685.CrossRefGoogle ScholarPubMed
Jope, RS. Anti-bipolar therapy: mechanism of action of lithium. Mol Psychiatry 1999;4: 117128.CrossRefGoogle ScholarPubMed
Li, PP, Andreopoulos, S, Warsh, JJ. Signal transduction abnormalities in bipolar affective disorder. In: Reith, MEA, ed. Cerebral signal transduction. Totowa, NJ: Humana Press, 2000: 283312. CrossRefGoogle ScholarPubMed
Manji, HK, Chen, G, Hsiao, JKet al. Regulation of signal transduction pathways by mood stabilizing agents: implications for the pathophysiology and treatment of bipolar affective disorder. In: Manji, HK, Bowden, CL, Belmaker, RH, eds. Bipolar medications: mechanisms of action. Washington, DC: American Psychiatric Press, 2000: 129177. Google Scholar
Warsh, JJ, Young, LT, Li, PP. Guanine nucleotide binding (g) protein disturbances in bipolar affective disorder. In: Manji, HK, Bowden, CL, Belmaker, RH, eds. Bipolar medications: mechanisms of action. Washington, DC: American Psychiatric Press, 2000: 299329. Google Scholar
Belmaker, RH. Receptors, adenylate cyclase, depression, and lithium. Biol Psychiatry 1981;16: 333350.Google ScholarPubMed
Mork, A, Geisler, A. Mode of action of lithium on the catalytic unit of adenylate cyclase from rat brain. Pharmacol Toxicol 1987;60: 241248.CrossRefGoogle ScholarPubMed
Mork, A, Geisler, A. Effects of GTP on hormone-stimulated adenylate cyclase activity in cerebral cortex, striatum, and hippocampus from rats treated chronically with lithium. Biol Psychiatry 1989;26: 279288.CrossRefGoogle ScholarPubMed
Mork, A, Geisler, A. Effects of lithium ex vivo on the GTPmediated inhibition of calcium-stimulated adenylate cyclase activity in rat brain. Eur J Pharmacol 1989;168: 347354.CrossRefGoogle ScholarPubMed
Mork, A, Geisler, A. The effects of lithium in vitro and ex vivo on adenylate cyclase in brain are exerted by distinct mechanisms. Neuropharmacology 1989;28: 307311.CrossRefGoogle ScholarPubMed
Mork, A, Geisler, A. Effects of chronic lithium treatment on agonist-enhanced extracellular concentrations of cyclic AMP in the dorsal hippocampus of freely moving rats. J Neurochem 1995;65: 134139.CrossRefGoogle ScholarPubMed
Newman, ME, Belmaker, RH. Effects of lithium in vitro and ex vivo on components of the adenylate cyclase system in membranes from the cerebral cortex of the rat. Neuropharmacology 1987;26: 211217.CrossRefGoogle ScholarPubMed
Andersen, PH, Geisler, A. Lithium inhibition of forskolinstimulated adenylate cyclase. Neuropsychobiology 1984;12: 13.CrossRefGoogle Scholar
Geisler, A, Klysner, R. The effect of lithium in vitro and in vivo on dopamine-sensitive adenylate cyclase activity in dopaminergic areas of the rat brain. Acta Pharmacologica Toxicotogica (Copenhagen) 1985;56: 15. Google ScholarPubMed
Geisler, A, Klysner, R, Andersen, PH. Influence of lithium in vitro and in vivo on the catecholamine-sensitive cerebral adenylate cyclase systems. Acta Pharmacologica Toxicologica (Copenhagen) 1985;56: 8097. CrossRefGoogle ScholarPubMed
Ebstein, R, Belmaker, R, Grunhaus, Let al. Lithium inhibition of adrenaline-stimulated adenylate cyclase in humans. Nature 1976;259: 411413.CrossRefGoogle ScholarPubMed
Friedman, E, Oleshansky, MA, Moy, Pet al. Lithium ant catecholamine-induced plasma cyclic amp elevation. In: Cooper, TB, Gershon, S, Kline, NSet al., eds. Lithium controversies and unresolved issues. Amsterdam: Excerpta Medica, 1979: 730736. Google Scholar
