Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-22T16:05:49.105Z Has data issue: false hasContentIssue false

Empathy

From Perception to Understanding and Feeling Others' Emotions

Published online by Cambridge University Press:  05 December 2023

Shir Genzer
Affiliation:
Hebrew University of Jerusalem
Yoad Ben Adiva
Affiliation:
Hebrew University of Jerusalem
Anat Perry
Affiliation:
Hebrew University of Jerusalem

Summary

Empathy provides a cognitive and emotional bridge that connects individuals and promotes prosocial behavior. People empathize with others via two complementary perceptual routes: Cognitive Empathy or the ability to accurately recognize and understand others' emotional states, and Affective Empathy or the ability to 'feel with' others. This Element reviews past and current research on both cognitive and affective empathy, focusing on behavioral, as well as neuroscientific research. It highlights a recent shift towards more dynamic and complex stimuli which may capture better the nature of real social interaction. It expands on why context is crucial when perceiving others' emotional state, and discusses gender differences, biases affecting our understanding of others, and perception of others in clinical conditions. Lastly, it highlights proposed future directions in the field.
Get access
Type
Element
Information
Online ISBN: 9781009281072
Publisher: Cambridge University Press
Print publication: 21 December 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

aan het Rot, M., & Hogenelst, K. (2014). The influence of affective empathy and autism spectrum traits on empathic accuracy. PLoS ONE, 9(6), 17. https://doi.org/10.1371/JOURNAL.PONE.0098436.Google Scholar
Abramson, L., Uzefovsky, F., Toccaceli, V., & Knafo-Noam, A. (2020). The genetic and environmental origins of emotional and cognitive empathy: Review and meta-analyses of twin studies. Neuroscience & Biobehavioral Reviews, 114, 113133. https://doi.org/10.1016/J.NEUBIOREV.2020.03.023.Google Scholar
Achim, A. M., Ouellet, R., Roy, M. A., & Jackson, P. L. (2011). Assessment of empathy in first-episode psychosis and meta-analytic comparison with previous studies in schizophrenia. Psychiatry Research, 190(1), 38. https://doi.org/10.1016/J.PSYCHRES.2010.10.030.CrossRefGoogle ScholarPubMed
Adler, N., Dvash, J., & Shamay-Tsoory, S. G. (2015). Empathic embarrassment accuracy in autism spectrum disorder. Autism Research, 8(3), 241249. https://doi.org/10.1002/AUR.1439.CrossRefGoogle ScholarPubMed
Aguado, L., Fernández-Cahill, M., Román, F. J., Blanco, I., & de Echegaray, J. (2018). Evaluative and psychophysiological responses to short film clips of different emotional content. Journal of Psychophysiology, 32(1), 119. https://doi.org/10.1027/0269-8803/A000180.CrossRefGoogle Scholar
Akitsuki, Y., & Decety, J. (2009). Social context and perceived agency affects empathy for pain: An event-related fMRI investigation. NeuroImage, 47(2), 722734. https://doi.org/10.1016/J.NEUROIMAGE.2009.04.091.Google Scholar
Allison, P. D., & Liker, J. K. (1982). Analyzing sequential categorical data on dyadic interaction: A comment on Gottman. Psychological Bulletin, 91, 393403.Google Scholar
Amir, E. (2022). Raising empathy: Synthesizing performance art and social psychology. AMASS Conference: Dialogical Arts through Sustainable Communities, 7(1). https://doi.org/10.2/JQUERY.MIN.JS.Google Scholar
Amminger, G. P., Schäfer, M. R., Klier, C. M., et al. (2012). Facial and vocal affect perception in people at ultra-high risk of psychosis, first-episode schizophrenia and healthy controls. Early Intervention in Psychiatry, 6(4), 450454. https://doi.org/10.1111/J.1751-7893.2012.00362.X.CrossRefGoogle ScholarPubMed
Amminger, G. P., Schäfer, M. R., Papageorgiou, K., et al. (2012). Emotion recognition in individuals at clinical high-risk for schizophrenia. Schizophrenia Bulletin, 38(5), 10301039. https://doi.org/10.1093/SCHBUL/SBR015.Google Scholar
Anders, S., Heinzle, J., Weiskopf, N., Ethofer, T., & Haynes, J. D. (2011). Flow of affective information between communicating brains. NeuroImage, 54(1), 439446. https://doi.org/10.1016/J.NEUROIMAGE.2010.07.004.CrossRefGoogle ScholarPubMed
Atias, D., Todorov, A., Liraz, S., et al. (2019). Loud and unclear: Intense real-life vocalizations during affective situations are perceptually ambiguous and contextually malleable. Journal of Experimental Psychology: General, 148(10), 18421848. https://doi.org/10.1037/xge0000535.Google Scholar
Atkins, D., Uskul, A. K., & Cooper, N. R. (2016). Culture shapes empathic responses to physical and social pain. Emotion, 16(5), 587601.CrossRefGoogle ScholarPubMed
Atkinson, A. P., Dittrich, W. H., Gemmell, A. J., & Young, A. W. (2004). Emotion perception from dynamic and static body expressions in point-light and full-light displays. Perception, 33(6), 717746. https://doi.org/10.1068/P5096.CrossRefGoogle ScholarPubMed
Avenanti, A., Bueti, D., Galati, G., & Aglioti, S. M. (2005). Transcranial magnetic stimulation highlights the sensorimotor side of empathy for pain. Nature Neuroscience, 8(7), 955960. https://doi.org/10.1038/nn1481.CrossRefGoogle ScholarPubMed
Avenanti, A., Paluello, I. M., Bufalari, I., & Aglioti, S. M. (2006). Stimulus-driven modulation of motor-evoked potentials during observation of others’ pain. NeuroImage, 32(1), 316324. https://doi.org/10.1016/j.neuroimage.2006.03.010.Google Scholar
Aviezer, H., Ensenberg, N., & Hassin, R. R. (2017). The inherently contextualized nature of facial emotion perception. Current Opinion in Psychology, 17, 4754. https://doi.org/10.1016/J.COPSYC.2017.06.006.CrossRefGoogle ScholarPubMed
Aviezer, H., Hassin, R. R., Ryan, J., et al. (2008). Angry, disgusted, or afraid? Psychological Science, 19(7), 724732. https://doi.org/10.1111/J.1467-9280.2008.02148.X.CrossRefGoogle ScholarPubMed
Azevedo, R. T., Macaluso, E., Avenanti, A., et al. (2013). Their pain is not our pain: Brain and autonomic correlates of empathic resonance with the pain of same and different race individuals. Human Brain Mapping, 34(12), 31683181. https://doi.org/10.1002/HBM.22133.CrossRefGoogle Scholar
Banks, S. J., Bellerose, J., Douglas, D., & Jones-Gotman, M. (2012). Bilateral skin conductance responses to emotional faces. Applied Psychophysiology Biofeedback, 37(3), 145152. https://doi.org/10.1007/S10484-011-9177-7.CrossRefGoogle ScholarPubMed
Banse, R., & Scherer, K. R. (1996). Acoustic profiles in vocal emotion expression. Journal of Personality and Social Psychology, 70(3), 614636. https://doi.org/10.1037/0022-3514.70.3.614.Google Scholar
Baron-Cohen, S. (2010). Empathizing, systemizing, and the extreme male brain theory of autism. Progress in Brain Research, 186, 167175. https://doi.org/10.1016/B978-0-444-53630-3.00011-7.CrossRefGoogle ScholarPubMed
Baron-Cohen, S., & Wheelwright, S. (2004). The empathy quotient: An investigation of adults with Asperger syndrome or high functioning autism, and normal sex differences. Journal of Autism and Developmental Disorders, 34(2), 163175.CrossRefGoogle ScholarPubMed
Baron-Cohen, S., Wheelwright, S., Hill, J., Raste, Y., & Plumb, I. (2001). The “reading the mind in the eyes” test revised version: A study with normal adults, and adults with Asperger syndrome or high-functioning autism. The Journal of Child Psychology and Psychiatry and Allied Disciplines, 42(2), 241251. https://doi.org/10.1017/S0021963001006643.CrossRefGoogle ScholarPubMed
Barrett, L. F., Mesquita, B., & Gendron, M. (2011). Context in emotion perception. Current Directions in Psychological Science, 20(5), 286290. https://doi.org/10.1177/0963721411422522.Google Scholar
Barone, D. F., Hutchings, P. S., Kimmel, H. J., et al. (2005). Increasing empathic accuracy through practice and feedback in a clinical interviewing course. Journal of Social and Clinical Psychology, 24(2), 156171.CrossRefGoogle Scholar
Bartz, J. A., Nitschke, J. P., Krol, S. A., & Tellier, P. P. (2019). Oxytocin selectively improves empathic accuracy: A replication in men and novel insights in women. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 4(12), 10421048. https://doi.org/10.1016/J.BPSC.2019.01.014.Google ScholarPubMed
Bartz, J. A., Zaki, J., Bolger, N., et al. (2010). Oxytocin selectively improves empathic accuracy. Psychological Science, 21(10), 14261428. https://doi.org/10.1177/0956797610383439.CrossRefGoogle ScholarPubMed
Bastiaansen, J. A. C. J., Thioux, M., & Keysers, C. (2009). Evidence for mirror systems in emotions. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1528), 23912404. https://doi.org/10.1098/rstb.2009.0058.CrossRefGoogle ScholarPubMed
Bastian, B., Jetten, J., & Ferris, L. J. (2014). Pain as social glue: Shared pain increases cooperation. Psychological Science, 25(11), 20792085. https://doi.org/10.1177/09567976211004119.Google Scholar
Batson, C. D. (1991). The Altruism Question: Toward a Social-Psychological Answer. Psychology Press.Google Scholar
Batson, C. D., Lishner, D. A., & Stocks, E. L. (2015). The empathy–altruism hypothesis. In Schroeder, D. A. & Graziano, W. G (Eds.), The Oxford Handbook of Prosocial Behavior. Oxford University Press, pp. 259281. https://doi.org/10.1093/oxfordhb/9780195399813.013.023.Google Scholar
Ben-Simon, E., & Walker, M. P. (2018). Sleep loss causes social withdrawal and loneliness. Nature Communications, 9(1), 19. https://doi.org/10.1038/s41467-018-05377-0.CrossRefGoogle ScholarPubMed
Bernat, E., Patrick, C. J., Benning, S. D., & Tellegen, A. (2006). Effects of picture content and intensity on affective physiological response. Psychophysiology, 43(1), 93103. https://doi.org/10.1111/J.1469-8986.2006.00380.X.CrossRefGoogle ScholarPubMed
Bird, G., & Viding, E. (2014). The self to other model of empathy: Providing a new framework for understanding empathy impairments in psychopathy, autism, and alexithymia. Neuroscience and Biobehavioral Reviews, 47, 520532. https://doi.org/10.1016/j.neubiorev.2014.09.021.CrossRefGoogle ScholarPubMed
Blair, R. J. R. (2005). Responding to the emotions of others: Dissociating forms of empathy through the study of typical and psychiatric populations. Consciousness and Cognition, 14(4), 698718. https://doi.org/10.1016/J.CONCOG.2005.06.004.Google Scholar
Blair, R. J. R. (2010). Neuroimaging of psychopathy and antisocial behavior: A targeted review. Current Psychiatry Reports, 12(1), 7682. https://doi.org/10.1007/S11920-009-0086-X.CrossRefGoogle ScholarPubMed
Blakemore, S. J., Bristow, D., Bird, G., Frith, C., & Ward, J. (2005). Somatosensory activations during the observation of touch and a case of vision-touch synaesthesia. Brain, 128(7), 15711583. https://doi.org/10.1093/brain/awh500.CrossRefGoogle Scholar
Bloom, P. (2017). Against Empathy: The Case for Rational Compassion. Random House.Google Scholar
