Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-22T15:40:03.116Z Has data issue: false hasContentIssue false

Spoof Surface Plasmon Metamaterials

Published online by Cambridge University Press:  27 January 2018

Paloma Arroyo Huidobro
Affiliation:
Imperial College London
Antonio I. Fernández-Domínguez
Affiliation:
Universidad Autónoma de Madrid
John B. Pendry
Affiliation:
Imperial College London
Luis Martín-Moreno
Affiliation:
Universidad de Zaragoza
Francisco J. Garcia-Vidal
Affiliation:
Universidad Autónoma de Madrid

Summary

Metamaterials offer the possibility to control and manipulate electromagnetic radiation. Spoof surface plasmon metamaterials are the focus of this Element of the Metamaterials Series. The fundamentals of spoof surface plasmons are reviewed, and advances on plasmonic metamaterials based on spoof plasmons are presented. Spoof surface plasmon metamaterials on a wide range of geometries are discussed: from planar platforms to waveguides and localized modes, including cylindrical structures, grooves, wedges, dominos or conformal surface plasmons in ultrathin platforms. The Element closes with a review of recent advances and applications such as Terahertz sensing or integrated devices and circuits.
Get access
Type
Element
Information
Online ISBN: 9781108553445
Publisher: Cambridge University Press
Print publication: 08 February 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Smith, DR, Pendry, JB, Wiltshire, MCK. Metamaterials and negative refractive index. Science, 2004;305(5685):788–92.Google Scholar
Pendry, JB. Photonics: metamaterials in the sunshine. Nature Materials. 2006;5(8):599600.Google Scholar
Shelby, RA, Smith, DR, Schultz, S. Experimental verification of a negative index of refraction. Science, 2001;292(5514):77–9.Google Scholar
Schurig, D, Mock, JJ, Justice, BJ, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006;314:977.CrossRefGoogle ScholarPubMed
Cui, TJ, Smith, DR, Liu, RP. Metamaterials: Theory, Design and Applications. 1st ed. Springer, 2009.Google Scholar
Liu, Y, Zhang, X. Metamaterials: a new frontier of science and technology. Chemical Society Reviews, 2011;40(5):2494–507.Google Scholar
Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer, 1988.Google Scholar
Maier, SA. Plasmonics Fundamentals and Applications. Boston, MA: Springer, 2007.Google Scholar
Barnes, WL, Dereux, A, Ebbesen, TW. Surface plasmon subwavelength optics. Nature, 2003;424(6950):824–30.Google Scholar
Ozbay, E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science, 2006 Jan;311(5758):189–93.Google Scholar
Gramotnev, DK, Bozhevolnyi, SI. Plasmonics beyond the diffraction limit. Nature Photonics, 2010;4(2):8391.Google Scholar
Zhang, S, Fan, W, Minhas, B, Frauenglass, A, Malloy, K, Brueck, S. Midinfrared resonant magnetic nanostructures exhibiting a negative permeability. Physical Review Letters, 2005;94(3):037402.Google Scholar
Zhang, S, Fan, W, Panoiu, NC, Malloy, KJ, Osgood, RM, Brueck, SRJ. Experimental demonstration of near-infrared negative-index metamaterials. Physical Review Letters, 2005;95(13):137404.CrossRefGoogle ScholarPubMed
Pendry, JB, Martín-Moreno, L, García-Vidal, FJ. Mimicking surface plasmons with structured surfaces. Science, 2004;305(5685):847–8.Google Scholar
García-Vidal, FJ, Martín-Moreno, L, Pendry, JB. Surfaces with holes in them: new plasmonic metamaterials. Journal of Optics A: Pure and Applied Optics. 2005;7(2):S97S101.Google Scholar
Shalaev, VM. Optical negative-index metamaterials. Nature Photonics. 2007;1(1):41–8.Google Scholar
Cai, WS, Shalaev, VM. Optical Metamaterials: Fundamentals and Applications. 1st ed. New York, NY: Springer, 2009.Google Scholar
Wegener, M, Linden, S. Shaping optical space with metamaterials feature. Physics Today. 2010;63:32–6.Google Scholar
Pendry, JB, Holden, AJ, Stewart, WJ, Youngs, I. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters. 1996;76(25):4773–6.Google Scholar
Pendry, JB, Holden, AJ, Robbins, DJ, Stewart, WJ. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999;47(11):20752084.Google Scholar
Wiltshire, MCK, Pendry, JB, Young, IR, Larkman, DJ, Gilderdale, DJ, Hajnal, JV. Microstructured magnetic materials for RF flux guides in magnetic resonance imaging. Science, 2001;291(5505):849.Google Scholar
Soukoulis, CM, Linden, S, Wegener, M. Negative refractive index at optical wavelengths. Science, 2007;315(5808):47–9.Google Scholar
Lezec, HJ, Dionne, JA, Atwater, HA. Negative refraction at visible frequencies. Science, 2007;316(5823):430–2.Google Scholar
Yao, J, Liu, Z, Liu, Y, et al. Optical negative refraction in bulk metamaterials of nanowires. Science, 2008;321(5891):930.CrossRefGoogle ScholarPubMed
Valentine, J, Zhang, S, Zentgraf, T, et al. Three-dimensional optical metamaterial with a negative refractive index. Nature, 2008;455(7211):376–9.Google Scholar
