Published online by Cambridge University Press: 30 June 2015
Although cognitive behavioural therapy (CBT) has been shown to be an effective treatment for depression, the biological mechanisms underpinning it are less clear. This review examines if it is associated with changes identifiable with current brain imaging technologies.
To better understand the mechanisms by which CBT exerts its effects, we undertook a systematic review of studies examining brain imaging changes associated with CBT treatment of depression.
Ten studies were identified, five applying functional magnetic resonance imaging, three positron emission tomography, one single photon emission computer tomography, and one magnetic resonance spectroscopy. No studies used structural MRI. Eight studies included a comparator group; in only one of these studies was there randomised allocation to another treatment. CBT-associated changes were most commonly observed in the anterior cingulate cortex (ACC), posterior cingulate, ventromedial prefrontal cortex/orbitofrontal cortex (VMPFC/OFC) and amygdala/hippocampus.
The evidence, such as it is, suggests resting state activity in the dorsal ACC is decreased by CBT. It has previously been suggested that treatment with CBT may result in increased efficiency of a putative ‘dorsal cognitive circuit’, important in cognitive control and effortful regulation of emotion. It is speculated this results in an increased capacity for ‘top-down’ emotion regulation, which is employed when skills taught in CBT are engaged. Though changes in activity of the dorsal ACC could be seen as in-keeping with this model, the data are currently insufficient to make definitive statements about how CBT exerts its effects. Data do support the contention that CBT is associated with biological brain changes detectable with current imaging technologies.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.