Blunden, H., & Brodsky, A. (2021). Beyond the emoticon: Are there unintentional cues of emotion in email? Personality and Social Psychology Bulletin, 47(4), 565579. https://doi.org/10.1177/0146167220936054.CrossRefGoogle ScholarPubMed
Bonfils, K. A., Lysaker, P. H., Minor, K. S., & Salyers, M. P. (2016). Affective empathy in schizophrenia: A meta-analysis. Schizophrenia Research, 175(1–3), 109117. https://doi.org/10.1016/J.SCHRES.2016.03.037.Google Scholar
Bonfils, K. A., Lysaker, P. H., Minor, K. S., & Salyers, M. P. (2017). Empathy in schizophrenia: A meta-analysis of the Interpersonal Reactivity Index. Psychiatry Research, 249, 293303. https://doi.org/10.1016/J.PSYCHRES.2016.12.033.Google Scholar
Bradley, M. M., & Lang, P. J. (1994). Measuring emotion: The self-assessment manikin and the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry, 25(1), 4959.CrossRefGoogle ScholarPubMed
Britton, J. C., Taylor, S. F., Berridge, K. C., Mikels, J. A., & Liberzon, I. (2006). Differential subjective and psychophysiological responses to socially and nonsocially generated emotional stimuli. Emotion, 6(1), 150155. https://doi.org/10.1037/1528-3542.6.1.150.Google Scholar
Brooks, J. A., Tzirakis, P., Baird, A., et al. (2023). Deep learning reveals what vocal bursts express in different cultures. Nature Human Behaviour, 7(2), 240250.CrossRefGoogle ScholarPubMed
Brouwer, A. M., Van Wouwe, N., Mühl, C., van Erp, J., & Toet, A. (2013). Perceiving blocks of emotional pictures and sounds: effects on physiological variables. Frontiers in Human Neuroscience, 7, 110.CrossRefGoogle ScholarPubMed
Brüne, M. (2005). “Theory of mind” in schizophrenia: A review of the literature. Schizophrenia Bulletin, 31(1), 2142. https://doi.org/10.1093/SCHBUL/SBI002.CrossRefGoogle ScholarPubMed
Brüne, M., Abdel-Hamid, M., Lehmkämper, C., & Sonntag, C. (2007). Mental state attribution, neurocognitive functioning, and psychopathology: What predicts poor social competence in schizophrenia best? Schizophrenia Research, 92(1–3), 151159. https://doi.org/10.1016/J.SCHRES.2007.01.006.CrossRefGoogle ScholarPubMed
Bryson, J. J. (2019). The past decade and future of AI’s impact on society. Towards a New Enlightenment, 11, 150185.Google Scholar
Byom, L. J., & Mutlu, B. (2013). Theory of mind: Mechanisms, methods, and new directions. Frontiers in Human Neuroscience, 7, 112. https://doi.org/10.3389/FNHUM.2013.00413.Google Scholar
Cameron, C. D., Hutcherson, C. A., Ferguson, A. M., et al. (2019). Empathy is hard work: People choose to avoid empathy because of its cognitive costs. Journal of Experimental Psychology: General, 148(6), 962976.Google Scholar
Carnap, R. (1995). Laws, Explanation, and Probability. In Gardne, M. (Ed.), An Introduction to the Philosophy of Science. Dover Publications, pp. 339.Google Scholar
Cetinic, E., & She, J. (2022). Understanding and creating art with AI: Review and outlook. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 18(2), 122. https://doi.org/10.1145/3475799.CrossRefGoogle Scholar
Chatel-Goldman, J., Congedo, M., Jutten, C., & Schwartz, J. L. (2014). Touch increases autonomic coupling between romantic partners. Frontiers in Behavioral Neuroscience, 8, 112. https://doi.org/10.3389/FNBEH.2014.00095.CrossRefGoogle ScholarPubMed
Chakravarthula, S. N., Xiao, B., Imel, Z. E., Atkins, D. C., & Georgiou, P. G. (2015). Assessing empathy using static and dynamic behavior models based on therapist’s language in addiction counseling. Sixteenth Annual Conference of the International Speech Communication Association conference of the International Speech Communication Association, pp. 669–672.CrossRefGoogle Scholar
Chan, S., & Cassels, T. G. (2010). The role of culture in affective empathy cultural and bicultural differences. Journal of Cognition and Culture, 10(3–4), 309326. https://doi.org/10.1163/156853710X531203Google Scholar
Chaudhary, K., Alam, M., Al-Rakhami, M. S., & Gumaei, A. (2021). Machine learning-based mathematical modelling for prediction of social media consumer behavior using big data analytics. Journal of Big Data, 8(1), 120.CrossRefGoogle Scholar
Chen, K. H., Brown, C. L., Wells, J. L., et al. (2021). Physiological linkage during shared positive and shared negative emotion. Journal of Personality and Social Psychology, 121(5), 10291056. https://doi.org/10.1037/pspi0000337.Google Scholar
Cheng, Y., Chen, C., & Decety, J. (2017). How situational context impacts empathic responses and brain activation patterns. Frontiers in Behavioral Neuroscience, 11, 113. https://doi.org/10.3389/fnbeh.2017.00165.CrossRefGoogle ScholarPubMed
Cheng, Y., Chen, C., Lin, C. P., Chou, K. H., & Decety, J. (2010). Love hurts: An fMRI study. NeuroImage, 51(2), 923929. https://doi.org/10.1016/J.NEUROIMAGE.2010.02.047.CrossRefGoogle ScholarPubMed
Cheng, Y., Lin, C. P., Liu, H. L., et al. (2007). Expertise modulates the perception of pain in others. Current Biology, 17(19), 17081713. https://doi.org/10.1016/j.cub.2007.09.020.CrossRefGoogle ScholarPubMed
Cheng, Y., Yang, C. Y., Lin, C. P., Lee, P. L., & Decety, J. (2008). The perception of pain in others suppresses somatosensory oscillations: A magnetoencephalography study. NeuroImage, 40(4), 18331840. https://doi.org/10.1016/J.NEUROIMAGE.2008.01.064.CrossRefGoogle ScholarPubMed
Chew, D., Tollit, M. A., Poulakis, Z., et al. (2020). Youths with a non-binary gender identity: A review of their sociodemographic and clinical profile. The Lancet Child & Adolescent Health, 4(4), 322330.CrossRefGoogle ScholarPubMed
Choshen-Hillel, S., Sadras, I., Gordon-Hecker, T., et al. (2022). Physicians prescribe fewer analgesics during night shifts than day shifts. Proceedings of the National Academy of Sciences of the United States of America, 119(27), 18. https://doi.org/10.1073/PNAS.2200047119.Google Scholar
Christov-Moore, L., Simpson, E. A., Coudé, G., et al. (2014). Empathy: Gender effects in brain and behavior. Neuroscience & Biobehavioral Reviews, 46(P4), 604627. https://doi.org/10.1016/J.NEUBIOREV.2014.09.001.CrossRefGoogle ScholarPubMed
Cikara, M., Bruneau, E. G., & Saxe, R. R. (2011). Us and them: Intergroup failures of empathy. Current Directions in Psychological Science, 20(3), 149153. https://doi.org/10.1177/0963721411408713.CrossRefGoogle Scholar
Clark, M. S., von Culin, K. R., Clark-Polner, E., & Lemay, E. P. (2017). Accuracy and projection in perceptions of partners’ recent emotional experiences: Both minds matter. Emotion, 17(2), 196207. https://doi.org/10.1037/EMO0000173.CrossRefGoogle ScholarPubMed
Cohen, D., Landau, D. H., Friedman, D., et al. (2021). Exposure to social suffering in virtual reality boosts compassion and facial synchrony. Computers in Human Behavior, 122, 110. https://doi.org/10.1016/j.chb.2021.106781.CrossRefGoogle Scholar
Coll, M. P. (2018). Meta-analysis of ERP investigations of pain empathy underlines methodological issues in ERP research. Social Cognitive and Affective Neuroscience, 13(10), 10031017. https://doi.org/10.1093/scan/nsy072.Google ScholarPubMed
Coll, M. P., Viding, E., Rütgen, M., et al. (2017). Are we really measuring empathy? Proposal for a new measurement framework. Neuroscience & Biobehavioral Review, 83, 132139.CrossRefGoogle ScholarPubMed
Contreras-Huerta, L. S., Baker, K. S., Reynolds, K. J., Batalha, L., & Cunnington, R. (2013). Racial bias in neural empathic responses to pain. PLoS ONE, 8(12), 110. https://doi.org/10.1371/JOURNAL.PONE.0084001.CrossRefGoogle ScholarPubMed
Cordaro, D. T., Keltner, D., Tshering, S., Wangchuk, D., & Flynn, L. M. (2016). The voice conveys emotion in ten globalized cultures and one remote village in Bhutan. Emotion, 16(1), 117128. https://doi.org/10.1037/EMO0000100.CrossRefGoogle ScholarPubMed
Crivelli, C., & Fridlund, A. J. (2018). Facial displays are tools for social influence. Trends in Cognitive Sciences, 22(5), 388399. https://doi.org/10.1016/J.TICS.2018.02.006.CrossRefGoogle ScholarPubMed
Cuff, B. M. P., Brown, S. J., Taylor, L., & Howat, D. J. (2016). Empathy: A review of the concept. Emotion Review, 8(2), 144153. https://doi.org/10.1177/1754073914558466.CrossRefGoogle Scholar
Cui, F., Ma, N., & Luo, Y. J. (2016). Moral judgment modulates neural responses to the perception of other’s pain: An ERP study. Scientific Reports, 6, 18. https://doi.org/10.1038/srep20851.Google Scholar
Cui, F., Zhu, X., & Luo, Y. (2017). Social contexts modulate neural responses in the processing of others’ pain: An event-related potential study. Cognitive, Affective and Behavioral Neuroscience, 17(4), 850857. https://doi.org/10.3758/s13415-017-0517-9.CrossRefGoogle ScholarPubMed
Czeszumski, A., Eustergerling, S., Lang, A., et al. (2020). Hyperscanning: A valid method to study neural inter-brain underpinnings of social interaction. Frontiers in Human Neuroscience, 14, 117. https://doi.org/10.3389/fnhum.2020.00039.CrossRefGoogle ScholarPubMed
Czeszumski, A., Liang, S. H. Y., Dikker, S., et al. (2022). Cooperative behavior evokes interbrain synchrony in the prefrontal and temporoparietal cortex: A systematic review and meta-analysis of fNIRS hyperscanning studies. Eneuro, 9(2), 19.CrossRefGoogle ScholarPubMed
Dahl, T. S., & Boulos, M. N. K. (2013). Robots in health and social care: A complementary technology to home care and telehealthcare? Robotics, 3(1), 121. https://doi.org/10.3390/ROBOTICS3010001.CrossRefGoogle Scholar
Danziger, N., Prkachin, K. M., & Willer, J. C. (2006). Is pain the price of empathy? The perception of others’ pain in patients with congenital insensitivity to pain. Brain, 129(9), 24942507. https://doi.org/10.1093/brain/awl155.CrossRefGoogle Scholar
Davis, M. H. (1983). Measuring individual differences in empathy: Evidence for a multidimensional approach. Journal of Personality and Social Psychology, 44(1), 113126.Google Scholar
de Corte, K., Buysse, A., Verhofstadt, L. L., et al. (2007). Measuring empathic tendencies: Reliability and validity of the Dutch version of the interpersonal reactivity index. Psychologica Belgica, 47(4), 235260. https://doi.org/10.5334/pb-47-4-235.Google Scholar
de Groot, J. H. B., Croijmans, I., & Smeets, M. A. M. (2020). More data, please: Machine learning to advance the multidisciplinary science of human sociochemistry. Frontiers in Psychology, 11, 19. https://doi.org/10.3389/fpsyg.2020.581701.CrossRefGoogle ScholarPubMed
de Groot, J. H. B., Smeets, M. A. M., Rowson, M. J., et al. (2015). A sniff of happiness. Psychological Science, 26(6), 684700. https://doi.org/10.1177/0956797614566318.CrossRefGoogle ScholarPubMed
de Vignemont, F., & Singer, T. (2006). The empathic brain: How, when and why? Trends in Cognitive Sciences, 10(10), 435441. https://doi.org/10.1016/j.tics.2006.08.008.Google Scholar