Fang, N, Lee, H, Sun, C, Zhang, X. Subdiffraction-limited optical imaging with a silver superlens. Science, 2005;308(5721):534–7.Google Scholar
Taubner, T, Korobkin, D, Urzhumov, Y, Shvets, G, Hillenbrand, R. Near-field microscopy through a SiC superlens. Science, 2006;313(5793):1595.Google Scholar
Zhang, X, Liu, Z. Superlenses to overcome the diffraction limit. Nature Materials, 2008;7(6):435–41.Google Scholar
Zhang, S, Park, YS, Li, J, Lu, X, Zhang, W, Zhang, X. Negative Refractive Index in Chiral Metamaterials. Physical Review Letters, 2009;102(2):023901.Google Scholar
Gansel, JK, Thiel, M, Rill, MS, et al. Gold helix photonic metamaterial as broadband circular polarizer. Science, 2009;325(5947):1513–5.Google Scholar
Kaelberer, T, Fedotov, VA, Papasimakis, N, Tsai, DP, Zheludev, NI. Toroidal dipolar response in a metamaterial. Science, 2010;330(6010):1510–12.Google Scholar
Kabashin, AV, Evans, P, Pastkovsky, S, et al. Plasmonic nanorod metamaterials for biosensing. Nature Materials, 2009;8(11):867–71.Google Scholar
Wu, C, Khanikaev, AB, Adato, R, et al. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nature Materials, 2011;11(1):6975.CrossRefGoogle ScholarPubMed
Sreekanth, KV, Alapan, Y, ElKabbash, M, et al. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nature Materials, 2016;15(March):411.Google Scholar
Soukoulis, CM, Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photonics, 2011;5(9):523.Google Scholar
Hess, O, Pendry, JB, Maier, SA, Oulton, RF, Hamm, JM, Tsakmakidis, KL. Active nanoplasmonic metamaterials. Nature Materials, 2012;11(7):573–84.Google Scholar
Neira, AD, Olivier, N, Nasir, ME, Dickson, W, Wurtz, GA, Zayats, AV. Eliminating material constraints for nonlinearity with plasmonic metamaterials. Nature Communications. 2015;6:7757.Google Scholar
Meinzer, N, Barnes, WL, Hooper, IR. Plasmonic meta-atoms and metasurfaces. Nature Photonics, 2014;8(12):889–98.Google Scholar
Kildishev, AV, Boltasseva, A, Shalaev, VM. Planar photonics with metasurfaces. Science, 2013;339(6125):1232009.Google Scholar
Ni, X, Emani, NK, Kildishev, AV, Boltasseva, A, Shalaev, VM. Broadband light bending with plasmonic nanoantennas. Science, 2012;335(6067):427.Google Scholar
Yu, N, Genevet, P, Kats, MA, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction, Science, 2011;334(6054):333–7.Google Scholar
Ding, F, Wang, Z, He, S, Shalaev, V, Kildishev, A. Broadband high-efficiency half-wave plate: a super-cell based plasmonic metasurface approach. ACS Nano, 2015;9(4):4111–19.Google Scholar
Yin, X, Ye, Z, Rho, J, Wang, Y, Zhang, X. Photonic Spin Hall Effect at Metasurfaces. Science, 2013;339(6126):1405–7.Google Scholar
Khorasaninejad, M, Chen, WT, Devlin, RC, Oh, J, Zhu, AY, Capasso, F. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 2016;352(6290):1190–4.Google Scholar
Ramakrishna, SA. Physics of negative refractive index materials. Reports on Progress in Physics, 2005;68(2):449521.Google Scholar
Murray, WA, Barnes, WL. Plasmonic materials. Advanced Materials, 2007;19(22):3771–82.Google Scholar
Maier, SA, Atwater, HA. Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. Journal of Applied Physics, 2005;98(1):011101.Google Scholar
Schuck, PJ, Fromm, DP, Sundaramurthy, A, Kino, GS, Moerner, WE. Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Physical Review Letters, 2005;94(1):017402.Google Scholar
Mühlschlegel, P, Eisler, HJ, Martin, OJF, Hecht, B, Pohl, DW. Resonant optical antennas. Science, 2005;308(5728):1607–9.Google Scholar
Anger, P, Bharadwaj, P, Novotny, L. Enhancement and quenching of single-molecule fluorescence, Physical Review Letters, 2006;96(11):113002(1–4).Google Scholar
Kühn, S, Hakanson, U, Rogobete, L, Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Physical Review Letters, 2006;97(1):017402(1–4).Google Scholar
Novotny, L. Effective wavelength scaling for optical antennas. Physical Review Letters, 2007;98(26):266802.Google Scholar
Ghenuche, P, Cherukulappurath, S, Taminiau, TH, van Hulst, NF, Quidant, R. Spectroscopic mode mapping of resonant plasmon nanoantennas. Physical Review Letters, 2008;101(11):116805.Google Scholar
Bryant, GW, García de Abajo, FJ, Aizpurua, J. Mapping the plasmon resonances of metallic nanoantennas. Nano Letters, 2008;8(2):631–6.Google Scholar
Kinkhabwala, A, Yu, Z, Fan, S, Avlasevich, Y, Müllen, K, Moerner, WE. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nature Photonics, 2009;3(11):654–7.Google Scholar
Curto, AG, Volpe, G, Taminiau, TH, Kreuzer, MP, Quidant, R, van Hulst, NF. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science, 2010;329(5994):930–3.Google Scholar
Schuller, JA, Barnard, ES, Cai, W, Jun, YC, White, JS, Brongersma, ML. Plasmonics for extreme light concentration and manipulation. Nature Materials, 2010;9(3):193204.Google Scholar
Atwater, HA, Polman, A. Plasmonics for improved photovoltaic devices. Nature Materials, 2010;9(3):865.Google Scholar