Risby, ED, Hsiao, JK, Manii, HKet al. The mechanisms of action of lithium. Arch General Psychiatry 1991;48: 513524. CrossRefGoogle ScholarPubMed
Wolff, J, Berens, SC, Jones, AB. Inhibition of thyrotropin. stimulated adenylyl cyclase activity of beef thyroid membranes by low concentration of lithium ion. Biochem Biophys Res Commun 1970;39: 7782.CrossRefGoogle ScholarPubMed
Dousa, TP. Interaction of lithium with vasopressin-sensitive cyclic AMP system of human renal medulla. Endocrinology 1974;95: 13591366.CrossRefGoogle ScholarPubMed
Nibuya, M, Jung, A, Nester, EJet al. Chronic administration of lithium increases the expression of CREB and BDNF in rat hippocampus. Soc Neurosci (Abstracts) 1996;22: 182. Google Scholar
Mori, S, Zanardi, R, Popoli, Met al. Inhibitory effect of lithium on cAMP dependent phosphorylation system. Life Sci 1996;59: PL99PL104.CrossRefGoogle ScholarPubMed
Zanardi, R, Racagni, G, Smeraldi, Eet al. Differential effects of lithium on platelet protein phosphorylation in bipolar patients and healthy subjects. Psychopharmacology (Berl) 1997;129: 4447.CrossRefGoogle ScholarPubMed
Layden, B, Diven, C, Minadeo, N, Bryant, FB, Mota de Freitas, D. Li+/Mg2+ competition at therapeutic intracellular Li+ levels in human neuroblastoma SH-SY5Y cells. Bipolar Disord 2000;2: 200204.CrossRefGoogle ScholarPubMed
Manji, HK. G proteins: implications for psychiatry. Am J Psychiatry 1992;149: 746760.Google ScholarPubMed
Song, L, Jope, R. Chronic lithium treatment impairs phosphatidylinositol hydrolysis in membranes from rat brain regions. J Neurochem 1992;58: 22002206.CrossRefGoogle ScholarPubMed
Schreiber, G, Avissar, S, Danon, Aet al. Hyperfunctional G proteins in mononuclear leukocytes of patients with mania. Biol Psychiatry 1991;29: 273280.CrossRefGoogle ScholarPubMed
Masana, MI, Bitran, JA, Hsiao, JKet al. In vivo evidence that lithium inactivates Gi modulation of adenylate cyclase in brain. J Neurochem 1992;59: 200205.CrossRefGoogle ScholarPubMed
Hsiao, JK, Manji, HK, Chen, GAet al. lithium administration modulates platelet G in humans. Life Sci 1992;50: 227233.CrossRefGoogle Scholar
Greenwood, AF, Jope, RS. Brain G-protein proteolysis by calpain: enhancement by lithium. Brain Res 1994;636: 320326.CrossRefGoogle ScholarPubMed
Manji, HK, Bitran, JA, Masana, MIet al. Signal transduction modulation by lithium: cell culture, cerebral microdialysis and human studies. Psychopharmacol Bull 1991;27: 199218.Google ScholarPubMed
Colin, SF, Chang, HC, Mollner, Set al. Chronic lithium rate: lates the expression of adenylate cyclase and G. protein ai. pha subunit in rat cerebral cortex. Proc Natl Acad Sci USA 1991;88: 10 63410 637. CrossRefGoogle Scholar
Li, PP, Tam, YK, Young, ITet al. Lithium decreases Gs, Gi-t and Gi-Z alpha-subunit mRNA levels in rat cortex. Eur J Pharmacol 1991;206: 165166.CrossRefGoogle Scholar
Mindeo, N, Layden, B, Amari, LVet al. Effect of Li+ upon the Mg2+-dependent activation of recombinant Gialpha1. Arch Biochem Biophys 2001;388: 712.CrossRefGoogle Scholar
Garcia-Sinz, JA, Gutierrez, VG. Activation of protein kinase C alters the interaction of alpha, adrenoceptors and the inhibitory G protein (Gi) in human platelets. FEBS Lett 1989;257: 427430.CrossRefGoogle Scholar
Halenda, SP, Volpi, M, Zavoico, GBet al. Effects of thrombin, phorbol myristate acetate, and prostaglandin D2 on 40–41 kDa protein that is ADP ribosylated by pertussis toxin in platelets. FEBS Lett 1986;204: 341346.CrossRefGoogle ScholarPubMed