de Waal, F. B. M. (2008). Putting the altruism back into altruism: The evolution of empathy. Annual Review of Psychology, 59, 279300. https://doi.org/10.1146/ANNUREV.PSYCH.59.103006.093625.CrossRefGoogle ScholarPubMed
de Waal, F. B. M., & Preston, S. D. (2017). Mammalian empathy: Behavioural manifestations and neural basis. Nature Reviews Neuroscience, 18(8), 498509. https://doi.org/10.1038/nrn.2017.72Google Scholar
Decety, J. (2020). Empathy in medicine: What it is, and how much we really need it. American Journal of Medicine, 133(5), 561566. https://doi.org/10.1016/j.amjmed.2019.12.012.CrossRefGoogle Scholar
Decety, J. (2021). Why empathy is not a reliable source of information in moral decision making. Current Directions in Psychological Science, 30(5), 425430. https://doi.org/10.1177/09637214211031943.Google Scholar
Decety, J., & Jackson, P. L. (2004). The functional architecture of human empathy. Behavioral and Cognitive Neuroscience Reviews, 3(2), 71100. https://doi.org/10.1177/1534582304267187.CrossRefGoogle ScholarPubMed
Decety, J., Yang, C. Y., & Cheng, Y. (2010). Physicians down-regulate their pain empathy response: An event-related brain potential study. NeuroImage, 50(4), 16761682. https://doi.org/10.1016/j.neuroimage.2010.01.025.CrossRefGoogle ScholarPubMed
Demurie, E., de Corel, M., & Roeyers, H. (2011). Empathic accuracy in adolescents with autism spectrum disorders and adolescents with attention-deficit/hyperactivity disorder. Research in Autism Spectrum Disorders, 5(1), 126134. https://doi.org/10.1016/J.RASD.2010.03.002.CrossRefGoogle Scholar
Depow, G. J., Francis, Z., & Inzlicht, M. (2021). The experience of empathy in everyday life. Psychological Science, 32(8), 11981213. https://doi.org/10.1177/0956797621995202.CrossRefGoogle ScholarPubMed
Derntl, B., Finkelmeyer, A., Toygar, T. K., et al. (2009). Generalized deficit in all core components of empathy in schizophrenia. Schizophrenia Research, 108(1–3), 197206. https://doi.org/10.1016/J.SCHRES.2008.11.009.CrossRefGoogle ScholarPubMed
Deuter, C. E., Nowacki, J., Wingenfeld, K., et al. (2018). The role of physiological arousal for self-reported emotional empathy. Autonomic Neuroscience, 214, 914. https://doi.org/10.1016/J.AUTNEU.2018.07.002.Google Scholar
Diamond, L. M. (2020). Gender fluidity and nonbinary gender identities among children and adolescents. Child Development Perspectives, 14(2), 110115.CrossRefGoogle Scholar
DiGirolamo, M. A., Simon, J. C., Hubley, K. M., Kopulsky, A., & Gutsell, J. N. (2019). Clarifying the relationship between trait empathy and action-based resonance indexed by EEG mu-rhythm suppression. Neuropsychologia, 133, 112. https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2019.107172.CrossRefGoogle ScholarPubMed
Dor-Ziderman, Y., Cohen, D., Levit-Binnun, N., & Golland, Y. (2021). Synchrony with distress in affective empathy and compassion. Psychophysiology, 58(10), 116. https://doi.org/10.1111/psyp.13889.CrossRefGoogle ScholarPubMed
Drimalla, H., Landwehr, N., Hess, U., & Dziobek, I. (2019). From face to face: The contribution of facial mimicry to cognitive and emotional empathy. Cognition and Emotion, 16721686.Google Scholar
Duan, H., Wang, Y. J., & Lei, X. (2021). The effect of sleep deprivation on empathy for pain: An ERP study. Neuropsychologia, 163, 19. https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2021.108084.Google Scholar
Duda, R. O., Hart, P. E., & Stork, D. G. (2012). Pattern Classification. John Wiley.Google Scholar
Dumas, G., Nadel, J., Soussignan, R., Martinerie, J., & Garnero, L. (2010). Inter-brain synchronization during social interaction. PLoS ONE, 5(8), 110. https://doi.org/10.1371/journal.pone.0012166.Google Scholar
Dziobek, I., Rogers, K., Fleck, S., et al. (2008). Dissociation of cognitive and emotional empathy in adults with Asperger syndrome using the Multifaceted Empathy Test (MET). Journal of Autism and Developmental Disorders, 38(3), 464473. https://doi.org/10.1007/S10803-007-0486-X.Google Scholar
Eisenberg, N., & Fabes, R. A. (1990). Empathy: Conceptualization, measurement, and relation to prosocial behavior. Motivation and Emotion, 14(2), 131149. https://doi.org/10.1007/BF00991640.CrossRefGoogle Scholar
Eisenberg, N., & Lennon, R. (1983). Sex differences in empathy and related capacities. Psychological Bulletin, 94(1), 100131. https://doi.org/10.1037/0033-2909.94.1.100.CrossRefGoogle Scholar
Ekman, P., Friesen, W., & Ellsworth, P. (1972). Emotion in the Human Face: Guidelines for Research and an Integration of Findings: Guidelines for Research and an Integration of Findings. Pergamon.Google Scholar
Epley, N., & Eyal, T. (2019). Through a looking glass, darkly: Using mechanisms of mind perception to identify accuracy, overconfidence, and underappreciated means for improvement. In Olsen, J. M. (Ed.), Advances in Experimental Social Psychology (Vol. 60). Academic Press, pp. 65120. https://doi.org/10.1016/bs.aesp.2019.04.002.Google Scholar
Epley, N., Keysar, B., van Boven, L., & Gilovich, T. (2004). Perspective taking as egocentric anchoring and adjustment. Article in Journal of Personality and Social Psychology, 87(3), 327339. https://doi.org/10.1037/0022-3514.87.3.327.CrossRefGoogle ScholarPubMed
Eyal, T., Steffel, M., & Epley, N. (2018). Perspective mistaking: Accurately understanding the mind of another requires getting perspective, not taking perspective. Journal of Personality and Social Psychology, 114(4), 547571. https://doi.org/10.1037/PSPA0000115.CrossRefGoogle Scholar
Eysenbach, G. (2023). The role of chatgpt, generative language models, and artificial intelligence in medical education: A conversation with chatgpt and a call for papers. JMIR Medical Education, 9(1), 113.CrossRefGoogle Scholar
Fabi, S., & Leuthold, H. (2017). Empathy for pain influences perceptual and motor processing: Evidence from response force, ERPs, and EEG oscillations. Social Neuroscience, 12(6), 701716. https://doi.org/10.1080/17470919.2016.1238009.Google ScholarPubMed
Fallon, N., Roberts, C., & Stancak, A. (2020). Shared and distinct functional networks for empathy and pain processing: A systematic review and meta-analysis of fMRI studies. Social Cognitive and Affective Neuroscience, 15(7), 709723. https://doi.org/10.1093/scan/nsaa090.CrossRefGoogle ScholarPubMed
Fan, Y., Duncan, N. W., de Greck, M., & Northoff, G. (2011). Is there a core neural network in empathy? An fMRI based quantitative meta-analysis. Neuroscience and Biobehavioral Reviews, 35(3), 903911. https://doi.org/10.1016/j.neubiorev.2010.10.009.Google Scholar
Fan, Y., & Han, S. (2008). Temporal dynamic of neural mechanisms involved in empathy for pain: An event-related brain potential study. Neuropsychologia, 46(1), 160173. https://doi.org/10.1016/j.neuropsychologia.2007.07.023.CrossRefGoogle ScholarPubMed
Feldman, R., Magori-Cohen, R., Galili, G., Singer, M., & Louzoun, Y. (2011). Mother and infant coordinate heart rhythms through episodes of interaction synchrony. Infant Behavior and Development, 34(4), 569577. https://doi.org/10.1016/J.INFBEH.2011.06.008.CrossRefGoogle ScholarPubMed
FeldmanHall, O., Dalgleish, T., Evans, D., & Mobbs, D. (2015). Empathic concern drives costly altruism. NeuroImage, 105, 347356. https://doi.org/10.1016/j.neuroimage.2014.10.043.CrossRefGoogle ScholarPubMed
Feng, C., Li, Z., Feng, X., et al. (2016). Social hierarchy modulates neural responses of empathy for pain. Social Cognitive and Affective Neuroscience, 11(3), 485495. https://doi.org/10.1093/scan/nsv135.CrossRefGoogle ScholarPubMed
Ferguson, A. M., Cameron, C. D., & Inzlicht, M. (2020). Motivational effects on empathic choices. Journal of Experimental Social Psychology, 90, 117.Google Scholar
Fourie, M. M., Subramoney, S., Gobodo- Madikizela, P. (2017). A less attractive feature of empathy: Intergroup empathy bias. In Empathy – An Evidence-Based Interdisciplinary Perspective. IntechOpen, pp. 4561. https://doi.org/10.5772/INTECHOPEN.69287.Google Scholar
Fox, N. A., Yoo, K. H., Bowman, L. C., et al. (2016). Assessing human mirror activity with EEG mu rhythm: A meta-analysis. Psychological Bulletin, 142(3), 291313. https://doi.org/10.1037/BUL0000031.CrossRefGoogle ScholarPubMed
Fridenson-Hayo, S., Berggren, S., Lassalle, A., et al. (2016). Basic and complex emotion recognition in children with autism: Cross-cultural findings. Molecular Autism, 7(1), 111. https://doi.org/10.1186/S13229-016-0113-9.CrossRefGoogle ScholarPubMed
Fusaro, M., Tieri, G., & Aglioti, S. M. (2016). Seeing pain and pleasure on self and others: Behavioural and psychophysiological reactivity in immersive virtual reality. Journal of Neurophysiology, 116(6), 26562662. https://doi.org/10.1152/JN.00489.2016.CrossRefGoogle ScholarPubMed
Gantiva, C., Araujo, A., Castillo, K., Claro, L., & Hurtado-Parrado, C. (2021). Physiological and affective responses to emoji faces: Effects on facial muscle activity, skin conductance, heart rate, and self-reported affect. Biological Psychology, 163, 16. https://doi.org/10.1016/J.BIOPSYCHO.2021.108142.CrossRefGoogle ScholarPubMed
Gelstein, S., Yeshurun, Y., Rozenkrantz, L., et al. (2011). Human tears contain a chemosignal. Science, 331(6014), 226230. https://doi.org/10.1126/SCIENCE.1198331.CrossRefGoogle ScholarPubMed
Gendron, M., Roberson, D., van der Vyver, J. M., & Barrett, L. F. (2014). Cultural relativity in perceiving emotion from vocalizations. Psychological Science, 25(4), 911920. https://doi.org/10.1177/0956797613517239.CrossRefGoogle ScholarPubMed
Genzer, S., Ong, D. C., Zaki, J., & Perry, A. (2022). Mu rhythm suppression over sensorimotor regions is associated with greater empathic accuracy. Social Cognitive and Affective Neuroscience, 17(9), 788801. https://doi.org/10.1093/SCAN/NSAC011.CrossRefGoogle ScholarPubMed
Gesn, P. R., & Ickes, W. (1999). The development of meaning contexts for empathic accuracy: Channel and sequence effects. Journal of Personality and Social Psychology, 77(4), 746761. https://doi.org/10.1037/0022-3514.77.4.746.CrossRefGoogle Scholar
Gibson, J., Malandrakis, N., Romero, F., Atkins, D. C., & Narayanan, S. (2015). Predicting therapist empathy in motivational interviews using language features inspired by psycholinguistic norms. Sixteenth Annual Conference of the International Speech Communication Association, pp. 19471951.CrossRefGoogle Scholar
Gleichgerrcht, E., Torralva, T., Rattazzi, A., et al. (2013). Selective impairment of cognitive empathy for moral judgment in adults with high functioning autism. Social Cognitive and Affective Neuroscience, 8(7), 780788. https://doi.org/10.1093/SCAN/NSS067.CrossRefGoogle ScholarPubMed
Goel, S., Jara-Ettinger, J., & Gendron, M. (2022). Modeling cue-integration in emotion inferences. Proceedings of the Annual Meeting of the Cognitive Science Society, 44(44), 862868.Google Scholar
