Skip to main content Accessibility help
×
Hostname: page-component-669899f699-qzcqf Total loading time: 0 Render date: 2025-04-30T09:26:01.408Z Has data issue: false hasContentIssue false

The κ-Statistics Approach to Income Distribution Analysis

Published online by Cambridge University Press:  11 April 2025

Fabio Clementi
Affiliation:
University of Macerata, Italy
Mauro Gallegati
Affiliation:
Marche Polytechnic University, Italy
Lisa Gianmoena
Affiliation:
University of Pisa, Italy
Giorgio Kaniadakis
Affiliation:
Politecnico di Torino, Italy
Simone Landini
Affiliation:
IRES Piemonte – Socioeconomic Research Institute of Piedmont

Summary

This Element presents the κ-generalized distribution, a statistical model tailored for the analysis of income distribution. Developed over years of collaborative, multidisciplinary research, it clarifies the statistical properties of the model, assesses its empirical validity and compares its effectiveness with other parametric models. It also presents formulas for calculating inequality indices within the κ-generalized framework, including the widely used Gini coefficient and the relatively lesser-known Zanardi index of Lorenz curve asymmetry. Through empirical illustrations, the Element criticizes the conventional application of the Gini index, pointing out its inadequacy in capturing the full spectrum of inequality characteristics. Instead, it advocates the adoption of the Zanardi index, accentuating its ability to capture the inherent heterogeneity and asymmetry in income distributions.
Get access
Type
Element
Information
Online ISBN: 9781009446341
Publisher: Cambridge University Press
Print publication: 08 May 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Element purchase