Fan, JA, Wu, C, Bao, K, et al. Self-Assembled Plasmonic Nanoparticle Clusters. Science, 2010;328(5982):1135–8.Google Scholar
Novotny, L, van Hulst, NF. Antennas for light. Nature Photonics, 2011;5(2):8390.Google Scholar
Höppener, C, Lapin, ZJ, Bharadwaj, P, Novotny, L. Self-similar gold-nanoparticle antennas for a cascaded enhancement of the optical field. Physical Review Letters, 2012;109(1):017402.Google Scholar
Rodrigo, S, García-Vidal, FJ, Martín-Moreno, L. Influence of material properties on extraordinary optical transmission through hole arrays. Physical Review B, 2008;77(7):075401.Google Scholar
Johnson, PB, Christy, RW. Optical constants of noble metals. Physical Review B, 1972;6(12):4370–9.Google Scholar
Palik, E. Handbook of Optical Constants of Solids, edited by Palik, Edward D.. Academic Press Handbook Series, New York, NY: Academic Press, 1985.Google Scholar
Novotny, L, Hetch, B. Principles of Nanooptics, 1st ed. Cambridge: Cambridge University Press, 2006.Google Scholar
Archambault, A, Teperik, TV, Marquier, F, Greffet, JJ. Surface plasmon Fourier optics. Physical Review B – Condensed Matter and Materials Physics, 2009;79(19):18.Google Scholar
Otto, A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeits Phys., 1968;216(4):398410.Google Scholar
Kretschmann, E, Raether, H. Radiative decay of non-radiative surface plasmons excited by light. Z Naturforschung, A., 1968;23:2135.CrossRefGoogle Scholar
Pelton, M, Aizpurua, J, Bryant, G. Metal-nanoparticle plasmonics. Laser & Photonics Review. 2008;2(3):136–59.Google Scholar
Giannini, V, Fernández-Domínguez, AI, Heck, SC, Maier, SA. Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chemical Reviews, 2011;111(6):3888–912.Google Scholar
Jackson, JD. Classical Electrodynamics, 3rd ed. Wiley, 1998.Google Scholar
Zenneck, J. Propagation of plane electromagnetic waves along a plane conducting surface. Ann Phys(Leipzig), 1907;23(1):846.Google Scholar
Sommerfeld, A. Propagation of electrodynamic waves along a cylindric conductor. Ann Phys und Chemie, 1899;67:233.Google Scholar
Gómez-Rivas, J, Kuttge, M, Bolivar, PH, Kurz, H, Sánchez-Gil, JA. Propagation of Surface Plasmon Polaritons on Semiconductor Gratings. Phys Rev Lett., 2004;93(25):256804.Google Scholar
Hanham, SM, Maier, SA. Chapter 8 in Terahertz Plasmonic Surfaces for Sensing. John Wiley & Sons, Inc., 2013, pp. 243–60.Google Scholar
Gobau, G. Surface waves and their application to transmission lines. J Appl Phys, 1950;21:1119.CrossRefGoogle Scholar
Mills, DL, Maradudin, AA. Surface corrugation and surface-polariton binding in the infrared frequency range. Phys Rev B, 1989;39:1569.Google Scholar
Munk, BA. Frequency Selective Surfaces: Theory and Design. New York, NY: Wiley, 2000.Google Scholar
Ulrich, R, Tacke, M. Submilimeter waveguiding on periodic metal structure. Appl Phys Lett., 1973;22:251.Google Scholar
Hibbins, AP, Evans, BR, Sambles, JR. Experimental verification of designer surface plasmons. Science, 2005;308(5722):670–2.CrossRefGoogle ScholarPubMed
Hibbins, A, Lockyear, M, Hooper, I, Sambles, J. Waveguide arrays as plasmonic metamaterials: transmission below cutoff. Physical Review Letters, 2006;96(7):073904.Google Scholar
Williams, CR, Andrews, SR, Maier, SA, Fernández-Domínguez, AI, Martín-Moreno, L, García-Vidal, FJ. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nature Photonics, 2008;2(3):175–9.Google Scholar
Yu, N, Wang, QJ, Kats, MA, Fan, JA, Khanna, SP, Li, L, et al. Designer spoof surface plasmon structures collimate terahertz laser beams. Nature Materials, 2010;9(9):730–5.CrossRefGoogle ScholarPubMed
García de Abajo, FJ, Sáenz, JJ. Electromagnetic surface modes in structured perfect-conductor surfaces. Physical Review Letters, 2005;95(23):233901.Google Scholar
Hendry, E, Hibbins, AP, Sambles, JR. Importance of diffraction in determining the dispersion of designer surface plasmons. Physical Review B, 2008;78(23):235426.CrossRefGoogle Scholar
Maier, SA, Andrews, SA, Martín-Moreno, L, García-Vidal, FJ. Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Physical Review Letters, 2006;97(17):176805.Google Scholar
Fernández-Domínguez, AI, Moreno, E, Martín-Moreno, L, García-Vidal, FJ. Terahertz wedge plasmon polaritons. Optics Letters, 2009;34(13):2063–5.CrossRefGoogle ScholarPubMed
Fernández-Domínguez, AI, Moreno, E, Martín-Moreno, L, García-Vidal, FJ. Guiding terahertz waves along subwavelength channels. Physical Review B, 2009;79(23):233104.Google Scholar
Martín-Cano, D, Nesterov, ML, Fernández-Domínguez, AI, García-Vidal, FJ, Martín-Moreno, L, Moreno, E. Domino plasmons for subwavelength terahertz circuitry. Optics Express, 2010;18(2):754–64.Google Scholar
Kats, MA, Woolf, D, Blanchard, R, Yu, N, Capasso, F. Spoof plasmon analogue of metal-insulator-metal waveguides. Optics Express, 2011;19(16):14860–70.Google Scholar