Goldman, A. I. (2006). Simulating Minds: The Philosophy, Psychology, and Neuroscience of Mindreading. Oxford University Press on Demand.CrossRefGoogle Scholar
Goldstein, P., Weissman-Fogel, I., Dumas, G., & Shamay-Tsoory, S. G. (2018). Brain-to-brain coupling during handholding is associated with pain reduction. Proceedings of the National Academy of Sciences of the United States of America, 115(11), E2528E2537. https://doi.org/10.1073/PNAS.1703643115.Google ScholarPubMed
Goldstein, P., Weissman-Fogel, I., & Shamay-Tsoory, S. G. (2017). The role of touch in regulating inter-partner physiological coupling during empathy for pain. Scientific Reports, 7(1), 112. https://doi.org/10.1038/s41598-017-03627-7.CrossRefGoogle ScholarPubMed
Golland, Y., Arzouan, Y., & Levit-Binnun, N. (2015). The mere co-presence: Synchronization of autonomic signals and emotional responses across co-present individuals not engaged in direct interaction. PLoS ONE, 10(5), 113. https://doi.org/10.1371/JOURNAL.PONE.0125804.CrossRefGoogle Scholar
Gomez, P., Stahel, W. A., & Danuser, B. (2004). Respiratory responses during affective picture viewing. Biological Psychology, 67(3), 359373. https://doi.org/10.1016/J.BIOPSYCHO.2004.03.013.CrossRefGoogle ScholarPubMed
Graham, T., & Ickes, W. (1997). When women’s intuition isn’t greater than men’s. In Ickes, W. (Ed.), Empathic Accuracy. Guilford, pp. 117143. https://psycnet.apa.org/record/1997-97352-004.Google Scholar
Grant, B. J., Fetterman, Z., Weyhaupt, M. B., Kim, M., & Tullett, A. M. (2018). It takes two: A replication. Journal of Research in Personality, 72, 5863. https://doi.org/10.1016/J.JRP.2016.06.023.Google Scholar
Green, M. F., Bearden, C. E., Cannon, T. D., et al. (2012). Social cognition in schizophrenia, Part 1: Performance across phase of illness. Schizophrenia Bulletin, 38(4), 854864. https://doi.org/10.1093/SCHBUL/SBQ171.CrossRefGoogle ScholarPubMed
Green, M. F., Olivier, B., Crawley, J. N., Penn, D. L., & Silverstein, S. (2005). Social cognition in schizophrenia: Recommendations from the measurement and treatment research to improve cognition in schizophrenia new approaches conference. Schizophrenia Bulletin, 31(4), 882887. https://doi.org/10.1093/SCHBUL/SBI049.CrossRefGoogle ScholarPubMed
Grove, R., Baillie, A., Allison, C., Baron-Cohen, S., & Hoekstra, R. A. (2014). The latent structure of cognitive and emotional empathy in individuals with autism, first-degree relatives and typical individuals. Molecular Autism, 5(1), 110. https://doi.org/10.1186/2040-2392-5-42.Google Scholar
Grynberg, D., & Konrath, S. (2020). The closer you feel, the more you care: Positive associations between closeness, pain intensity rating, empathic concern and personal distress to someone in pain. Acta Psychologica, 210, 17. https://doi.org/10.1016/j.actpsy.2020.103175.CrossRefGoogle ScholarPubMed
Gu, X., & Han, S. (2007). Attention and reality constraints on the neural processes of empathy for pain. NeuroImage, 36(1), 256267. https://doi.org/10.1016/j.neuroimage.2007.02.025.CrossRefGoogle ScholarPubMed
Guhn, A., Merkel, L., Hübner, L., et al. (2020). Understanding versus feeling the emotions of others: How persistent and recurrent depression affect empathy. Journal of Psychiatric Research, 130, 120127. https://doi.org/10.1016/J.JPSYCHIRES.2020.06.023.Google Scholar
Guo, X., Zheng, L., Wang, H., et al. (2013). Exposure to violence reduces empathetic responses to other’s pain. Brain and Cognition, 82(2), 187191. https://doi.org/10.1016/j.bandc.2013.04.005.CrossRefGoogle ScholarPubMed
Guo, X., Zheng, L., Zhang, W., et al. (2012). Empathic neural responses to others’ pain depend on monetary reward. Social Cognitive and Affective Neuroscience, 7(5), 535541. https://doi.org/10.1093/scan/nsr034.CrossRefGoogle ScholarPubMed
Gutsell, J. N., Simon, J. C., & Jiang, Y. (2020). Perspective taking reduces group biases in sensorimotor resonance. Cortex, 131, 4253. https://doi.org/10.1016/J.CORTEX.2020.04.037.CrossRefGoogle ScholarPubMed
Hajcak, G., & Foti, D. (2020). Significance? … significance! empirical, methodological, and theoretical connections between the late positive potential and P300 as neural responses to stimulus significance: An integrative review. Psychophysiology, 57(7), 115. https://doi.org/10.1111/PSYP.13570.CrossRefGoogle ScholarPubMed
Hajcak, G., Macnamara, A., & Olvet, D. M. (2010). Event-related potentials, emotion, and emotion regulation: An integrative review. Developmental Neuropsychology, 35(2), 129155. https://doi.org/10.1080/87565640903526504.Google Scholar
Hall, J. A. (1978). Gender effects in decoding nonverbal cues. Psychological Bulletin, 85(4), 845857. https://doi.org/10.1037/0033-2909.85.4.845.CrossRefGoogle Scholar
Hall, J. A., & Schmid Mast, M. (2007). Sources of accuracy in the empathic accuracy paradigm. Emotion, 7(2), 438446. https://doi.org/10.1037/1528-3542.7.2.438.CrossRefGoogle ScholarPubMed
Hall, J. A., & Schwartz, R. (2019). Empathy present and future. Journal of Social Psychology, 159(3), 225243. https://doi.org/10.1080/00224545.2018.1477442.Google Scholar
Han, S. (2018). Neurocognitive basis of racial ingroup bias in empathy. Trends in Cognitive Sciences, 22(5), 400421. https://doi.org/10.1016/j.tics.2018.02.013.Google Scholar
Hartmann, H., Forbes, P., Rutgen, M., & Lamm, C. (2022). Placebo analgesia reduces costly prosocial helping to lower another’s pain. Psychological Science, 33(11), 1881–1867.Google Scholar
Hasson, Y., Amir, E., Sobol-Sarag, D., Tamir, M., & Halperin, E. (2022). Using performance art to promote intergroup prosociality by cultivating the belief that empathy is unlimited. Nature Communications, 13(1), 115.Google Scholar
Hasson, U., Ghazanfar, A. A., Galantucci, B., Garrod, S., & Keysers, C. (2012). Brain-to-brain coupling: A mechanism for creating and sharing a social world. Trends in Cognitive Sciences, 16(2), 114121. https://doi.org/10.1016/J.TICS.2011.12.007.CrossRefGoogle ScholarPubMed
Hawk, S. T., van Kleef, G. A., Fischer, A. H., & van der Schalk, J. (2009). “Worth a thousand words”: Absolute and relative decoding of nonlinguistic affect vocalizations. Emotion, 9(3), 293305. https://doi.org/10.1037/A0015178.CrossRefGoogle ScholarPubMed
Hein, G., Lamm, C., Brodbeck, C., & Singer, T. (2011). Skin conductance response to the pain of others predicts later costly helping. PLoS ONE, 6(8), 16. https://doi.org/10.1371/JOURNAL.PONE.0022759.CrossRefGoogle Scholar
Hein, G., Silani, G., Preuschoff, K., Batson, C. D., & Singer, T. (2010). Neural responses to ingroup and outgroup members’ suffering predict individual differences in costly helping. Neuron, 68(1), 149160. https://doi.org/10.1016/j.neuron.2010.09.003.Google Scholar
Henrich, J., Heine, S. J., & Norenzayan, A. (2010). Most people are not WEIRD. Nature, 466(7302), 29.CrossRefGoogle Scholar
Herbert, C., Junghofer, M., & Kissler, J. (2008). Event related potentials to emotional adjectives during reading. Psychophysiology, 45(3), 487498. https://doi.org/10.1111/J.1469-8986.2007.00638.X.Google Scholar
Herrera, F., Bailenson, J., Weisz, E., Ogle, E., & Zak, J. (2018). Building long-term empathy: A large-scale comparison of traditional and virtual reality perspective-taking. PLoS ONE, 13(10), 137. https://doi.org/10.1371/journal.pone.0204494.CrossRefGoogle ScholarPubMed
Hillman, E. M. (2014). Coupling mechanism and significance of the BOLD signal: A status report. Annual Review of Neuroscience, 37, 161181.CrossRefGoogle Scholar
Ho, F., & Mussap, A. J. (2019). The gender identity scale: Adapting the gender unicorn to measure gender identity. Psychology of Sexual Orientation and Gender Diversity, 6(2), 217231.CrossRefGoogle Scholar
Hobson, H. M., & Bishop, D. V. M. (2017). The interpretation of mu suppression as an index of mirror neuron activity: Past, present and future. Royal Society Open Science, 4(3), 122. https://doi.org/10.1098/rsos.160662.CrossRefGoogle ScholarPubMed
Hoenen, M., Lübke, K. T., & Pause, B. M. (2015). Somatosensory mu activity reflects imagined pain intensity of others. Psychophysiology, 52(12), 15511558. https://doi.org/10.1111/psyp.12522.Google Scholar
Hoenen, M., Lübke, K. T., & Pause, B. M. (2018). Empathic cognitions affected by undetectable social chemosignals: An EEG study on visually evoked empathy for pain in an auditory and chemosensory context. Frontiers in Behavioral Neuroscience, 12, 114. https://doi.org/10.3389/fnbeh.2018.00243.CrossRefGoogle Scholar
Hoenen, M., Schain, C., & Pause, B. M. (2013). Down-modulation of mu-activity through empathic top-down processes. Social Neuroscience, 8(5), 515524. https://doi.org/10.1080/17470919.2013.833550.CrossRefGoogle ScholarPubMed
Hofer, M. K., Chen, F. S., & Schaller, M. (2020). What your nose knows: Affective, cognitive, and behavioral responses to the scent of another person. Current Directions in Psychological Science, 29(6), 617623. https://doi.org/10.1177/0963721420964175.CrossRefGoogle Scholar
Holding, B. C., Sundelin, T., Lekander, M., & Axelsson, J. (2019). Sleep deprivation and its effects on communication during individual and collaborative tasks. Scientific Reports, 9(1), 18. https://doi.org/10.1038/s41598-019-39271-6.Google Scholar
Horan, W. P., & Green, M. F. (2019). Treatment of social cognition in schizophrenia: Current status and future directions. Schizophrenia Research, 203, 311. https://doi.org/10.1016/J.SCHRES.2017.07.013.CrossRefGoogle ScholarPubMed
Howland, M., & Rafaeli, E. (2010). Bringing everyday mind reading into everyday life: Assessing empathic accuracy with daily diary data. Journal of Personality, 78(5), 14371468. https://doi.org/10.1111/J.1467-6494.2010.00657.X.Google Scholar
Hu, Y., Pan, Y., Shi, X., et al. (2018). Inter-brain synchrony and cooperation context in interactive decision making. Biological Psychology, 133, 5462. https://doi.org/10.1016/J.BIOPSYCHO.2017.12.005.Google Scholar
Ickes, W., Stinson, L., Bissonnette, V., & Garcia, S. (1990). Naturalistic social cognition: Empathic accuracy in mixed-sex dyads. Journal of Personality and Social Psychology, 59(4), 730742. https://doi.org/10.1037/0022-3514.59.4.730.CrossRefGoogle Scholar
Indolia, S., Goswami, A. K., Mishra, S. P., & Asopa, P. (2018). Conceptual understanding of convolutional neural network- A deep learning approach. Procedia Computer Science, 132, 679688. https://doi.org/10.1016/J.PROCS.2018.05.069.Google Scholar
Ionta, S., Costantini, M., Ferretti, A., et al. (2020). Visual similarity and psychological closeness are neurally dissociable in the brain response to vicarious pain. Cortex, 133, 295308. https://doi.org/10.1016/j.cortex.2020.09.028.CrossRefGoogle ScholarPubMed