Sagi-Eisenberg, R. GTP-binding proteins as possible targets for protein kinase C action. Trends Biochem Sci 1989;14: 355357.CrossRefGoogle ScholarPubMed
Strassheim, D, Palmer, T, Milligan, Get al. Alterations in G protein expression and the hormonal regulation of adenylate cyclase in the adipocytes of obese (fa/fa) Zuker rats. J Biochem 1991;276: 197202. CrossRefGoogle Scholar
Nishizuka, Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 1992;258: 607614.CrossRefGoogle ScholarPubMed
Krupinski, J, Rajaram, R, Lakonishok, Met al. Insulin-dependent phosphorylation of GTP-binding proteins in phospholipid vesicles. J Biol Chem 1988;63: 1233312341. Google Scholar
Katada, T, Gillman, AG, Watanabe, Yet al. Protein C phosphorylates the inhibitory guanine-nucleotide-binding regulatory component and apparently suppresses its function in hor monal inhibition of adenylate cyclase. Eur J Biochem 1985;151: 431437.CrossRefGoogle Scholar
Olianas, MC, Onali, P. Phorbol esters increase GTP-dependent adenylate cyclase activity in rat brain striatal membranes. J Neurochem 1986;7: 890897. Google Scholar
Manji, HK, Bersudsky, Y, Chen, Get al. Modulation of protrl′ kinase C isozymes and substrates by lithium: the role of myo-inositol. Neuropsychopharmacology 1996;15: 370380.CrossRefGoogle ScholarPubMed
Thiele, EA, Eipper, BA. Effect of secretogogues on components of the secretory system in AtT 20 cells. Endocrinology 1990;126: 809817.CrossRefGoogle Scholar
Nestler, EJ, Terwilliger, RZ, Duman, RS. Regulation of en dc′∼′t nous ADP-ribosylation by acute and chronic lithium in rat brain. J Neurochem 1995;64: 23192324.CrossRefGoogle Scholar
Young, LT, Woods, CM. Mood stabilizers have differential effects on endogenous ADP ribosylation in C6 glioma cells. Eur J Pharmacol 1996;309: 215218.CrossRefGoogle ScholarPubMed
Bhalla, US, Iyengar, R. Emergent properties of networks of biological signaling pathways. Science 1999;283: 381387.CrossRefGoogle ScholarPubMed
Weng, G, Bhalla, US, Lyengar, R. Complexity in biological signaling systems. Science 1999;284: 9296.CrossRefGoogle ScholarPubMed
Huang, KP. The mechanism of protein kinase C activation. Trends Neurosci 1989;12: 425432.CrossRefGoogle ScholarPubMed
Stabel, S, Parker, PJ. Protein kinase C. Pharmacol Therap 1991;51: 7195. CrossRefGoogle ScholarPubMed
Hahn, CG, Friedman, E. Abnormalities in protein kinase C signaling and the pathophysiology of bipolar disorders. Bipolar Disord 1999;1: 8186.CrossRefGoogle Scholar
Manji, HK, Lenox, RH. Protein kinase C signaling in the brain. molecular transduction of mood stabilization in the treatment of manic-depressive illness. Biol Psychiatry 1999;46: 13281351.CrossRefGoogle ScholarPubMed
Watson, DG, Lenox, RH. Chronic lithium-induced downregulation of MARCKS in immortalized hippocampal cells: potentiation by muscarinic receptor activation. J Neurochem 1996;67: 767777.CrossRefGoogle ScholarPubMed
Lenox, RH, Watson, DG, Patel, Jet al. Chronic lithium administration alters a prominent PKC substrate in rat hippocampus. Brain Res 1992;570: 333340.CrossRefGoogle ScholarPubMed
Freeman, MP, Stoll, AL. Mood stabilizer combinations. a review of safety and efficacy. Am J Psychiatry 1998;155: 1221.CrossRefGoogle ScholarPubMed
Bitranj, A, Potter, WZ, Manji, HKet al. Chronic Li+ attenuates agonist- and phorbol ester-mediated Na*/Ha′ antiporter activity in HL-60 cells. Eur J Pharmacol 1990;188: 193202.CrossRefGoogle Scholar
