Article contents
Brain energy metabolism is increased by chronic administration of bupropion
Published online by Cambridge University Press: 24 June 2014
Extract
Objectives: Based on the hypothesis that energy impairment may be involved in the pathophysiology of depression, we evaluated the activities of citrate synthase, malate dehydrogenase, succinate dehydrogenase (SDH), mitochondrial respiratory chain complexes I, II, II-III, IV and creatine kinase (CK) in the brain of rats submitted to chronic administration of bupropion.
Methods: Animals received daily administration of bupropion dissolved in saline (10 mg/kg, intraperitoneal) at 1.0 ml/kg body weight. The rats received injections once a day for 14 days; control rats received an equivalent volume of saline. Twelve hours after the last administration, the rats were killed by decapitation and brain was rapidly removed and kept on an ice plate. The activities of the enzymes were measured in different brain areas.
Results: We observed that the activities of citrate synthase and malate dehydrogenase, mithocondrial respiratory chain complexes I, II-III and IV and CK were not altered after chronic administration of bupropion. However, SDH activity was increased in the prefrontal cortex and cerebellum. In the hippocampus, cerebellum and striatum the activity of complex II was increased after chronic administration of bupropion.
Conclusions: Our results demonstrated that bupropion increased some enzymes of brain energy metabolism. These findings are in accordance with other studies which showed that some antidepressants may improve energy metabolism. The present results reinforce the hypothesis that antidepressants modulate brain energy metabolism.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 2011
References
- 6
- Cited by