Ishida, H., Suzuki, K., & Grandi, L. C. (2015). Predictive coding accounts of shared representations in parieto-insular networks. Neuropsychologia, 70, 442454. https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2014.10.020.CrossRefGoogle ScholarPubMed
Israelashvili, J., Oosterwijk, S., Sauter, D., & Fischer, A. (2019). Knowing me, knowing you: Emotion differentiation in oneself is associated with recognition of others’ emotions. Cognition and Emotion, 33(7), 14611471. https://doi.org/10.1080/02699931.2019.1577221.CrossRefGoogle ScholarPubMed
Israelashvili, J., & Perry, A. (2021). Nuancing perspective: Feedback shapes the understanding of another’s emotions. Social Psychology, 52(4), 238249. https://doi.org/10.1027/1864-9335/A000452.CrossRefGoogle Scholar
Israelashvili, J., Sauter, D., & Fischer, A. (2020). Two facets of affective empathy: Concern and distress have opposite relationships to emotion recognition. Cognition and Emotion, 34(6), 11121122. https://doi.org/10.1080/02699931.2020.1724893.CrossRefGoogle ScholarPubMed
Jack, R. E., Garrod, O. G. B., Yu, H., Caldara, R., & Schyns, P. G. (2012). Facial expressions of emotion are not culturally universal. Proceedings of the National Academy of Sciences of the United States of America, 109(19), 72417244. https://doi.org/10.1073/PNAS.1200155109.Google Scholar
Jackson, P. L., Meltzoff, A. N., & Decety, J. (2005). How do we perceive the pain of others? A window into the neural processes involved in empathy. NeuroImage, 24(3), 771779. https://doi.org/10.1016/j.neuroimage.2004.09.006.CrossRefGoogle ScholarPubMed
Jamali, M., Grannan, B. L., Fedorenko, E., et al. (2021). Single-neuronal predictions of others’ beliefs in humans. Nature, 591, 610614. https://doi.org/10.1038/s41586-021-03184-0.Google Scholar
Jami, P. Y., Walker, D. I., & Mansouri, B. (2023). Interaction of empathy and culture: A review. Current Psychology, 116.Google Scholar
Jolliffe, D., & Farrington, D. P. (2004). Empathy and offending: A systematic review and meta-analysis. Aggression and Violent Behavior, 9(5), 441476. https://doi.org/10.1016/J.AVB.2003.03.001.CrossRefGoogle Scholar
Jones, A. P., Happé, F. G. E., Gilbert, F., Burnett, S., & Viding, E. (2010). Feeling, caring, knowing: Different types of empathy deficit in boys with psychopathic tendencies and autism spectrum disorder. Journal of Child Psychology and Psychiatry, 51(11), 11881197. https://doi.org/10.1111/J.1469-7610.2010.02280.X.CrossRefGoogle ScholarPubMed
Jospe, K., Genzer, S., klein Selle, N., Ong, D., Zaki, J., & Perry, A. (2020). The contribution of linguistic and visual cues to physiological synchrony and empathic accuracy. Cortex, 132, 296308. https://doi.org/10.1016/j.cortex.2020.09.001.CrossRefGoogle ScholarPubMed
Jospe, K., Genzer, S., Mansano, L., et al. (2022). Impaired empathic accuracy following damage to the left hemisphere. Biological Psychology, 172, 112. https://doi.org/10.1016/J.BIOPSYCHO.2022.108380.CrossRefGoogle Scholar
Joyal, C. C., Neveu, S. M., Boukhalfi, T., Jackson, P. L., & Renaud, P. (2018). Suppression of sensorimotor alpha power associated with pain expressed by an avatar: A preliminary EEG study. Frontiers in Human Neuroscience, 12, 17. https://doi.org/10.3389/fnhum.2018.00273.Google Scholar
Keltner, D., Sauter, D., Tracy, J., & Cowen, A. (2019). Emotional expression: Advances in basic emotion theory. Journal of Nonverbal Behavior, 43(2), 133160. https://doi.org/10.1007/S10919-019-00293-3.CrossRefGoogle ScholarPubMed
Keysers, C., & Gazzola, V. (2014). Dissociating the ability and propensity for empathy. Trends in Cognitive Sciences, 18(4), 163166.CrossRefGoogle ScholarPubMed
Keysers, C., & Gazzola, V. (2017). Plea for cross-species social neuroscience. In Wöhr, M. & Krach, S. (Eds.), Social Behavior from Rodents to Humans. Springer, pp. 179191.Google Scholar
Keysers, C., Wicker, B., Gazzola, V., et al. (2004). A touching sight: SII/PV activation during the observation and experience of touch. Neuron, 42, 335346.CrossRefGoogle ScholarPubMed
Kilner, J. M., Friston, K. J., & Frith, C. D. (2007). Predictive coding: An account of the mirror neuron system. Cognitive Processing, 8(3), 159166. https://doi.org/10.1007/S10339-007-0170-2.CrossRefGoogle ScholarPubMed
Kirkland, R., Peterson, E., Baker, C., & Pulos, S. (2013). Meta-analysis reveals adult female superiority in “reading the mind in the eyes test.” North American Journal of Psychology, 15(1), 121146. www.researchgate.net/publication/260712981.Google Scholar
Kitayama, S., Duffy, S., Kawamura, T., & Larsen, J. T. (2003). Perceiving an object and its context in different cultures: A cultural look at new look. Psychological Science, 14(3), 201206. https://doi.org/10.1111/1467-9280.02432.CrossRefGoogle Scholar
Klein, K. J. K., & Hodges, S. D. (2001). Gender differences, motivation, and empathic accuracy: When it pays to understand. Personality and Social Psychology Bulletin, 27(6), 720730. https://doi.org/10.1177/0146167201276007.CrossRefGoogle Scholar
Kliemann, D., & Adolphs, R. (2018). The social neuroscience of mentalizing: Challenges and recommendations. Current Opinion in Psychology, 24, 16. https://doi.org/10.1016/J.COPSYC.2018.02.015.CrossRefGoogle ScholarPubMed
Kogler, L., Müller, V. I., Werminghausen, E., Eickhoff, S. B., & Derntl, B. (2020). Do I feel or do I know? Neuroimaging meta-analyses on the multiple facets of empathy. Cortex, 129, 341355. https://doi.org/10.1016/j.cortex.2020.04.031.CrossRefGoogle ScholarPubMed
Kohler, C. G., Walker, J. B., Martin, E. A., Healey, K. M., & Moberg, P. J. (2010). Facial emotion perception in schizophrenia: A meta-analytic review. Schizophrenia Bulletin, 36(5), 10091019. https://doi.org/10.1093/SCHBUL/SBN192.CrossRefGoogle ScholarPubMed
Kosonogov, V., de Zorzi, L., Honoré, J., et al. (2017). Facial thermal variations: A new marker of emotional arousal. PLoS ONE, 12(9), 115. https://doi.org/10.1371/JOURNAL.PONE.0183592.Google Scholar
Koster, J., Leckie, G., & Aven, B. (2019). Statistical methods and software for the multilevel social relations model. Field Methods, 32(4), 339345. https://doi.org/10.1177/1525822X19889011.Google Scholar
Krach, S., Cohrs, J. C., de Echeverría Loebell, N. C., et al. (2011). Your flaws are my pain: Linking empathy to vicarious embarrassment. PLoS ONE, 6(4). https://doi.org/10.1371/journal.pone.0018675.CrossRefGoogle ScholarPubMed
Kraus, M. W., Côté, S., & Keltner, D. (2010). Social class, contextualism, and empathic accuracy. Psychological Science, 21(11), 17161723.Google Scholar
Kreibig, S. D. (2010). Autonomic nervous system activity in emotion: A review. Biological Psychology, 84, 1441. https://doi.org/10.1016/j.biopsycho.2010.03.010.CrossRefGoogle ScholarPubMed
Kreibig, S. D., Wilhelm, F. H., Roth, W. T., & Gross, J. J. (2007). Cardiovascular, electrodermal, and respiratory response patterns to fear- and sadness-inducing films. Psychophysiology, 44(5), 787806. https://doi.org/10.1111/J.1469-8986.2007.00550.X.CrossRefGoogle ScholarPubMed
Kyle, S. D., Beattie, L., Spiegelhalder, K., Rogers, Z., & Espie, C. A. (2014). Altered emotion perception in insomnia disorder. Sleep, 37(4), 775783. https://doi.org/10.5665/SLEEP.3588.CrossRefGoogle ScholarPubMed
Lamm, C., Batson, C. D., & Decety, J. (2007). The neural substrate of human empathy: Effects of perspective-taking and cognitive appraisal. Journal of Cognitive Neuroscience, 19(1), 4258. https://doi.org/10.1162/jocn.2007.19.1.42.CrossRefGoogle ScholarPubMed
Lamm, C., Bukowski, H., & Silani, G. (2016). From shared to distinct self-other representations in empathy: Evidence from neurotypical function and socio-cognitive disorders. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1686), 17. https://doi.org/10.1098/rstb.2015.0083.CrossRefGoogle ScholarPubMed
Lamm, C., Decety, J., & Singer, T. (2011). Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. NeuroImage, 54(3), 24922502. https://doi.org/10.1016/j.neuroimage.2010.10.014.CrossRefGoogle ScholarPubMed
Lamm, C., & Majdandžić, J. (2015). The role of shared neural activations, mirror neurons, and morality in empathy: A critical comment. Neuroscience Research, 90, 1524. https://doi.org/10.1016/j.neures.2014.10.008.Google Scholar
Lamm, C., Nausbaum, H. C., Meltzoff, A. N., & Decety, J. (2007). What are you feeling? Using functional magnetic resonance imaging to assess the modulation of sensory and affective responses during empathy for pain. PLoS ONE, 2(12), 116. https://doi.org/10.1371/journal.pone.0001292.CrossRefGoogle ScholarPubMed
Lamm, C., Rütgen, M., & Wagner, I. C. (2019). Imaging empathy and prosocial emotions. Neuroscience Letters, 693, 4953. https://doi.org/10.1016/j.neulet.2017.06.054.CrossRefGoogle ScholarPubMed
Lange, J., Heerdink, M. W., & van Kleef, G. A. (2022). Reading emotions, reading people: Emotion perception and inferences drawn from perceived emotions. Current Opinion in Psychology, 43, 8590. https://doi.org/10.1016/J.COPSYC.2021.06.008.CrossRefGoogle ScholarPubMed
Laukka, P., & Elfenbein, H. A. (2021). Cross-cultural emotion recognition and in-group advantage in vocal expression: A meta-analysis. Emotion Review, 13(1), 311. https://doi.org/10.1177/1754073919897295.CrossRefGoogle Scholar
Laukka, P., Thingujam, N. S., Iraki, F. K., et al. (2016). The expression and recognition of emotions in the voice across five nations: A lens model analysis based on acoustic features. Journal of Personality and Social Psychology, 111(5), 686705. https://doi.org/10.1037/PSPI0000066.CrossRefGoogle Scholar
Lecker, M., & Aviezer, H. (2021). More than words? Semantic emotion labels boost context effects on faces. Affective Science, 2(2), 163170.CrossRefGoogle ScholarPubMed
Lecker, M., Dotsch, R., Bijlstra, G., & Aviezer, H. (2020). Bidirectional contextual influence between faces and bodies in emotion perception. Emotion, 20(7), 11541164.Google Scholar
Lehmann, K., Böckler, A., Klimecki, O., Müller-Liebmann, C., & Kanske, P. (2022). Empathy and correct mental state inferences both promote prosociality. Scientific Reports, 12(1), 18. https://doi.org/10.1038/s41598-022-20855-8.Google Scholar
Levenson, R. W., & Gottman, J. M. (1983). Marital interaction: Physiological linkage and affective exchange. Journal of Personality and Social Psychology, 45(3), 587597. https://doi.org/10.1037/0022-3514.45.3.587.CrossRefGoogle ScholarPubMed
Levenson, R. W., & Ruef, A. M. (1992). Empathy: A physiological substrate. Journal of Personality and Social Psychology, 63(2), 234246. https://doi.org/10.1037/0022-3514.63.2.234.CrossRefGoogle ScholarPubMed
Levy, J., Goldstein, A., & Feldman, R. (2017). Perception of social synchrony induces mother–child gamma coupling in the social brain. Social Cognitive and Affective Neuroscience, 12(7), 10361046. https://doi.org/10.1093/SCAN/NSX032.CrossRefGoogle ScholarPubMed