Sharp, T, Bramwell, SR, Lambert, Pet al. Effect of short- and long-term administration of lithium on the release of endogenous 5-HT in the hippocampus of the rat in vivo and in vitro. Neuropharmacology 1991;30: 977984.CrossRefGoogle Scholar
Reisine, T, Zatz, M. Interactions between lithium, calcium, diacylglycerides and phorbol esters in the regulation of ACTH release from AtT-20 cells. J Neurochem 1987;49: 884889.CrossRefGoogle ScholarPubMed
Wang, HY, Friedman, E. Lithium inhibition of protein kinase C activation-induced serotonin release. Psychopharmacology (Berl) 1989;99: 213218.CrossRefGoogle ScholarPubMed
Friedman, E, Hoau, YW, Levinson, Det al. Altered platelet protein kinase C activity in bipolar affective disorder, manic episode. Biol Psychiatry 1993;33: 520525.CrossRefGoogle ScholarPubMed
Wang, HY, Friedman, E. Enhanced protein kinase C activity and translocation in bipolar affective disorder brains. Biol Psychiatry 1996;40: 568575.CrossRefGoogle ScholarPubMed
Conn, PJ, Sweatt, JD. Protein kinase C in the nervous system. In: Kuo, JF, ed. Protein kinase. New York: Oxford University Press, 1994: 199235. Google ScholarPubMed
Bebchuk, JM, Arfken, CL, Dolan-Manji, Set al. A preliminary investigation of a protein kinase C inhibitor (tamoxifen) in the treatment of acute mania. Arch General Psychiatry 2000;57: 9597. CrossRefGoogle ScholarPubMed
Cohen, P, Yellowlees, D, Aitken, A, Donella-Deana, A, Hemmings, BA, Parker, PJ. Separation and characterisation of glycogen synthase kinase 3, glycogen synthase kinase 4 and glycogen synthase kinase 5 from rabbit skeletal muscle. Eur J Biochem 1982; 124: 2135.CrossRefGoogle ScholarPubMed
Plyte, SE, Hughes, K, Nikolakaki, E, Pulverer, BJ, Woodgett, JR. Glycogen synthase kinase-3: functions in oncogenesis and development. Biochiem Biophys Acta 1992;1114: 147162. Google ScholarPubMed
Hoeflich, KP, Luo, J, Rubie, EA, Tsao, MS, Jin, O, Woodgett, JR. Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 2000;406: 8690.CrossRefGoogle ScholarPubMed
Woodgett, JR. Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J 1990;9: 24312438.Google ScholarPubMed
Ryves, WJ, Dajani, R, Pearl, L, Harwood, AJ. Glycogen synthase kinase-3 inhibition by lithium and beryllium suggests the presence of two magnesium binding sites. Biochem Biophys Res Commun 2002;290: 967972.CrossRefGoogle ScholarPubMed
Stambolic, V, Ruel, L, Woodgett, J. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol 1996;6: 16641668.CrossRefGoogle ScholarPubMed
Hong, M, Chen, DC, Klein, P, Lee, VM. Lithium reduces tau phosphorylation by inhibition of glycogen synthase kinase-3. J Biol Chem 1997;272: 326332.CrossRefGoogle ScholarPubMed
Munoz-Montano, JR, Moreno, FJ, Avila, J, Diaz-Nido, J. Lithium inhibits Alzheimer's disease-like tau protein phosphorylation in neurons. FEBS Lett 1997;411: 183188.CrossRefGoogle ScholarPubMed
Lovestone, S, Davis, DR, Webster, MT, Kaech, S, Brion, JPet al. Lithium reduces tau phosphorylation: effects in living cells and in neurons at therapeutic concentrations. Biol Psychiatry 1999;45: 9951003.CrossRefGoogle ScholarPubMed
Takahashi, M, Yasutake, K, Tomizawa, K. Lithium inhibits neurite growth and tau protein kinase I/glycogen synthase kinase-3beta-dependent phosphorylation of juvenile tau n cultured hippocampal neurons. J Neurochem 1999;73: 20732083.Google Scholar