Fernández-Domínguez, AI, Williams, CR, García-Vidal, FJ, Martín-Moreno, L, Andrews, SR, Maier, SA. Terahertz surface plasmon polaritons on a helically grooved wire. Applied Physics Letters, 2008;93(14):141109.CrossRefGoogle Scholar
Brock, EMG, Hendry, E, Hibbins, AP. Subwavelength lateral confinement of microwave surface waves. Applied Physics Letters, 2011;99(5):051108.Google Scholar
Nesterov, ML, Martín-Cano, D, Fernández-Domínguez, AI, Moreno, E, Martín-Moreno, L, García-Vidal, FJ Geometrically induced modification of surface plasmons in the optical and telecom regimes. Optics Letters, 2010;35:423–5.Google Scholar
Shen, X, Cui, TJ, Martín-Cano, D, García-Vidal, FJ Conformal surface plasmons propagating on ultrathin and flexible films. Proceedings of the National Academy of Sciences, 2013;110(1):40–5.Google Scholar
Pors, A, Moreno, E, Martín-Moreno, L, Pendry, JB, García-Vidal, FJ Localized spoof plasmons arise while texturing closed surfaces. Physical Review Letters, 2012;108(22):223905.Google Scholar
Huidobro, PA, Moreno, E, Martín-Moreno, L, Pendry, JB, García-Vidal, FJ. Magnetic localized surface plasmons supported by metal structures, in 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS), 2014. pp. 1315.Google Scholar
Martín-Moreno, L, García-Vidal, FJ, Lezec, HJ, et al. Theory of extraordinary optical transmission through subwavelength hole arrays. Phys Rev Lett., 2001;86:1114.Google Scholar
Bravo-Abad, J, García-Vidal, FJ, Martín-Moreno, L. Resonant transmission of light through finite chains of subwavelength holes in a metallic film. Phys Rev Lett., 2004;93:227401.Google Scholar
Mary, A, Rodrigo, SG, García-Vidal, FJ, Martín-Moreno, L. Theory of negative-refractive-index response of double-fishnet structures. Phys Rev Lett., 2008;101:103902.Google Scholar
Qiu, M. Photonic band structures for surface waves on structured metal surfaces. Opt. Express, 2005;13:7583.Google Scholar
Fernández-Domínguez, AI, Martín-Moreno, L, García-Vidal, FJ. Chapter 7, in Maradudin, AA, editor, Surface Electromagnetic Waves on Structured Perfectly Conducting Surfaces. Cambridge: Cambridge University Press, 2011, pp. 232–65.Google Scholar
Morse, PM, Feshbach, H. Methods of Theoretical Physics. New York, NY: McGraw-Hill, 1953.Google Scholar
Roberts, A. Electromagnetic theory of diffraction by a circular aperture in a thick, perfectly conducting screen. J Opt Soc Am A., 1987;4:1970.Google Scholar
Wood, JJ, Tomlinson, LA, Hess, O, Maier, SA, Fernández-Dominguez, AI. Spoof plasmon polaritons in slanted geometries. Phys Rev B, 2012;85:075441.Google Scholar
Kim, SH, Oh, SS, Kim, KJ, et al. Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons. Physical Review B – Condensed Matter and Materials Physics, 2015;91(3):19.CrossRefGoogle Scholar
Gao, Z, Gao, F, Zhang, B. Guiding, bending, and splitting of coupled defect surface modes in a surface-wave photonic crystal. Applied Physics Letters, 2016;108(4):914.Google Scholar
Woolf, D, Kats, Ma, Capasso, F. Spoof surface plasmon waveguide forces. Optics Letters. 2014;39(3):517–20.Google Scholar
Rodriguez, AW, Hui, PC, Woolf, DP, Johnson, SG, Lončar, M, Capasso, F. Classical and fluctuation-induced electromagnetic interactions in micron-scale systems: designer bonding, antibonding, and Casimir forces. Annalen der Physik, 2015;527(1–2):4580.Google Scholar
Davids, PS, Intravaia, F, Dalvit, DaR. Spoof polariton enhanced modal density of states in planar nanostructured metallic cavities. Optics Express, 2014;22(10):12424–37.Google Scholar
Dai, J, Dyakov, SA, Yan, M. Enhanced near-field radiative heat transfer between corrugated metal plates: Role of spoof surface plasmon polaritons. Physical Review B, 2015;92(3):035419.Google Scholar
Ooi, K, Okada, T, Tanaka, K. Mimicking electromagnetically induced transparency by spoof surface plasmons. Phys Rev B, 2011;84(11):115405.Google Scholar
Shen, JT, Catrysse, PB, Fan, S. Mechanism for designing metallic metamaterials with a high index of refraction. Phys Rev Lett, 2005;94:197401.Google Scholar
Shin, J, Shen, JT, Catrysse, PB, Fan, S. Cut-through metal slit array as an anisotropic metamaterial film. IEEE J Selected Topics in Quant Elec., 2006;12:1116.Google Scholar
Shin, YM, So, JK, Won, JH, Park, GS. Frequency-dependent refractive index of one-dimensionally structured thick metal film. Appl Phys Lett., 2007;91:031102.Google Scholar
Zhang, XF, Shen, LF, Ran, LX. Low-frequency surface plasmon polaritons propagating along a metal film with periodic cut-through slits in symmetric and asymmetric environments. J Appl Phys., 2009;105:013704.Google Scholar
Economou, EN. Surface Plasmons in Thin Films. Phys Rev., 1969;182:539.CrossRefGoogle Scholar
Shen, L, Chen, X, Yang, TJ. Terahertz surface plasmon polaritons on periodically corrugated metal surfaces. Optics Express, 2008;16:3326.Google Scholar
Collin, S, Sauvan, C, Billaudeau, C, et al. Surface modes on nanostructured metallic surfaces. Phys Rev B, 2009;79:165405.Google Scholar