Levy, J., Goldstein, A., Influs, M., et al. (2016). Adolescents growing up amidst intractable conflict attenuate brain response to pain of outgroup. Proceedings of the National Academy of Sciences of the United States of America, 113(48), 1369613701. https://doi.org/10.1073/PNAS.1612903113.Google Scholar
Li, X., Liu, Y., Ye, Q., Lu, X., & Peng, W. (2020). The linkage between first-hand pain sensitivity and empathy for others’ pain: Attention matters. Human Brain Mapping, 41(17), 48154828. https://doi.org/10.1002/hbm.25160.CrossRefGoogle ScholarPubMed
Liu, D., Liu, S., Liu, X., et al. (2018). Interactive brain activity: Review and progress on EEG-based hyperscanning in social interactions. Frontiers in Psychology, 9, 111. https://doi.org/10.3389/fpsyg.2018.01862.CrossRefGoogle ScholarPubMed
Lobchuk, M., Halas, G., West, C., et al. (2016). Development of a novel empathy-related video-feedback intervention to improve empathic accuracy of nursing students: A pilot study. Nurse Education Today, 46, 8693.CrossRefGoogle ScholarPubMed
Loggia, M. L., Mogil, J. S., & Bushnell, M. C. (2008). Empathy hurts: Compassion for another increases both sensory and affective components of pain perception. Pain, 136(1–2), 168176. https://doi.org/10.1016/j.pain.2007.07.017.CrossRefGoogle ScholarPubMed
Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453(7197), 869878.Google Scholar
Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412(6843), 150157.CrossRefGoogle ScholarPubMed
López-Solà, M., Koban, L., Krishnan, A., & Wager, T. D. (2020). When pain really matters: A vicarious-pain brain marker tracks empathy for pain in the romantic partner. Neuropsychologia, 145, 18. https://doi.org/10.1016/j.neuropsychologia.2017.07.012.CrossRefGoogle ScholarPubMed
Mackes, N. K., Golm, D., O’Daly, O. G., et al. (2018). Tracking emotions in the brain – Revisiting the Empathic Accuracy Task. NeuroImage, 178, 677686. https://doi.org/10.1016/j.neuroimage.2018.05.080.CrossRefGoogle ScholarPubMed
Marangoni, C., Garcia, S., Ickes, W., & Teng, G. (1995). Empathic accuracy in a clinically relevant setting. Journal of Personality and Social Psychology, 68(5), 854869.CrossRefGoogle Scholar
Markus, H. R., & Kitayama, S. (1991). Culture and the self: Implications for cognition, emotion, and motivation. Psychological Review, 98(2), 224253. https://doi.org/10.1037/0033-295X.98.2.224.CrossRefGoogle Scholar
Marsella, S., & Gratch, J. (2014). Computationally modeling human emotion. Communications of the ACM, 57(12), 5667. https://doi.org/10.1145/2631912.CrossRefGoogle Scholar
Marsh, A. A. (2022). Comment: Getting our affect together: Shared representations as the core of empathy. Emotion Review, 14(3), 184187. https://doi.org/10.1177/17540739221107029.CrossRefGoogle Scholar
Mayo, O., Lavidor, M., & Gordon, I. (2021). Interpersonal autonomic nervous system synchrony and its association to relationship and performance: A systematic review and meta-analysis. Physiology and Behavior, 235, 111. https://doi.org/10.1016/j.physbeh.2021.113391.CrossRefGoogle ScholarPubMed
McClure, E. B. (2000). A meta-analytic review of sex differences in facial expression processing and their development in infants, children, and adolescents. Psychological Bulletin, 126(3), 424453. https://doi.org/10.1037/0033-2909.126.3.424.CrossRefGoogle ScholarPubMed
MCDonald, B., Bockler, A., & Kanske, P. (2022). Soundtrack to the social world: Emotional music enhances empathy, compassion, and prosocial decisions but not theory of mind. Emotion, 22(1), 1929. https://doi.org/10.1037/emo0001036.CrossRefGoogle Scholar
Melloni, M., Lopez, V., & Ibanez, A. (2014). Empathy and contextual social cognition. Cognitive, Affective and Behavioral Neuroscience, 14(1), 407425. https://doi.org/10.3758/s13415-013-0205-3.CrossRefGoogle ScholarPubMed
Merten, J. (2005). Culture, gender and the recognition of the basic emotions. Psychologia, 48(4), 306316. https://doi.org/10.2117/PSYSOC.2005.306.Google Scholar
Milton, D. E. (2012). The double empathy problem. Disability & Society, 27(6), 883887.CrossRefGoogle Scholar
Mischkowski, D., Crocker, J., & Way, B. M. (2016). From painkiller to empathy killer: Acetaminophen (paracetamol) reduces empathy for pain. Social Cognitive and Affective Neuroscience, 11(9), 13451353. https://doi.org/10.1093/scan/nsw057.Google Scholar
Mishor, E., Amir, D., Weiss, T., et al. (2021). Sniffing the human body volatile hexadecanal blocks aggression in men but triggers aggression in women. Science Advances, 7(47), 111. https://doi.org/10.1126/SCIADV.ABG1530.CrossRefGoogle ScholarPubMed
Moore, A., Gorodnitsky, I., & Pineda, J. (2012). EEG mu component responses to viewing emotional faces. Behavioural Brain Research, 226(1), 309316. https://doi.org/10.1016/J.BBR.2011.07.048.CrossRefGoogle ScholarPubMed
Morawska, A. (2020). The effects of gendered parenting on child development outcomes: A systematic review. Clinical Child and Family Psychology Review, 23(4), 553576. https://doi.org/10.1007/S10567-020-00321-5.CrossRefGoogle ScholarPubMed
Morelli, S. A., Sacchet, M. D., & Zaki, J. (2015). Common and distinct neural correlates of personal and vicarious reward: A quantitative meta-analysis. NeuroImage, 112, 244253. https://doi.org/10.1016/j.neuroimage.2014.12.056.Google Scholar
Morrison, I., Lloyd, D., di Pellegrino, G., & Roberts, N. (2004). Vicarious responses to pain in anterior cingulate cortex: Is empathy a multisensory issue. Cognitive, Affective, & Behavioral Neuroscience, 4(2), 270278.Google Scholar
Mukamel, R., Ekstrom, A. D., Kaplan, J., Iacoboni, M., & Fried, I. (2010). Single-neuron responses in humans during execution and observation of actions. Current Biology, 20(8), 750756. https://doi.org/10.1016/J.CUB.2010.02.045.CrossRefGoogle ScholarPubMed
Murphy, B. A., & Lilienfeld, S. O. (2019). Are self-report cognitive empathy ratings valid proxies for cognitive empathy ability? Negligible meta-analytic relations with behavioral task performance. Psychological Assessment, 31(8), 10621072. https://doi.org/10.1037/pas0000732.Google Scholar
Murphy, B. A., Lilienfeld, S. O., & Algoe, S. B. (2022). Why we should reject the restrictive isomorphic matching definition of empathy. Emotion Review, 14(3), 167181.CrossRefGoogle Scholar
Naor, N., Shamay-Tsoory, S. G., Sheppes, G., & Okon-Singer, H. (2017). The impact of empathy and reappraisal on emotional intensity recognition. Cognition and Emotion, 32(5), 972987. https://doi.org/10.1080/02699931.2017.1372366.Google Scholar
Naor, N., Shamay-Tsoory, S. G., Sheppes, G., & Okon-Singer, H. (2018). The impact of empathy and reappraisal on emotional intensity recognition. Cognition and Emotion, 32(5), 972987.Google Scholar
Nath, S., Marie, A., Ellershaw, S., Korot, E., & Keane, P. A. (2022). New meaning for NLP: the trials and tribulations of natural language processing with GPT-3 in ophthalmology. British Journal of Ophthalmology, 106(7), 889892. https://doi.org/10.1136/BJOPHTHALMOL-2022-321141.CrossRefGoogle ScholarPubMed
Neumann, D. L., Chan, R. C. K., Boyle, G. J., Wang, Y., & Westbury, H. R. (2015). Measures of empathy: Self-report, behavioral, and neuroscientific approaches. In Boyle, G. J., Saklofske, D. H., & Matthews, G. (Eds.), Measures of Personality and Social Psychological Constructs. Elsevier, pp. 257289. https://doi.org/10.1016/B978-0-12-386915-9.00010-3.CrossRefGoogle Scholar
Neumann, D. L., & Westbury, H. R. (2011). The psychophysiological measurement of empathy. In Scapaletti, D. J. (Ed.), Psychology of Empathy. Nova Science, pp. 119142.Google Scholar
Nisbett, R. E., Choi, I., Peng, K., & Norenzayan, A. (2001). Culture and systems of thought: Holistic versus analytic cognition. Psychological Review, 108(2), 291310. https://doi.org/10.1037/0033-295X.108.2.291.CrossRefGoogle ScholarPubMed
Noy, L., Dekel, E., & Alon, U. (2011). The mirror game as a paradigm for studying the dynamics of two people improvising motion together. Proceedings of the National Academy of Sciences of the United States of America, 108(52), 2094720952. https://doi.org/10.1073/PNAS.1108155108.CrossRefGoogle ScholarPubMed
Nummenmaa, L., Glerean, E., Viinikainen, M., et al. (2012). Emotions promote social interaction by synchronizing brain activity across individuals. Proceedings of the National Academy of Sciences of the United States of America, 109(24), 95999604. https://doi.org/10.1073/PNAS.1206095109.CrossRefGoogle ScholarPubMed
Ong, D. C. (2021). An ethical framework for guiding the development of affectively-aware artificial intelligence. 2021 9th International Conference on Affective Computing and Intelligent Interaction, ACII. https://doi.org/10.1109/ACII52823.2021.9597441.CrossRefGoogle Scholar
Ong, D. C., Zaki, J., & Goodman, N. D. (2019). Computational models of emotion inference in theory of mind: A review and roadmap. Topics in Cognitive Science, 11(2), 338357. https://doi.org/10.1111/TOPS.12371.CrossRefGoogle ScholarPubMed
Orm, S., Vatne, T., Tomeny, T. S., & Fjermestad, K. (2022). Empathy and prosocial behavior in siblings of children with autism spectrum disorder: A systematic review. Review Journal of Autism and Developmental Disorders, 9(2), 235248. https://doi.org/10.1007/S40489-021-00251-0.CrossRefGoogle Scholar
Osborne-Crowley, K. (2020). Social cognition in the real world: Reconnecting the study of social cognition with social reality. Review of General Psychology, 24(2), 144158. https://doi.org/10.1177/1089268020906483.Google Scholar
Palomba, D., Sarlo, M., Angrilli, A., Mini, A., & Stegagno, L. (2000). Cardiac responses associated with affective processing of unpleasant film stimuli. International Journal of Psychophysiology, 36(1), 4557. https://doi.org/10.1016/S0167-8760(99)00099-9.Google Scholar
Palumbo, R. V., Marraccini, M. E., Weyandt, L. L., et al. (2017). Interpersonal autonomic physiology: A systematic review of the literature. Personality and Social Psychology Review, 21(2), 99141. https://doi.org/10.1177/1088868316628405.Google Scholar
Paradiso, E., Gazzola, V., & Keysers, C. (2021). Neural mechanisms necessary for empathy-related phenomena across species. Current Opinion in Neurobiology, 68, 107115. https://doi.org/10.1016/j.conb.2021.02.005.Google Scholar
Patel, S., Scherer, K. R., Björkner, E., & Sundberg, J. (2011). Mapping emotions into acoustic space: The role of voice production. Biological Psychology, 87(1), 9398. https://doi.org/10.1016/J.BIOPSYCHO.2011.02.010.CrossRefGoogle ScholarPubMed
Paulus, F. M., Müller-Pinzler, L., Stolz, D. S., et al. (2018). Laugh or cringe? Common and distinct processes of reward-based schadenfreude and empathy-based fremdscham. Neuropsychologia, 116, 5260. https://doi.org/10.1016/j.neuropsychologia.2017.05.030.Google Scholar