Lucas, FR, Goold, RG, Gordon-Weeks, PR, Salinas, PC. Inhibition of GSK-3beta leading to the loss of phosphory-lated MAP-1B is an early event in axonal remodelling induced by WNT-7a or lithium. J Cell Sci 1998;111: 13511361.Google ScholarPubMed
Emily-Fenouil, F, Ghiglione, C, Lhomond, G, Lepage, T, Gache, C. GSK3beta/shaggy mediates patterning along the animal-vegetal axis of the sea urchin embryo. Development 1998;125: 24892498.Google ScholarPubMed
Ryves, WJ, Fryer, L, Dale, T, Harwood, AJ. An assay for glycogen synthase 3 (GSK-3) for use in crude cell extracts. Anal Biochem 1998;264: 124127.CrossRefGoogle ScholarPubMed
Chen, RH, Ding, WV, McCormick, F. Wnt signaling to beta-catenin involves two interactive components. Glycogen synthase kinase-3beta inhibition and activation of protein kinase C. J Biol Chem 2000;275: 1789417899.CrossRefGoogle ScholarPubMed
Cook, D, Fry, MJ, Hughes, K, Sumathipala, R, Woodgett, JR, Dale, TC. Wingless inactivates glycogen synthase kinase-3 via an intracellular signalling pathway which involves a protein kinase C. EMBO J 1996;15: 45264536.Google ScholarPubMed
Ruel, L, Stambolic, V, Ali, A, Mano-ukian, AS, Woodgett, JR. Regulation of the protein kinase activity of Shaggy (Zeste-white3) by components of the wingless pathway in Drosophila cells and embryos. J Biol Chem 1999;274: 2179021796.CrossRefGoogle ScholarPubMed
Riggleman, B, Schedl, P, Weischaus, E. Spatial expression of the Drosophila segment polarity gene armadillo is post-transcriptionally regulated by wingless. Cell 1990;63: 549560.CrossRefGoogle Scholar
Cadigan, KM, Nusse, R. Wnt signaling: a common theme in animal development. Genes Dev 1997;11: 32863305.CrossRefGoogle ScholarPubMed
Miller, JR, Hocking, AM, Brown, JD, Moon, RT. Mechanism and function of signal transduction by the Wnt/beta-catenin and Wnt/Ca 2 C pathways. Oncogene 1999;18: 78607872.CrossRefGoogle Scholar
Nelson, RW, Gumbiner, BM. A cell-free assay system for beta-catenin signaling that recapitulates direct inductive events in the early Xenopus laevis embryo. J Cell Biol 1999;147: 367374.CrossRefGoogle ScholarPubMed
Rogers, I, Varmuza, S. LiCl disrupts axial development in mouse but does not act through the beta-catenin/Lef-1 pathway. Mol Reprod Dev 2000;55: 387392.3.0.CO;2-P>CrossRefGoogle Scholar
Singh, LP, Crook, ED. The effects of glucose and the hexosamine biosynthesis pathway on glycogen synthase kinase-3 and other protein kinases that regulate glycogen synthase activity. J Invest Med 2000;48: 251258. Google ScholarPubMed
Czech, MP. Signal tranmission by the insulin-like growth factors. Cell 1989;59: 235238.CrossRefGoogle Scholar
Lawrence, JC Jr,Roach, PJ. New insights into the role and mechanism of glycogen synthase activation by insulin. Diabetes 1997;46: 541547.CrossRefGoogle Scholar
Hedgepeth, CM, Deardorff, MA, Rankin, K, Klein, PS. Regulation of glycogen synthase kinase 3beta and down-stream Wnt signaling by axin. Mol Cell Biol 1999;19: 71477157.CrossRefGoogle Scholar
Yost, C, Farr, GH, Pierce, SB, Ferkey, DM, Chen, MM, Kimelman, D. GBP, an inhibitor of GSK-3, is implicated in Xenopus development and oncogenesis. Cell Year?;93: 10311041. CrossRefGoogle ScholarPubMed
Zeng, L, Fagotto, F, Zhang, Tet al. The mouse Fused locus encodes axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 1997;90: 181192.CrossRefGoogle ScholarPubMed