Temporarily unavailable

References

Allison, P. D. (1978). Measures of inequality. American Sociological Review, 43, 865880.CrossRefGoogle Scholar
Arnold, B. C., & Laguna, L. (1977). On Generalized Pareto Distributions with Applications to Income Data. Ames: Iowa State University Press.Google Scholar
Atkinson, A. B. (1970). On the measurement of inequality. Journal of Economic Theory, 2, 244263.CrossRefGoogle Scholar
Atkinson, A. B. (2015). Inequality: What Can Be Done? Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Atkinson, A. B., & Piketty, T. (Eds.). (2007). Top Incomes over the Twentieth Century: A Contrast between European and English-Speaking Countries. Oxford: Oxford University Press.CrossRefGoogle Scholar
Atoda, N., Suruga, T., & Tachibanaki, T. (1988). Statistical inference of functional forms for income distribution. Economic Studies Quarterly, 39, 1440.Google Scholar
Bartels, C. P. A. (1977). Economic Aspects of Regional Welfare: Income Distribution and Unemployment. Leiden: Martinus Nijhoff.CrossRefGoogle Scholar
Bartels, C. P. A., & van Metelen, H. (1975). Alternative Probability Density Functions of Income: A Comparison of the Longnormal-, Gamma- and Weibull-Distribution with Dutch Data (Research Memorandum No. 29). Amsterdam: Department of Quantitative Studies, Faculty of Economics, Vrije Universiteit.Google Scholar
Bordley, R. F., McDonald, J. B., & Mantrala, A. (1996). Something new, something old: Parametric models for the size distribution of income. Journal of Income Distribution, 6, 91103.Google Scholar
Brachmann, K., Stich, A., & Trede, M. (1996). Evaluating parametric income distribution models. Allgemeines Statistisches Archiv, 80, 285298.Google Scholar
Chami Figueira, F., Moura, N. J., & Ribeiro, M. B. (2011). The Gompertz-Pareto income distribution. Physica A: Statistical Mechanics and Its Applications, 390, 689698.CrossRefGoogle Scholar
Chotikapanich, D., Griffiths, W., Hajargasht, G., Karunarathne, W., & Rao, D. (2018). Using the GB2 income distribution. Econometrics, 6, 21.CrossRefGoogle Scholar
Clementi, F. (2023). The Kaniadakis distribution for the analysis of income and wealth data. Entropy, 25, 1141.CrossRefGoogle ScholarPubMed
Clementi, F., Di Matteo, T., Gallegati, M., & Kaniadakis, G. (2008). The κ-generalized distribution: A new descriptive model for the size distribution of incomes. Physica A: Statistical Mechanics and Its Applications, 387, 32013208.CrossRefGoogle Scholar
Clementi, F., & Gallegati, M. (2016). The Distribution of Income and Wealth: Parametric Modeling with the κ-Generalized Family. Cham: Springer International Publishing AG.CrossRefGoogle Scholar
Clementi, F., & Gallegati, M. (2017). New economic windows on income and wealth: The κ-generalized family of distributions. Journal of Social and Economic Statistics, 6, 115.Google Scholar
Clementi, F., Gallegati, M., Gianmoena, L., Landini, S., & Stiglitz, J. E. (2019). Mis-measurement of inequality: A critical reflection and new insights. Journal of Economic Interaction and Coordination, 14, 891921.CrossRefGoogle Scholar
Clementi, F., Gallegati, M., & Kaniadakis, G. (2007). κ-generalized statistics in personal income distribution. The European Physical Journal B, 57, 187193.CrossRefGoogle Scholar
Clementi, F., Gallegati, M., & Kaniadakis, G. (2009). A κ-generalized statistical mechanics approach to income analysis. Journal of Statistical Mechanics: Theory and Experiment, 2009, P02037.CrossRefGoogle Scholar
Clementi, F., Gallegati, M., & Kaniadakis, G. (2010). A model of personal income distribution with application to Italian data. Empirical Economics, 39, 559591.CrossRefGoogle Scholar
Clementi, F., Gallegati, M., & Kaniadakis, G. (2012a). A new model of income distribution: The κ-generalized distribution. Journal of Economics, 105, 6391.CrossRefGoogle Scholar
Clementi, F., Gallegati, M., & Kaniadakis, G. (2012b). A generalized statistical model for the size distribution of wealth. Journal of Statistical Mechanics: Theory and Experiment, 2012, P12006.CrossRefGoogle Scholar
Clementi, F., Gallegati, M., Kaniadakis, G., & Landini, S. (2016). κ-generalized models of income and wealth distributions: A survey. The European Physical Journal Special Topics, 225(10), 19591984.CrossRefGoogle Scholar
Clementi, F., & Gianmoena, L. (2017). Modeling the joint distribution of income and consumption in Italy. In Gallegati, M., Palestrini, A., & Russo, A. (Eds.), Introduction to Agent-Based Economics (pp. 191228). Cambridge, MA: Academic Press.CrossRefGoogle Scholar