Pellicano, E., & den Houting, J. (2022). Annual research review: Shifting from ‘normal science’ to neurodiversity in autism science. Journal of Child Psychology and Psychiatry, 63(4), 381396.CrossRefGoogle ScholarPubMed
Peng, W., Lou, W., Huang, X., et al. (2021). Suffer together, bond together: Brain-to-brain synchronization and mutual affective empathy when sharing painful experiences. NeuroImage, 238, 111. https://doi.org/10.1016/j.neuroimage.2021.118249.Google Scholar
Perenc, L., & Pęczkowski, R. (2018). Cognitive and affective empathy among adolescent siblings of children with a physical disability. Disability and Health Journal, 11(1), 4348. https://doi.org/10.1016/J.DHJO.2017.08.008.Google Scholar
Pérez-Edgar, K., MacNeill, L. A., & Fu, X. (2020). Navigating through the experienced environment: Insights from mobile eye tracking. Current Directions in Psychological Science, 29(3), 286292. https://doi.org/10.1177/0963721420915880.CrossRefGoogle ScholarPubMed
Perry, A., Bentin, S., Bartal, I. B. A., Lamm, C., & Decety, J. (2010). “Feeling” the pain of those who are different from us: Modulation of EEG in the mu/alpha range. Cognitive, Affective and Behavioral Neuroscience, 10(4), 493504. https://doi.org/10.3758/CABN.10.4.493.CrossRefGoogle ScholarPubMed
Perry, A., Saunders, S. N., Stiso, J., et al. (2017). Effects of prefrontal cortex damage on emotion understanding: EEG and behavioural evidence. Brain, 140(4), 10861099. https://doi.org/10.1093/brain/awx031.CrossRefGoogle ScholarPubMed
Pineda, J. A. (2005). The functional significance of mu rhythms: Translating “seeing” and “hearing” into “doing.” Brain Research Reviews, 50(1), 5768. https://doi.org/10.1016/J.BRAINRESREV.2005.04.005.CrossRefGoogle ScholarPubMed
Pineda, J. A., & Hecht, E. (2009). Mirroring and mu rhythm involvement in social cognition: Are there dissociable subcomponents of theory of mind? Biological Psychology, 80(3), 306314. https://doi.org/10.1016/J.BIOPSYCHO.2008.11.003.CrossRefGoogle ScholarPubMed
Pinti, P., Tachtsidis, I., Hamilton, A., et al. (2020). The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Annals of the New York Academy of Sciences, 1464(1), 529. https://doi.org/10.1111/NYAS.13948.CrossRefGoogle ScholarPubMed
Pittelkow, M. M., aan het Rot, M., Seidel, L. J., Feyel, N., & Roest, A. M. (2021). Social anxiety and empathy: A systematic review and meta-analysis. Journal of Anxiety Disorders, 78,116. https://doi.org/10.1016/J.JANXDIS.2021.102357.Google Scholar
Ponnet, K., Buysse, A., Roeyers, H., & de Clercq, A. (2008). Mind-reading in young adults with ASD: Does structure matter? Journal of Autism and Developmental Disorders, 38(5), 905918. https://doi.org/10.1007/S10803-007-0462-5.CrossRefGoogle ScholarPubMed
Ponnet, K., Buysse, A., Roeyers, H., & de Corte, K. (2005). Empathic accuracy in adults with a pervasive developmental disorder during an unstructured conversation with a typically developing stranger. Journal of Autism and Developmental Disorders, 35(5), 585600. https://doi.org/10.1007/S10803-005-0003-Z.Google Scholar
Ponnet, K. S., Roeyers, H., Buysse, A., de Clercq, A., & van der Heyden, E. (2004). Advanced mind-reading in adults with Asperger syndrome. Autism, 8(3), 249266. https://doi.org/10.1177/1362361304045214.Google Scholar
Powell, P. A. (2018). Individual differences in emotion regulation moderate the associations between empathy and affective distress. Motivation and Emotion, 42(4), 602613. https://doi.org/10.1007/s11031-018-9684-4.CrossRefGoogle ScholarPubMed
Preckel, K., Kanske, P., & Singer, T. (2018). On the interaction of social affect and cognition: empathy, compassion and theory of mind. Current Opinion in Behavioral Sciences, 19, 16. https://doi.org/10.1016/j.cobeha.2017.07.010.Google Scholar
Prehn-Kristensen, A., Wiesner, C., Bergmann, T. O., Wolff, S., & Jansen, O. (2009). Induction of empathy by the smell of anxiety. PLoS ONE, 4(6), 19. https://doi.org/10.1371/journal.pone.0005987.CrossRefGoogle ScholarPubMed
Preis, M. A., & Kroener-Herwig, B. (2012). Empathy for pain: The effects of prior experience and sex. European Journal of Pain (United Kingdom), 16(9), 13111319. https://doi.org/10.1002/j.1532-2149.2012.00119.x.Google Scholar
Preis, M. A., Schmidt-Samoa, C., Dechent, P., & Kroener-Herwig, B. (2013). The effects of prior pain experience on neural correlates of empathy for pain: An fMRI study. Pain, 154(3), 411418. https://doi.org/10.1016/j.pain.2012.11.014.CrossRefGoogle ScholarPubMed
Preston, S. D., & de Waal, F. B. M. (2002). Empathy: Its ultimate and proximate bases. Behavioral and Brain Sciences, 25(1), 172.Google Scholar
Quintana, P., Nolet, K., Baus, O., & Bouchard, S. (2019). The effect of exposure to fear-related body odorants on anxiety and interpersonal trust toward a virtual character. Chemical Senses, 44(9), 683692. https://doi.org/10.1093/chemse/bjz063.CrossRefGoogle Scholar
Rainville, P., Duncan, G. H., Price, D. D., Carrier, B., & Bushnell, M. C. (1997). Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science, 277(5328), 968971. https://doi.org/10.1126/SCIENCE.277.5328.968.Google Scholar
Ravreby, I., Snitz, K., & Sobel, N. (2022). There is chemistry in social chemistry. Science Advances, 8(25), 111. https://doi.org/10.1126/SCIADV.ABN0154.CrossRefGoogle ScholarPubMed
Ren, Q., Lu, X., Zhao, Q., Zhang, H., & Hu, L. (2020). Can self-pain sensitivity quantify empathy for others’ pain? Psychophysiology, 57(10), 116. https://doi.org/10.1111/psyp.13637.CrossRefGoogle ScholarPubMed
Ren, Q., Yang, Y., Wo, Y., Lu, X., & Hu, L. (2022). Different priming effects of empathy on neural processing associated with firsthand pain and nonpain perception. Annals of the New York Academy of Sciences, 1509(1), 184202. https://doi.org/10.1111/nyas.14723.CrossRefGoogle ScholarPubMed
Riečanský, I., & Lamm, C. (2019). The role of sensorimotor processes in pain empathy. Brain Topography, 32(6), 965976. https://doi.org/10.1007/s10548-019-00738-4.CrossRefGoogle ScholarPubMed
Rocha, M., Parma, V., Lundström, J. N., & Soares, S. C. (2018). Anxiety body odors as context for dynamic faces: Categorization and psychophysiological biases. Perception, 47(10–11), 10541069. https://doi.org/10.1177/0301006618797227.CrossRefGoogle ScholarPubMed
Rodríguez-Hidalgo, C., Tan, E. S. H., & Verlegh, P. W. J. (2017). Expressing emotions in blogs: The role of textual paralinguistic cues in online venting and social sharing posts. Computers in Human Behavior, 73, 638649. https://doi.org/10.1016/J.CHB.2017.04.007.CrossRefGoogle Scholar
Roeyers, H., Buysse, A., Ponnet, K., & Pichal, B. (2001). Advancing advanced mind-reading tests: Empathic accuracy in adults with a pervasive developmental disorder. Journal of Child Psychology and Psychiatry, 42(2), 271278. https://doi.org/10.1111/1469-7610.00718.Google Scholar
Rueda, P., Fernández-Berrocal, P., & Baron-Cohen, S. (2014). Dissociation between cognitive and affective empathy in youth with Asperger syndrome. European Journal of Developmental Psychology, 12(1), 8598. https://doi.org/10.1080/17405629.2014.950221.Google Scholar
Rum, Y., Genzer, S., Markovitch, N., Jenkins, J., Perry, A., & Knafo-Noam, A. (2022). Are there positive effects of having a sibling with special needs? Empathy and prosociality of twins of children with non-typical development. Child Development, 93(4), 11211128. https://doi.org/10.1111/CDEV.13740.Google Scholar
Rum, Y., & Perry, A. (2020). Empathic accuracy in clinical populations. Frontiers in Psychiatry, 11, 123. https://doi.org/10.3389/FPSYT.2020.00457.CrossRefGoogle ScholarPubMed
Rütgen, M., Seidel, E. M., Pletti, C., et al. (2018). Psychopharmacological modulation of event-related potentials suggests that first-hand pain and empathy for pain rely on similar opioidergic processes. Neuropsychologia, 116, 514. https://doi.org/10.1016/j.neuropsychologia.2017.04.023.CrossRefGoogle ScholarPubMed
Rütgen, M., Seidel, E. M., Riečanský, I., & Lamm, C. (2015). Reduction of empathy for pain by placebo analgesia suggests functional equivalence of empathy and first-hand emotion experience. Journal of Neuroscience, 35(23), 89388947. https://doi.org/10.1523/JNEUROSCI.3936-14.2015.Google Scholar
Rütgen, M., Seidel, E. M., Silani, G., et al. (2015). Placebo analgesia and its opioidergic regulation suggest that empathy for pain is grounded in self pain. Proceedings of the National Academy of Sciences of the United States of America, 112(41), E5638E5646. https://doi.org/10.1073/pnas.1511269112.Google Scholar
Saarela, M. V., Hlushchuk, Y., Williams, A. C. D. C., et al. (2007). The compassionate brain: Humans detect intensity of pain from another’s face. Cerebral Cortex, 17(1), 230237. https://doi.org/10.1093/cercor/bhj141.CrossRefGoogle ScholarPubMed
Sasson, N. J., Pinkham, A. E., Richard, J., et al. (2010). Controlling for response biases clarifies sex and age differences in facial affect recognition. Journal of Nonverbal Behavior, 34(4), 207221. https://doi.org/10.1007/S10919-010-0092-Z.Google Scholar
Sato, W., Fujimura, T., & Suzuki, N. (2008). Enhanced facial EMG activity in response to dynamic facial expressions. International Journal of Psychophysiology, 70(1), 7074. https://doi.org/10.1016/J.IJPSYCHO.2008.06.001.Google Scholar
Sauter, D. A., Eisner, F., Calder, A. J., & Scott, S. K. (2010). Perceptual cues in nonverbal vocal expressions of emotion. Quarterly Journal of Experimental Psychology, 63(11), 22512272. https://doi.org/10.1080/17470211003721642.CrossRefGoogle ScholarPubMed
Sauter, D. A., Eisner, F., Ekman, P., & Scott, S. K. (2010). Cross-cultural recognition of basic emotions through nonverbal emotional vocalizations. Proceedings of the National Academy of Sciences of the United States of America, 107(6), 24082412. https://doi.org/10.1073/PNAS.0908239106.Google Scholar
Sauter, D. A., Eisner, F., Ekman, P., & Scott, S. K. (2015). Emotional vocalizations are recognized across cultures regardless of the valence of distractors. Psychological Science, 26(3), 354356. https://doi.org/10.1177/0956797614560771.CrossRefGoogle ScholarPubMed
Schilbach, L., Timmermans, B., Reddy, V., et al. (2013). Toward a second-person neuroscience. Behavioral and Brain Sciences, 36(4), 393414. https://doi.org/10.1017/S0140525X12000660.Google Scholar
Schurz, M., Radua, J., Tholen, M. G., et al. (2021). Toward a hierarchical model of social cognition: A neuroimaging meta-analysis and integrative review of empathy and theory of mind. Psychological Bulletin, 147(3), 293327. https://doi.org/10.1037/bul0000303.CrossRefGoogle Scholar
Schwartz-Ziv, R., & Tishby, N. (2017). Opening the black box of deep neural networks via information. ArXiv Preprint ArXiv:1703.00810. https://doi.org/10.48550/arxiv.1703.00810CrossRefGoogle Scholar