Ikeda, S, Kishida, S, Yamamoto, H, Murai, H, Koyama, S, Kikuchi, A. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3β and β-catenin and promotes GSK-3β-dependent phosphorylation of β-catenin. EMBO J 1998;17: 13711384.CrossRefGoogle ScholarPubMed
Wagner, U, Utton, M, Gallo, JMet al. Cellular phosphorylation of tau by GSK-3beta influences tau binding to microtubules and microtubule organisation. J Cell Sci 1996;109: 15371543.Google Scholar
Lucas, FR, Salinas, PC. Wnt-7a induces axonal remodeling and increases synapsin I levels in cerebellar neurons. Dev Biol 1997;192: 3144.CrossRefGoogle ScholarPubMed
Ikeda, S, Kishida, S, Yamamoto, Het al. Axin, a negative regulator of the Wnt signalling pathway, forms a complex with GSK-3β and β-catenin and promotes GSK-3β-dependent phosphorylation of β-catenin. EMBO J 1977;17: 13711384. CrossRefGoogle ScholarPubMed
Chen, G, Huang, LD, Jiang, Yet al. The mood stabilising agent valproate inhibits the activity of glycogen synthase kinase 3. J Neurochem 1999;72: 13271330.CrossRefGoogle Scholar
Hanger, DP, Hughes, K, Woodgett, JR, Brion, J-P, Anderton, BH. Glycogen synthase kinase-3 induces Alzheimer's disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci Lett 1992;147: 5862.CrossRefGoogle ScholarPubMed
Sperber, BR, Leight, S, Goedert, M, Lee, VM-Y. Glycogen synthase kinase-3β phosphorylates tau protein at multiple sites in intact cells. Neurosci Lett 1995;197: 149153.CrossRefGoogle Scholar
Ishiguro, K, Takamatsu, M, Tomizawa, K, Omori, A, Takahashi, Met al. Tau protein kinase I converts normal tau protein into A68-like component of paired helical filaments. J Biol Chem 1992;267: 1089710901.Google ScholarPubMed
Mandelkow, EM, Drewes, G, Biernat, J, Van Gustke, NLJGlycogen synthase kinase-3 and the Alzheimer-like state of microtubule-associated protein tau. FEBS Lett 1992;314: 315321.CrossRefGoogle ScholarPubMed
Bramblett, GT, Goedert, M, Jakes, R, Merrick, SE, Trojanowski, JQ, Lee, VM-Y. Abnormal tau phosphorylation at ser-396 in Alzheimer's disease recapitulates development and contributes to reduced microtubule binding. Neuron 1993;10: 10891099.CrossRefGoogle Scholar
Lovestone, S, Reynolds, CH, Latimer, Det al. Alzheimer's disease-like phosphorylation of the microtubule-associated protein tau by glycogen synthase kinase-3 in transfected mammalian cells. Curr Biol 1994;4: 10771086.CrossRefGoogle ScholarPubMed
Otvos, L, Feiner, L, Lang, E, Szendrei, GI, Goedert, M, Lee, VM-Y. Monoclonal antibody PHF-1 recognizes tau protein phosphorylated at serine residues 396 and 404. J Neurosci Res 1994;39: 669673.CrossRefGoogle ScholarPubMed
Moreno, FJ, Medina, M, Perez, Met al. Glycogen synthase kinase 3 phosphorylates recombinant human tau protein at serine-262 in the presence of heparin (or tubulin). FEBS Lett 1995;372: 6568.CrossRefGoogle Scholar
Chang, MC, Contreras, MA, Rosenberger, TA, Rintala, JJ, Bell, JM, Rapaaport, SI. Chronic valprote tretment decreases the in vivo turnover of arachidonic acid brain phospholipids: a possible common effect of mood stabilizers. J Neurochem 2001;77: 796803.CrossRefGoogle Scholar
Bosetti, F, Rintala, J, Seemann, R, Rosenberger, TA, Conreras, M, Rapaport, SI, Chng, MC. Chronic lithium downregultes cyclooxygenase-2 activity and prostaglandin E(2) concentration in rat brain. Mol Psychiatry 2002;7: 845850.CrossRefGoogle ScholarPubMed
Rapaport, S, Bosetti, F. Do lithium and anticonçvulsants trget the brain arachidonic acid cascde in bipolar disorder? Arch General Psychiatry 2002;59: 592596. CrossRefGoogle Scholar