Cowell, F. A. (1980a). Generalized entropy and the measurement of distributional change. European Economic Review, 13, 147159.CrossRefGoogle Scholar
Cowell, F. A. (1980b). On the structure of additive inequality measures. Review of Economic Studies, 47, 521531.CrossRefGoogle Scholar
Cowell, F. A. (2011). Measuring Inequality. New York: Oxford University Press.CrossRefGoogle Scholar
Cowell, F. A., & Kuga, K. (1981a). Additivity and the entropy concept: An axiomatic approach to inequality measurement. Journal of Economic Theory, 25, 131143.CrossRefGoogle Scholar
Cowell, F. A., & Kuga, K. (1981b). Inequality measurement: An axiomatic approach. European Economic Review, 15, 287305.CrossRefGoogle Scholar
Dagum, C. (1977). A new model of personal income distribution: Specification and estimation. Economie Appliquée, 30, 413436.CrossRefGoogle Scholar
Drăgulescu, A., & Yakovenko, V. M. (2001). Evidence for the exponential distribution of income in the USA. The European Physical Journal B, 20, 585589.CrossRefGoogle Scholar
Espinguet, P., & Terraza, M. (1983). Essai d’extrapolation des distributions de salaires français. Economie Appliquée, 36, 535561.CrossRefGoogle Scholar
Esteban, J. M. (1986). Income-share elasticity and the size distribution of income. International Economic Review, 27, 439444.CrossRefGoogle Scholar
Gallegati, M., Landini, S., & Stiglitz, J. E. (2016). The Inequality Multiplier (Research Paper No. 16–29). New York: Columbia Business School. (https://ssrn.com/abstract=2766301).CrossRefGoogle Scholar
Gastwirth, J. L. (1971). A general definition of the Lorenz curve. Econometrica, 39, 10371039.CrossRefGoogle Scholar
Ghosh, J. K. (1994). Higher Order Asymptotics. Hayward, CA: Institute of Mathematical Statistics and American Statistical Association.CrossRefGoogle Scholar
Gini, C. (1914). Sulla misura della concentrazione e della variabilità dei caratteri. Atti del Regio Istituto Veneto di Scienze, Lettere ed Arti, 73, 12011248.Google Scholar
Hristopulos, D. T., & Baxevani, A. (2022). Kaniadakis functions beyond statistical mechanics: Weakest-link scaling, power-law tails, and modified lognormal distribution. Entropy, 24, 1362.CrossRefGoogle ScholarPubMed
Hristopulos, D. T., Petrakis, M. P., & Kaniadakis, G. (2014). Finite-size effects on return interval distributions for weakest-link-scaling systems. Physical Review E, 89, 052142.CrossRefGoogle ScholarPubMed
Hristopulos, D. T., Petrakis, M. P., & Kaniadakis, G. (2015). Weakest-link scaling and extreme events in finite-sized systems. Entropy, 17, 11031122.CrossRefGoogle Scholar
Jenkins, S. P. (2009). Distributionally-sensitive inequality indices and the GB2 income distribution. Review of Income and Wealth, 55, 392398.CrossRefGoogle Scholar
Kakwani, N. (1980). Income Inequality and Poverty: Methods of Estimation and Policy Applications. New York: Oxford University Press.Google Scholar
Kaniadakis, G. (2001). Non-linear kinetics underlying generalized statistics. Physica A: Statistical Mechanics and Its Applications, 296, 405425.CrossRefGoogle Scholar
Kaniadakis, G. (2002). Statistical mechanics in the context of special relativity. Physical Review E, 66, 056125.CrossRefGoogle ScholarPubMed
Kaniadakis, G. (2005). Statistical mechanics in the context of special relativity. II. Physical Review E, 72, 036108.CrossRefGoogle ScholarPubMed
Kaniadakis, G. (2009a). Maximum entropy principle and power-law tailed distributions. The European Physical Journal B, 70, 313.CrossRefGoogle Scholar
Kaniadakis, G. (2009b). Relativistic entropy and related Boltzmann kinetics. The European Physical Journal A, 40(3), 275287.CrossRefGoogle Scholar
Kaniadakis, G. (2013). Theoretical foundations and mathematical formalism of the power-law tailed statistical distributions. Entropy, 15, 39834010.CrossRefGoogle Scholar
Kaniadakis, G. (2021). New power-law tailed distributions emerging in κ-statistics. Europhysics Letters, 133, 10002.CrossRefGoogle Scholar
Kaniadakis, G. (2024). Relativistic roots of κ-entropy. Entropy, 26, 406.CrossRefGoogle ScholarPubMed
Kleiber, C. (1997). The existence of population inequality measures. Economics Letters, 57, 3944.CrossRefGoogle Scholar
Kleiber, C., & Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences. New York: John Wiley & Sons.CrossRefGoogle Scholar
Landini, S. (2016). Mathematics of strange quantities: Why are κ-generalized models a good fit to income and wealth distributions? An explanation. In Clementi, F. & Gallegati, M., The Distribution of Income and Wealth: Parametric Modeling with the κ-Generalized Family (pp. 93132). Cham: Springer International Publishing AG.Google Scholar