Hibbins, AP, Hendry, E, Lockyear, MJ, Sambles, JR. Prism coupling to ‘designer’ surface plasmons. Optics Express, 2008;16:20441.Google Scholar
Ferguson, BF, Zhang, XC. Materials for terahertz science and technology. Nature Materials, 2002;1:26.Google Scholar
Tonouchi, M. Cutting-edge terahertz technology. Nature Photonics, 2007;1:97105.Google Scholar
Agrawal, A, Vardeny, ZV, Nahata, A. Engineering the dielectric function of plasmonic lattices. Optics Express, 2008;16:9601.Google Scholar
Zhu, W, Agrawal, A, Nahata, A. Planar plasmonic terahertz guided-wave devices. Optics Express, 2008;16:6216.Google Scholar
Lan, YC, Chern, RL. Surface plasmon-like modes on structured perfectly conducting surfaces. Optics Express, 2006;14:11339.Google Scholar
Ruan, ZC, Qiu, M. Slow electromagnetic wave guided in subwavelength regions along one-dimensional periodically structured metal surface. Appl Phys Lett., 2007;90:201906.Google Scholar
Lockyear, MJ, Hibbins, AP, Sambles, JR. Microwave surface-plasmon-like modes on thin metamaterials. Phys Rev Lett., 2009;102:073901.Google Scholar
Navarro-Cía, M, Beruete, M, Agrafiotis, S, Falcone, F, Sorolla, M, Maier, SA. Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms. Optics Express, 2009;17:18184.Google Scholar
Williams, CR, Misra, M, Andrews, SR, et al. Dual band terahertz waveguidng on a planar metal surface patterned with annular holes. Appl Phys Lett., 2010;96:011101.Google Scholar
Gan, Q, Fu, Z, Ding, YJ, Bartoli, FJ. Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures. Phys Rev Lett., 2008;100:256803.Google Scholar
Maier, SA, Andrews, SR. Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces. Appl Phys Lett., 2006;88:251120.Google Scholar
Juluri, BK, Lin, SCS, Walker, TR, Jensen, L, Huang, TJ. Propagation of designer surface plasmons in structured conductor surfaces with parabolic gradient index. Optics Express, 2009;17:2997.Google Scholar
Song, K, Mazumder, P. Active terahertz spoof surface plasmon polariton switch comprising the perfect conductor metamaterial. IEEE Trans Elec Dev., 2009;56:2792.Google Scholar
Wang, K, Mittleman, DM. Metal wires for terahertz waveguiding. Nature, 2004;432:376.Google Scholar
Jeon, TI, Zhang, J, Grischkowsky, D. THz Sommerfeld wave propagation on a single metal wire. Appl Phys Lett., 2005;86:161904.Google Scholar
Piefke, G. The transmission characteristics of a corrugated wire. IRE Trans Antennas Propag., 1959;7:183.Google Scholar
Fernández-Domínguez, AI, Martín-Moreno, L, García-Vidal, FJ, Andrews, SR, Maier, SA. Spoof surface plasmon polariton modes propagating along periodically corrugated wires. IEEE J Sel Top Quant Elect., 2008;14:1515.Google Scholar
Chen, Y, Song, Z, Li, Y, et al. Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves. Optics Express, 2006;14:13021.Google Scholar
Arfken, GB, Weber, HJ. Mathematical Methods for Physicists, 5th ed. London: Harcourt Academic Press, 2001.Google Scholar
Stockman, M. Nanofocusing of optical energy in tapered plasmonic waveguides. Physical Review Letters, 2004;93(13):14.Google Scholar
Ruting, F, Fernández-Dominguez, AI, Martín-Moreno, L, García-Vidal, FJ. Subwavelength chiral surface plasmons that carry tuneable orbital angular momentum. Phys Rev B, 2012;86:075437.Google Scholar
Fernández-Domínguez, AI, Williams, CR, Martín-Moreno, L, García-Vidal, FJ, Andrews, SR, Maier, SA. Terahertz surface plasmon polaritons on a helically grooved wire. Apl Phys Lett., 2008;93:141109.Google Scholar
Pendry, JB. A chiral route to negative refraction. Science, 2004;306(5700):1353–5.Google Scholar
Crepeau, PJ. Consequences of Symmetry in Periodic Structures. Proc IEEE., 1964;52:33.Google Scholar
Novikov, IV, Maradudin, AA. Channel polaritons. Phys Rev B, 2002;66:035403.Google Scholar
Bozhevolnyi, SI, Volkov, VS, Devaux, E, Laluet, JY, Ebbesen, TW. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature, 2006;440:508.Google Scholar
Gao, Z, Shen, L, Zheng, X. Highly-confined guiding of terahertz waves along subwavelength grooves. IEEE Photonics Technology Letters, 2012;24(15):1343–5.Google Scholar
Jiang, T, Shen, L, Wu, JJ, Yang, TJ, Ruan, Z, Ran, L. Realization of tightly confined channel plasmon polaritons at low frequencies. Applied Physics Letters, 2011;99(26):261103.Google Scholar
Zhou, YJ, Jiang, Q, Cui, TJ. Bidirectional bending splitter of designer surface plasmons. Applied Physics Letters, 2011;99(11):111904.Google Scholar
Li, X, Jiang, T, Shen, L, Deng, X. Subwavelength guiding of channel plasmon polaritons by textured metallic grooves at telecom wavelengths. Applied Physics Letters, 2013;102(3):031606.Google Scholar
Fernández-Domínguez, AI, Moreno, E, Martín-Moreno, L, García-Vidal, FJ. Guiding terahertz waves along subwavelength channels. Phys Rev B, 2009;79:233104.Google Scholar