Duman, RS, Heninger, GR, Nestler, EJ. A molecular and cellular theory of depression. Arch General Psy 1997;54: 597606. CrossRefGoogle Scholar
Hyman, SE, Nestler, EJ. Initiation and adaptation: a paradigm for understanding psychotropic drug action. Am J Psychiatry 1996;153: 151162.Google ScholarPubMed
Karin, M, Smeal, T. Control of transcription factors by signal transduction pathways: the beginning of the end. Trends Biochem Sci 1992;17: 418422.CrossRefGoogle ScholarPubMed
Hughes, P, Dragunow, M. Induction of immediate-early genes and the control of neurotransmitter-regulated gene expression within the nervous system. Pharmacol Rev 1995;47: 133178.Google Scholar
Chen, G, Yuan, PX, Jiang, Yet al. Valproate robustly enhances AP-I mediated gene expression. Mol Brain Res 1999;64: 5258.CrossRefGoogle Scholar
Ozaki, N, Chuang, DM. Lithium increases transcription factor binding to AP-I and cyclic AMP-responsive element in cultured neurons and rat brain. J Neurochem 1997;69: 23362344.CrossRefGoogle Scholar
Yuan, PX, Chen, G, Manji, HH. Lithium stimulates gene expression through the AP-I transcription factor pathway. Mol Brain Res 1998;58: 225230.CrossRefGoogle Scholar
Unlap, MT, Jope, RS. Lithium attenuates nerve growth factor-induced activation of AP-I DNA binding activity in PC12 cells. Neuropsychopharmacology 1997;17: 1217.CrossRefGoogle Scholar
Kumer, SC, Vrana, KE. Intricate regulation of tyrosine hydroxylase activity and gene expression. J Neurochem 1996;67: 443461.CrossRefGoogle ScholarPubMed
Soares, JC, Mann, JJ. The functional neuroanatomy of mood disorders. J Psychiatr Res 1997;1: 393432. CrossRefGoogle Scholar
Boyle, WJ, Smeal, T, Defize, LHet al. Activation of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its DNA-binding activity. Cell 1991;64: 573784.CrossRefGoogle ScholarPubMed
Lin, A, Smeal, T, Binetury, Bet al. Control of AP-I activity by signal transduction cascades. Adv Second Messenger Phosphoprotein Research 1993;28: 225260. Google Scholar
Yuan, PX, Chen, G, Manji, HH. Lithium activates the c-Jun NH2-terminal kinases (JNKs) in vitro and in the CNS in vivo. J Neurochem 1999;73: 22992309.CrossRefGoogle ScholarPubMed
Manji, HK, Moore, GJ, Rajkowska, Get al. Neuroplasticity and cellular resilience in mood disorders. Millennium article. Mol Psychiatry 2000;5: 578593.CrossRefGoogle Scholar
Liang, P, Pardee, AB. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 1992;257: 967971.CrossRefGoogle ScholarPubMed
Liang, P, Bauer, D, Averboukh, Let al. Analysis of altered gene expression by differential display. Meth Enzymol 1995;254: 304321.CrossRefGoogle ScholarPubMed
Chen, G, Zeng, WZ, Jiang, Let al. The mood stabilising agents lithium and valproate robustly increase the expression of the neuroprotective protein bcl-2 in the CNS. J Neurochem 1999;72: 879882.CrossRefGoogle ScholarPubMed
Chen, G, Yuan, PX, Hawver, DBet al. Increase in AP-I transcription factor DNA binding activity by valproic acid. Neuropsychopharmacology 1997;16: 238245.Google Scholar
Elkis, H, Friedman, WA, Meltzer, HY. Meta-analyses of studies of ventricular enlargement and cortical suicidal prominence in mood disorders. Comparisons with controls of patients with schizophrenia. Arch General Psychiatry 1995;51: 735746. CrossRefGoogle Scholar
Drevets, WC, Price, JL, Simpson, JRet al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature 1997;386: 824827.CrossRefGoogle ScholarPubMed