LIS Inequality and Poverty Key Figures. (April 15, 2024). https://www.lisdatacenter.org/data-access/key-figures/. Luxembourg: LIS.Google Scholar
Lorenz, M. O. (1905). Methods of measuring the concentration of wealth. Publications of the American Statistical Association, 9, 209219.CrossRefGoogle Scholar
Luxembourg Income Study (LIS) Database. (Multiple countries; February 2024 – March 2024). https://www.lisdatacenter.org/. Luxembourg: LIS.Google Scholar
Mandelbrot, B. (1960). The Pareto-Lévy law and the distribution of income. International Economic Review, 1, 79106.CrossRefGoogle Scholar
McDonald, J. B. (1984). Some generalized functions for the size distribution of income. Econometrica, 52, 647665.CrossRefGoogle Scholar
Okamoto, M. (2013). Extension of the κ-Generalized Distribution: New Four-Parameter Models for the Size Distribution of Income and Consumption (Working Paper No. 600). Luxembourg: LIS Cross-National Data Center. (www.lisdatacenter.org/wps/liswps/600.pdf).Google Scholar
Pareto, V. (1895). La legge della domanda. Giornale degli Economisti, 10, 5968.Google Scholar
Pareto, V. (1896). La courbe de la répartition de la richesse. (Reprinted in Busino, G. (Ed.). (1965). Œeuvres complètes de Vilfredo Pareto, Tome 3: Écrits sur la courbe de la répartition de la richesse (pp. 115). Geneva: Librairie Droz).Google Scholar
Pareto, V. (1897a). Cours d’économie politique. London: Macmillan.Google Scholar
Pareto, V. (1897b). Aggiunta allo studio della curva delle entrate. Giornale degli Economisti, 14, 1526.Google Scholar
Park, J., Kim, Y., & Ju, A.-J. (2021). Measuring income inequality based on unequally distributed income. Journal of Economic Interaction and Coordination, 16, 309322.CrossRefGoogle Scholar
Pietra, G. (1915). Delle relazioni tra gli indici di variabilità: Nota I. Atti del Regio Istituto Veneto di Scienze, Lettere ed Arti, 74, 775792.Google Scholar
Piketty, T. (2014). Capital in the Twenty-First Century. Cambridge, MA: The Belknap Press of Harvard University Press.CrossRefGoogle ScholarPubMed
R Core Team. (2024). R: A Language and Environment for Statistical Computing [Computer software manual]. Vienna. (www.R-project.org/).Google Scholar
Rao, C. (1973). Linear Statistical Inference and Its Applications. New York: John Wiley & Sons.CrossRefGoogle Scholar
Ribeiro, M. B. (2020). Income Distribution Dynamics of Economic Systems: An Econophysical Approach. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Ricci, U. (1916). L’indice di variabilità e la curva dei redditi. Giornale degli Economisti e Rivista di Statistica, 53, 177228.Google Scholar
Sarabia, J. M., Jordá, V., & Remuzgo, L. (2017). The Theil indices in parametric families of income distributions – a short review. Review of Income and Wealth, 63, 867880.CrossRefGoogle Scholar
Shorrocks, A. F. (1980). The class of additively decomposable inequality measures. Econometrica, 48, 613625.CrossRefGoogle Scholar
Singh, S. K., & Maddala, G. S. (1976). A function for size distribution of incomes. Econometrica, 44, 963970.CrossRefGoogle Scholar
Stiglitz, J. E. (2012). The Price of Inequality: How Today’s Divided Society Endangers Our Future. New York: W. W. Norton.Google Scholar
Stiglitz, J. E. (2015). The Great Divide: Unequal Societies and What We Can Do About Them. New York: W. W. Norton.Google Scholar
Tachibanaki, T., Suruga, T., & Atoda, N. (1997). Estimations of income distribution parameters for individual observations by maximum likelihood method. Journal of the Japan Statistical Society, 27, 191203.CrossRefGoogle Scholar
Tarsitano, A. (1987). Fitting the Lorenz curve. Statistica, 47, 437451.Google Scholar
Tarsitano, A. (1988). Measuring asymmetry of the Lorenz curve. Ricerche Economiche, 42, 507519.Google Scholar
Theil, H. (1967). Economics and Information Theory. Amsterdam: North-Holland.Google Scholar
Yakovenko, V. M., & Rosser, J. B. (2009). Colloquium: Statistical mechanics of money, wealth, and income. Reviews of Modern Physics, 81, 17031725.CrossRefGoogle Scholar
Zanardi, G. (1964). Della asimmetria condizionata delle curve di concentrazione. Lo scentramento. Rivista Italiana di Economia, Demografia e Statistica, 18, 431466.Google Scholar
Zanardi, G. (1965). L’asimmetria statistica delle curve di concentrazione. Ricerche Economiche, 19, 355396.Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The κ-Statistics Approach to Income Distribution Analysis
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

The κ-Statistics Approach to Income Distribution Analysis
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

The κ-Statistics Approach to Income Distribution Analysis
Available formats
×