Moreno, E, Garcia-Vidal, FJ, Rodrigo, SG, Martin-Moreno, L, Bozhevolnyi, SI. Channel plasmon-polaritons: modal shape, dispersion, and losses. Opt Lett., 2006 Dec;31(23):34473449.Google Scholar
Fernández-Domínguez, AI, Moreno, E, Martín-Moreno, L, García-Vidal, FJ. Terahertz wedge plasmon polaritons. Opt Lett., 2009 Jul;34(13):20632065.Google Scholar
Pile, DFP, Gramotnev, DK. Channel plasmon-polariton in a triangular groove on a metal surface. Opt Lett., 2004;29(10):1069.Google Scholar
Moreno, E, Rodrigo, SG, Bozhevolnyi, SI, Martín-Moreno, L, García-Vidal, FJ. Guiding and focusing of electromagnetic fields with wedge plasmon polaritons. Phys Rev Lett., 2008;100(2):023901.CrossRefGoogle ScholarPubMed
Gao, Z, Zhang, X, Shen, L. Wedge mode of spoof surface plasmon polaritons at terahertz frequencies. Journal of Applied Physics, 2010;108(11):113104.Google Scholar
Zhao, W, Eldaiki, OM, Yang, R, Lu, Z. Deep subwavelength waveguiding and focusing based on designer surface plasmons. Optics Express, 2010;18(20):2149821503.Google Scholar
Ma, YG, Lan, L, Zhong, SM, Ong, CK. Experimental demonstration of subwavelength domino plasmon devices for compact high-frequency circuit. Optics Express, 2011;19(22):21189.Google Scholar
Kumar, G, Li, S, Jadidi, MM, Murphy, TE. Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars. New Journal of Physics, 2013;15(8).Google Scholar
Pandey, S, Gupta, B, Nahata, A. Terahertz plasmonic waveguides created via 3D printing. Optics Express, 2013;21(21):24422.Google Scholar
Martín-Cano, D, Quevedo-Teruel, O, Moreno, E, Martín-Moreno, L, García-Vidal, FJ. Waveguided spoof surface plasmons with deep-subwavelength lateral confinement. Optics Letters, 2011;36(23):4635–7.CrossRefGoogle ScholarPubMed
Gupta, B, Pandey, S, Nahata, A. Plasmonic waveguides based on symmetric and asymmetric T-shaped structures. Optics Express, 2014;22(3):2868.Google Scholar
Shen, L, Chen, X, Zhang, X, Agarwal, K. Guiding terahertz waves by a single row of periodic holes on a planar metal surface. Plasmonics, 2011;6(2):301–5.Google Scholar
Hooper, IR, Tremain, B, Dockrey, JA, Hibbins, AP. Massively sub-wavelength guiding of electromagnetic waves. Scientific Reports, 2014;4:7495.Google Scholar
Quesada, R, Martín-Cano, D, García-Vidal, FJ, Bravo-Abad, J. Deep-subwavelength negative-index waveguiding enabled by coupled conformal surface plasmons. Optics Letters, 2014;39(10):2990.Google Scholar
Liu, L, Li, Z, Xu, B, Ning, P, Chen, C, Xu, J, et al. Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes. Applied Physics Letters, 2015;107(20).Google Scholar
Liu, X, Feng, Y, Chen, K, Zhu, B, Zhao, J, Jiang, T. Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures. Optics Express, 2014;22(17):20107.Google Scholar
Gao, X, Hui Shi, J, Shen, X, et al. Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies. Applied Physics Letters, 2013;102(15):15.Google Scholar
Liu, X, Feng, Y, Zhu, B, Zhao, J, Jiang, T. High-order modes of spoof surface plasmonic wave transmission on thin metal film structure. Optics Express, 2013;21(25):31155–65.Google Scholar
Ma, HF, Shen, X, Cheng, Q, Jiang, WX, Cui, TJ. Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser and Photonics Reviews, 2014;8(1):146–51.Google Scholar
Gao, X, Zhou, L, Yu, XY, et al. Ultra-wideband surface plasmonic Y-splitter. Optics Express, 2015;23(18):23270.Google Scholar
Han, Z, Zhang, Y, Bozhevolnyi, SI. Spoof surface plasmon-based stripe antennas with extreme field enhancement in the terahertz regime. Optics Letters. 2015;40(11):2533–6.Google Scholar
Yin, JY, Ren, J, Zhang, HC, Pan, BC, Cui, TJ. Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure. Scientific Reports, 2015;5:8165.Google Scholar
Gao, X, Zhou, L, Liao, Z, Ma, HF, Cui, TJ. An ultra-wideband surface plasmonic filter in microwave frequency. Applied Physics Letters, 2014;104(19):1722.Google Scholar
Zhang, Q, Zhang, HC, Wu, H, Cui, TJ. A Hybrid Circuit for Spoof Surface Plasmons and Spatial Waveguide Modes to Reach Controllable Band-Pass Filters. Scientific Reports, 2015;5(4):16531.Google Scholar
Zhang, Q, Zhang, HC, Yin, JY, Pan, BC, Cui, TJ. A series of compact rejection filters based on the interaction between spoof SPPs and CSRRs. Scientific Reports. 2016;6(4):28256.Google Scholar
Xu, J, Li, Z, Liu, L, et al. Low-pass plasmonic filter and its miniaturization based on spoof surface plasmon polaritons. Optics Communications. 2016;372:155–9.Google Scholar
Yang, Y, Chen, H, Xiao, S, Mortensen, NA, Zhang, J. Ultrathin 90-degree sharp bends for spoof surface plasmon polaritons. Optics Express, 2015;23(15):19074.Google Scholar
Liang, Y, Yu, H, Zhang, HC, Yang, C, Cui, TJ. On-chip sub-terahertz surface plasmon polariton transmission lines in CMOS. Scientific Reports, 2015;5:14853.CrossRefGoogle ScholarPubMed
Zhang, HC, Liu, S, Shen, X, Chen, LH, Li, L, Cui, TJ. Broadband amplification of spoof surface plasmon polaritons at microwave frequencies. Laser and Photonics Reviews, 2015;9(1):8390.Google Scholar