Ketter, TA, George, MS, Kimbrell, TAet al. Neuroanatomical models and brain imaging studies. In: Joffe, RT, Young, LT, eds. Bipolar disorder: biological models and their clinical application. New York: Marcel Dekker, 1997: 179217. Google Scholar
Rajkowska, G. Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol Psychiatry 2000;48: 766777.CrossRefGoogle ScholarPubMed
Rajkowska, G, Miguel-Hidalgo, JJ, Wei, Jet al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 1999;45: 10851098.CrossRefGoogle ScholarPubMed
Bruno, V, Sortino, MA, Scapagnini, Uet al. Antidegenerative effects of Mg(2+) valproate in cultured cerebellar neurons. Func Neurol 1995;10: 121130. Google ScholarPubMed
Nonaka, S, Hough, CJ, Chuang, DM. Chronic lithium treatment robustly protects neurons in the central nervous system against excitotoxicity by inhibiting N-methyl-D-aspartate receptor-mediated calcium influx. Proc Natl Acad Sci USA 1998;95: 26422647.CrossRefGoogle ScholarPubMed
Chuang, DM, Chen, RW, Chalecka-Franaszek, Eet al. Neuroprotective effects of lithium in cultured cells and animal models of diseases. Bipolar Disord 2002;4: 129136.CrossRefGoogle ScholarPubMed
Ghribi, O, Herman, MM, Spaulding, NK, Savory, J. Lithium inhibits aluminium-induced apoptosis in rabbit hippocampus, by preventing cytochrome c translocation, Bcl-2 decrease, Bax elevation and caspase-3 activation. J Neurochem;2002: 137145. Google Scholar
Guo, Z, Zhou, D, Schultz, PG. Designing small-molecule switches for protein–protein interactions. Science 2000;288: 2042–2030.CrossRefGoogle ScholarPubMed
Hua, LV, Green, M, Warsh, JJ, Li, PP. Lithium regulation of ldolsa A expression in the rat frontal cortex: identification by differential display. Biol Psychitry 2000;48: 5864. CrossRefGoogle ScholarPubMed
Cordeiro, ML, Umbach, JA, Gundersen, CB. Lithium ions up-regulate mRNAs encording dense-core vesicle proteins in nerve growth factor-differentiated PC12 cells. J Neurochem 2000;76: 26222625. Google Scholar
Hua, LV, Green, M, Wong, A, Wrsh, JJ, Li, PP. Tetraspn protein CD151: a common trget of mood stabilizing drugs? Neuropsychopharmcology 2001;25: 729736. CrossRefGoogle Scholar
Stip, E, Dufresne, J, Lussier, I, Yatham, L. A double-blind, placebo-conrolled study of the effects of lithium on cognition in healthy subjects: mild and selective effects on learning. J Affect Disord 2000;60: 147157.CrossRefGoogle Scholar
Martínez-Arán Vieta, E, Colom, F, Benabarre, A, Reinares, M, Gastó, C, Salamero, M. Cognitive disfunctions in bipolar disorder: evidence of neuropsychologicl disturbances. Psychother Psychosom 2000;69: 218.CrossRefGoogle Scholar
Martínez-Arán Goodwin, GM, Vieta, E. The might of the evidence of cognitive dysfunctions in bipolar disorder . In: Vieta, E, ed. Bipolar disorders: clinical and therapeutic progress. Panamericana, Madrid, 2002: 4981. Google Scholar
Hashimoto, R, Hough, C, Nakazawa, T, Yammoto, T, Chung, DM. Lithium protection gainst glutamate excitotoxicity in rat cerebral cortical neurons. involvement of NMDA receptor inhibition possibly by decreassing NR2B yrosine phosphorylation. J Neurochem 2002;80: 589597.CrossRefGoogle Scholar
Hellweg, R, Lang, UE, Nagel, M, Baumgartner, A. Subchronic treatment with lithium increases nerve growth factor content in distinct brain regions of adult rats. Mol Psychiatry 2002;7: 6046048.CrossRefGoogle ScholarPubMed