Yang, Y, Shen, X, Zhao, P, Zhang, HC, Cui, TJ. Trapping surface plasmon polaritons on ultrathin corrugated metallic strips in microwave frequencies. Optics Express, 2015;23(6):7031.Google Scholar
Zhang, W, Zhu, G, Sun, L, Lin, F. Trapping of surface plasmon wave through gradient corrugated strip with underlayer ground and manipulating its propagation. Applied Physics Letters, 2015;106(2):1722.Google Scholar
Yin, JY, Ren, J, Zhang, HC, Zhang, Q, Cui, TJ. Capacitive-coupled series spoof surface plasmon polaritons. Scientific Reports, 2016;6:24605.Google Scholar
Pan, BC, Zhao, J, Liao, Z, Zhang, HC, Cui, TJ. Multi-layer topological transmissions of spoof surface plasmon polaritons. Scientific Reports, 2016;6:22702.Google Scholar
Li, Y, Zhang, J, Qu, S, Wang, J, Feng, M, Wang, J. K-dispersion engineering of spoof surface plasmon polaritons for beam steering. Optics Express, 2016;24(2):25692571.Google Scholar
Zhang, HC, Fan, Y, Guo, J, Fu, X, Cui, TJ. Second-harmonic generation of spoof surface plasmon polaritons using nonlinear plasmonic metamaterials. ACS Photonics, 2016;3(1):139146.Google Scholar
Zhang, HC, Cui, TJ, Zhang, Q, Fan, Y, Fu, X. Breaking the challenge of signal integrity using time-domain spoof surface plasmon polaritons. ACS Photonics, 2015;2(9):13331340.Google Scholar
Xiang, H, Meng, Y, Zhang, Q, Qin, FF, Xiao, JJ, Han, D, et al. Spoof surface plasmon polaritons on ultrathin metal strips with tapered grooves. Optics Communications, 2015;356:5963.Google Scholar
Yang, BJ, Zhou, YJ. Compact broadband slow wave system based on spoof plasmonic THz waveguide with meander grooves. Optics Communications, 2015;356:336342.Google Scholar
Huidobro, PA, Shen, X, Cuerda, J, Moreno, E, Martín-Moreno, L, García-Vidal, FJ, et al. Magnetic localized surface plasmons. Physical Review X, 2014;4(2):021003.Google Scholar
Harvey, AF. Periodic and guiding structures at microwave frequencies. IRE Transactions on microwave theory and techniques, 1960;8:3061.Google Scholar
Kildal, PS. Artificially soft and hard surfaces in electromagnetics. IEEE Transactions on Antennas and Propagation, 1990;38(10):15371544.Google Scholar
Shen, X, Cui, TJ. Ultrathin plasmonic metamaterial for spoof localized surface plasmons. Laser and Photonics Reviews, 2014;8(1):137145.Google Scholar
Liao, Z, Luo, Y, Fernández-Domínguez, AI, Shen, X, Maier, Sa, Cui, TJ. High-order localized spoof surface plasmon resonances and experimental verifications. Scientific Reports, 2015;5:9590.Google Scholar
Bohren, CF, Huffman, DR. Absorption and Scattering of Light by Small Particles. John Wiley and Sons, 1983.Google Scholar
García-Etxarri, A, Gómez-Medina, R, Froufe-Pérez, LS, et al. Strong magnetic response of submicron silicon particles in the infrared. Optics Express, 2011;19(6):4815–26.Google Scholar
Kuznetsov, AI, Miroshnichenko, AE, Fu, YH, Zhang, J, Luk’yanchuk, B. Magnetic light. Scientific Reports, 2012;2:492.Google Scholar
Dyson, JD. The equiangular spiral antenna. IEEE Transactions on antennas and propagation, 1959;2:181.Google Scholar
Kaiser, JA. The Archimedean two-wire spiral antenna. IEEE Transactions on antennas and propagation. 1960;8:312.Google Scholar
Balanis, CA. Antenna Theory: Analysis and Design, 3rd ed. Wiley-Interscience, 2005.Google Scholar
Baena, JD, Marqués, R, Medina, F, Martel, J. Artificial magnetic metamaterial design by using spiral resonators. Physical Review B, 2004;69(1):014402.Google Scholar
Bilotti, F, Toscano, A, Vegni, L. Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples. IEEE Transactions on Antennas and Propagation, 2007;55(8):22582267.Google Scholar
Zhu, X, Liang, B, Kan, W, Peng, Y, Cheng, J. Deep-subwavelength-scale directional sensing based on highly localized dipolar mie resonances. Physical Review Applied, 2016;5(5):054015.Google Scholar
Ordal, MA, Long, LL, Bell, RJ, et al. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Applied Optics, 1983;22(7):10991120.Google Scholar
CST. Microwave Studio (computer software): www.cst.com/products/cstmws.Google Scholar
Liao, Z, Liu, S, Ma, HF, Li, C, Jin, B, Cui, TJ. Electromagnetically induced transparency metamaterial based on spoof localized surface plasmons at terahertz frequencies. Scientific Reports, 2016;6(4):27596.Google Scholar
Li, Z, Xu, B, Gu, C, Ning, P, Liu, L, Niu, Z, et al. Localized spoof plasmons in closed textured cavities. Applied Physics Letters, 2014;104(25):251601.Google Scholar
Xu, B, Li, Z, Gu, C, Ning, P, Liu, L, Niu, Z, et al. Multiband localized spoof plasmons in closed textured cavities. Appl Opt., 2014;53(30):6950–3.Google Scholar
Yang, BJ, Zhou, YJ, Xiao, QX. Spoof localized surface plasmons in corrugated ring structures excited by microstrip line. Optics Express, 2015;23(16):21434.Google Scholar
Zhou, YJ, Xiao, QX, Jia Yang, B. Spoof localized surface plasmons on ultrathin textured MIM ring resonator with enhanced resonances. Scientific Reports, 2015;5(September):14819.Google Scholar
Gao, Z, Gao, F, Xu, H, Zhang, Y, Zhang, B. Localized spoof surface plasmons in textured open metal surfaces. Optics Letters, 2016;41(10):36.Google Scholar
Ao, DIB, Ajab, KHZR, Iang, WEIXIJ, Heng, QIC, Iao, ZHENL. Experimental demonstration of compact spoof localized surface plasmons. Optics Letters, 2016;41(23):5418–21.Google Scholar
Gao, F, Gao, Z, Shi, X, Yang, Z, Lin, X, Zhang, B. Dispersion-tunable designer-plasmonic resonator with enhanced high-order resonances. Optics Express, 2015;23(5):6896–902.Google Scholar
Xiao, QX, Yang, BJ, Zhou, YJ. Spoof localized surface plasmons and Fano resonances excited by flared slot line. Journal of Applied Physics, 2015;118(23):16.Google Scholar
Gao, Z, Gao, F, Shastri, KK, Zhang, B. Frequency-selective propagation of localized spoof surface plasmons in a graded plasmonic resonator chain. Scientific Reports, 2016;6(April):25576.Google Scholar
Gao, Z, Gao, F, Zhang, Y, Shi, X, Yang, Z, Zhang, B. Experimental demonstration of high-order magnetic localized spoof surface plasmons. Applied Physics Letters, 2015;107(4):15.Google Scholar
Gao, Z, Gao, F, Zhang, Y, Zhang, B. Complementary structure for designer localized surface plasmons. Applied Physics Letters, 2015;107(19):191103.Google Scholar
Gao, Z, Gao, F, Zhang, B. High-order spoof localized surface plasmons supported on a complementary metallic spiral structure. Scientific Reports, 2016;6(April):24447.Google Scholar
Gao, Z, Gao, F, Zhang, Y, Zhang, B. Deep-subwavelength magnetic-coupling-dominant interaction among magnetic localized surface plasmons. Physical Review B, 2016;93(19):195410.Google Scholar
Shen, X, Jun Cui, T. Planar plasmonic metamaterial on a thin film with nearly zero thickness. Applied Physics Letters, 2013;102(21):1418.Google Scholar
Shen, X, Pan, BC, Zhao, J, Luo, Y, Cui, TJ. A combined system for efficient excitation and capture of LSP resonances and flexible control of SPP transmissions. ACS Photonics, 2015;2(6):738743.Google Scholar
Ng, B, Wu, J, Hanham, SM, et al. Spoof plasmon surfaces: a novel platform for THz sensing. Adv Opt Mat, 2013;1:543.Google Scholar
Ng, B, Hanham, SM, Wu, J, et al. Broadband terahertz sensing on spoof plasmon surfaces. ACS Phot., 2014;1:1059.Google Scholar
Cao Pan, B, Liao, Z, Zhao, J, et al. Controlling rejections of spoof surface plasmon polaritons using metamaterial particles. Chem Rev., 2008;108(2):494521.Google Scholar
Song, K, Mazumder, P. Active terahertz (THz) spoof surface plasmon polariton (SSPP) switch comprising the perfect conductor meta-material. 2009 9th IEEE Conference on Nanotechnology (IEEE-NANO), 2009;56(11):2792–9.Google Scholar
Song, K, Mazumder, P. Nonlinear spoof surface plasmon polariton phenomena based on conductor metamaterials. Photonics and Nanostructures – Fundamentals and Applications, 2012;10(4):674–9.Google Scholar
Wan, X, Yin, JY, Zhang, HC, Cui, TJ. Dynamic excitation of spoof surface plasmon polaritons. Applied Physics Letters, 2014;105(8).Google Scholar
Sun, W, He, Q, Sun, S, Zhou, L. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations. Light: Science & Applications, 2016;5(1):e16003.Google Scholar
Sun, S, He, Q, Xiao, S, Xu, Q, Li, X, Zhou, L. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nature Materials, 2012;11(5):426–31.Google Scholar
Sun, S, Yang, KY, Wang, CM, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Letters, 2012;12(12):6223–9.Google Scholar
Quevedo-Teruel, O, Ebrahimpouri, M, Kehn, MNM. Ultrawideband metasurface lenses based on off-shifted opposite layers. IEEE Antennas and Wireless Propagation Letters, 2016;15:484487.Google Scholar
Valerio, G, Sipus, Z, Grbic, A, Quevedo-Teruel, O. Accurate equivalent-circuit descriptions of thin glide-symmetric corrugated metasurfaces. IEEE Transactions on Antennas and Propagation. 2017;65(5):26952700.Google Scholar
Gao, F, Gao, Z, Shi, X, et al. Probing the limits of topological protection in a designer surface plasmon structure. Nature Communications, 2015;7(May):17.Google Scholar
Khorasaninejad, M., Capasso, F. Metalenses: Versatile multifunctional photonic components. Science, 2017;358:8100.Google Scholar
Wu, H-W, Han, Y-Z, Chen, H-J, Zhou, Y, Li, X-C, Gao, J, Sheng, Z-Q. Physical mechanism of order between electric and magnetic dipoles in spoof plasmonic structures. Optics Letters, 2017; 42(21):45214524.Google Scholar
Ma, Z, Hanham, SM, Huidobro, PA, Gong, Y, Hong, M, Klein, N, Maier, SA. Terahertz particle-in-liquid sensing with spoof surface plasmon polariton waveguides. APL Photonics, 2017; 11(2):116102.Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Spoof Surface Plasmon Metamaterials
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Spoof Surface Plasmon Metamaterials
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Spoof Surface Plasmon Metamaterials
Available formats
×