Sened, H., Bar-Kalifa, E., Pshedetzky-Shochat, R., Gleason, M., & Rafaeli, E. (2020). Fast and slow empathic perceptions in couples’ daily lives use different cues. Affective Science, 1(2), 8796.CrossRefGoogle ScholarPubMed
Sened, H., Lavidor, M., Lazarus, G., et al. (2017). Empathic accuracy and relationship satisfaction: A meta-analytic review. Journal of Family Psychology, 31(6), 742752. https://doi.org/10.1037/FAM0000320.Google Scholar
Shamay-Tsoory, S. G., Shur, S., Barcai-Goodman, L., et al. (2007). Dissociation of cognitive from affective components of theory of mind in schizophrenia. Psychiatry Research, 149(1–3), 1123. https://doi.org/10.1016/J.PSYCHRES.2005.10.018.Google Scholar
Sheng, F., Liu, Q., Li, H., Fang, F., & Han, S. (2014). Task modulations of racial bias in neural responses to others’ suffering. NeuroImage, 88, 263270. https://doi.org/10.1016/J.NEUROIMAGE.2013.10.017.CrossRefGoogle ScholarPubMed
Sherman, J. W., Klauer, K. C., & Allen, T. J. (2021). Mathematical Modeling of Implicit Social Cognition: The Machine in the Ghost. In Gawronski, B. & Payne, B. K. (Eds.), Handbook of implicit social cognition: Measurement, theory, and applications. The Guilford Press, pp. 156174Google Scholar
Shipp, S. (2016). Neural elements for predictive coding. Frontiers in Psychology, 7, 121. https://doi.org/10.3389/FPSYG.2016.01792/BIBTEX.CrossRefGoogle ScholarPubMed
Shvimmer, S., Simhon, R., Gilad, M., & Yitzhaky, Y. (2022). Classification of emotional states via transdermal cardiovascular spatiotemporal facial patterns using multispectral face videos. Scientific Reports, 12(1), 116. https://doi.org/10.1038/s41598-022-14808-4.Google ScholarPubMed
Singer, T., & Klimecki, O. M. (2014). Empathy and compassion. Current Biology, 24(18), R875R878. https://doi.org/10.1016/J.CUB.2014.06.054.CrossRefGoogle ScholarPubMed
Singer, T., & Lamm, C. (2009). The social neuroscience of empathy. Annals of the New York Academy of Sciences, 1156, 8196. https://doi.org/10.1111/j.1749-6632.2009.04418.x.CrossRefGoogle ScholarPubMed
Singer, T., Seymour, B., O’Doherty, J., et al. (2004). Empathy for pain involves the affective but not sensory components of pain. Science, 303(5661), 11571162. https://doi.org/10.1126/science.1094645.CrossRefGoogle Scholar
Singer, T., Seymour, B., O’Doherty, J. P. (2006). Empathic neural responses are modulated by the perceived fairness of others. Nature, 439(7075), 466469. https://doi.org/10.1038/nature04271.CrossRefGoogle ScholarPubMed
Smith, M. J., Horan, W. P., Karpouzian, T. M., et al. (2012). Self-reported empathy deficits are uniquely associated with poor functioning in schizophrenia. Schizophrenia Research, 137(1–3), 196202. https://doi.org/10.1016/J.SCHRES.2012.01.012.Google Scholar
Soto, J. A., & Levenson, R. W. (2009). Emotion recognition across cultures: The influence of ethnicity on empathic accuracy and physiological linkage. Emotion, 9(6), 874884. https://doi.org/10.1037/A0017399.CrossRefGoogle ScholarPubMed
Spies, M., Hahn, A., Kranz, G. S., et al. (2016). Gender transition affects neural correlates of empathy: A resting state functional connectivity study with ultra high-field 7T MR imaging. Neuroimage, 138, 257265.CrossRefGoogle ScholarPubMed
Spreng, R. N., McKinnon, M. C., Mar, R. A., & Levine, B. (2009). The Toronto empathy questionnaire: Scale development and initial validation of a factor-analytic solution to multiple empathy measures. Journal of Personality Assessment, 91(1), 6271. https://doi.org/10.1080/00223890802484381.CrossRefGoogle ScholarPubMed
Stellar, J. E., Manzo, V. M., Kraus, M. W., & Keltner, D. (2012). Class and compassion: Socioeconomic factors predict responses to suffering. Emotion, 12(3), 449459.CrossRefGoogle ScholarPubMed
Stephens, G. J., Silbert, L. J., & Hasson, U. (2010). Speaker-listener neural coupling underlies successful communication. Proceedings of the National Academy of Sciences of the United States of America, 107(32), 1442514430. https://doi.org/10.1073/pnas.1008662107.CrossRefGoogle ScholarPubMed
Stinson, L., & Ickes, W. (1992). Empathic accuracy in the interactions of male friends versus male strangers. Journal of Personality and Social Psychology, 62(5), 787797. https://doi.org/10.1037/0022-3514.62.5.787.CrossRefGoogle ScholarPubMed
Sundberg, J., Patel, S., Björkner, E., & Scherer, K. R. (2011). Interdependencies among voice source parameters in emotional speech. IEEE Transactions on Affective Computing, 2(3), 162174. https://doi.org/10.1109/T-AFFC.2011.14.Google Scholar
Suzuki, Y., Galli, L., Ikeda, A., Itakura, S., & Kitazaki, M. (2015). Measuring empathy for human and robot hand pain using electroencephalography. Scientific Reports, 5, 19. https://doi.org/10.1038/srep15924.CrossRefGoogle ScholarPubMed
Tandon, R., Gaebel, W., Barch, D. M., et al. (2013). Definition and description of schizophrenia in the DSM-5. Schizophrenia Research, 150(1), 310. https://doi.org/10.1016/J.SCHRES.2013.05.028.CrossRefGoogle ScholarPubMed
Tempesta, D., Socci, V., de Gennaro, L., & Ferrara, M. (2018). Sleep and emotional processing. Sleep Medicine Reviews, 40, 183195. https://doi.org/10.1016/J.SMRV.2017.12.005.CrossRefGoogle ScholarPubMed
Thomas, G., & Fletcher, G. J. O. (2003). Mind-reading accuracy in intimate relationships: Assessing the roles of the relationship, the target, and the judge. Journal of Personality and Social Psychology, 85(6), 10791094. https://doi.org/10.1037/0022-3514.85.6.1079.Google Scholar
Thomas, G., & Maio, G. R. (2008). Man, I feel like a woman: When and how gender-role motivation helps mind-reading. Journal of Personality and Social Psychology, 95(5), 11651179. https://doi.org/10.1037/A0013067.CrossRefGoogle Scholar
Thompson, A., Bartholomeusz, C., & Yung, A. R. (2011). Social cognition deficits and the “ultra high risk” for psychosis population: A review of literature. Early Intervention in Psychiatry, 5(3), 192202. https://doi.org/10.1111/J.1751-7893.2011.00275.X.Google Scholar
Thompson, A. E., & Voyer, D. (2014). Sex differences in the ability to recognise non-verbal displays of emotion: A meta-analysis. Cognition and Emotion, 28(7), 11641195. https://doi.org/10.1080/02699931.2013.875889.CrossRefGoogle ScholarPubMed
Thompson, A., Papas, A., Bartholomeusz, C., et al. (2012). Social cognition in clinical “at risk” for psychosis and first episode psychosis populations. Schizophrenia Research, 141(2–3), 204209. https://doi.org/10.1016/J.SCHRES.2012.08.007.Google Scholar
Timmers, I., Park, A. L., Fischer, M. D., et al. (2018). Is empathy for pain unique in its neural correlates? A meta-analysis of neuroimaging studies of empathy. Frontiers in Behavioral Neuroscience, 12, 112. https://doi.org/10.3389/fnbeh.2018.00289.CrossRefGoogle ScholarPubMed
Timmons, A. C., Margolin, G., & Saxbe, D. E. (2015). Physiological linkage in couples and its implications for individual and interpersonal functioning: A literature review. Journal of Family Psychology, 29(5), 720731. https://doi.org/10.1037/fam0000115.Google Scholar
Trilla, I., Weigand, A., & Dziobek, I. (2021). Affective states influence emotion perception: Evidence for emotional egocentricity. Psychological Research, 85(3), 10051015. https://doi.org/10.1007/S00426-020-01314-3.Google Scholar
Tzafilkou, K., Economides, A. A., & Protogeros, N. (2021). Mobile sensing for emotion recognition in smartphones: A literature review on non-intrusive methodologies. International Journal of Human–Computer Interaction, 38(11), 10371051.CrossRefGoogle Scholar
Uljarevic, M., & Hamilton, A. (2013). Recognition of emotions in autism: A formal meta-analysis. Journal of Autism and Developmental Disorders, 43(7), 15171526. https://doi.org/10.1007/S10803-012-1695-5.Google Scholar
Uzefovsky, F., & Knafo-Noam, A. (2016). Empathy development throughout the life span. In Sommerville, J. A. & Decety, J. (Eds.), Social Cognition Development across the Life Span. Routledge, pp. 89115. https://doi.org/10.4324/9781315520575-12.Google Scholar
Viessmann, O., & Polimeni, J. R. (2021). High-resolution fMRI at 7 Tesla: Challenges, promises and recent developments for individual-focused fMRI studies. Current Opinion in Behavioral Sciences, 40, 96104. https://doi.org/10.1016/J.COBEHA.2021.01.011.CrossRefGoogle ScholarPubMed
Vishne, G., Jacoby, N., Malinovitch, T., Epstein, T., & Ahissar, M. (2021). Slow update of internal representations impedes synchronization in autism. Nature Communications, 12(1), 115. https://doi.org/10.1038/s41467-021-25740-y.CrossRefGoogle ScholarPubMed
Vollberg, M. C., & Cikara, M. (2018). The neuroscience of intergroup emotion. Current Opinion in Psychology, 24, 4852. https://doi.org/10.1016/J.COPSYC.2018.05.003.Google Scholar
Wang, M. Y., Luan, P., Zhang, J., Xiang, Y. T., Niu, H., & Yuan, Z. (2018). Concurrent mapping of brain activation from multiple subjects during social interaction by hyperscanning: A mini-review. Quantitative Imaging in Medicine and Surgery, 8(8), 819837. https://doi.org/10.21037/QIMS.2018.09.07.CrossRefGoogle ScholarPubMed
Wang, Y., Song, W., Tao, W., et al. (2022). A systematic review on affective computing: Emotion models, databases, and recent advances. Information Fusion, 83–84, 1952. https://doi.org/10.1016/J.INFFUS.2022.03.009,Google Scholar
Watt, D. (2014). Toward a neuroscience of empathy: Integrating affective and cognitive perspectives. Neuropsychoanalysis, 9(2), 146151. https://doi.org/10.1080/15294145.2007.10773550.Google Scholar
Weisz, E., & Zaki, J. (2017). Empathy building interventions: A review of existing work and suggestions for future directions. In Seppala, E., Simon-Thomas, E., Brown, S.L. et al. (Eds.), The Oxford Handbook of Compassion Science. Oxford University Press, pp. 205217.Google Scholar
Weisz, E., & Zaki, J. (2018). Motivated empathy: A social neuroscience perspective. Current Opinion in Psychology, 24, 6771. https://doi.org/10.1016/j.copsyc.2018.05.005.Google Scholar
Wells, J. L., Haase, C. M., Rothwell, E. S., et al. (2022). Positivity resonance in long-term married couples: Multimodal characteristics and consequences for health and longevity. Journal of Personality and Social Psychology, 123(5), 9831003. https://doi.org/10.1037/PSPI0000385.CrossRefGoogle ScholarPubMed
Wheatley, T., Boncz, A., Toni, I., & Stolk, A. (2019). Beyond the isolated brain: The promise and challenge of interacting minds. Neuron, 103(2), 186188. https://doi.org/10.1016/J.NEURON.2019.05.009.CrossRefGoogle ScholarPubMed
Whitehouse, A. J., Hickey, M., & Ronald, A. (2011). Are autistic traits in the general population stable across development?. PLoS ONE, 6(8), 18.CrossRefGoogle ScholarPubMed
Wicker, B., Keysers, C., Plailly, J., Royet, J.-P., Gallese, V., & Rizzolatti, G. (2003). Both of us disgusted in my insula: The common neural basis of seeing and feeling disgust. Neuron, 40, 655664.Google Scholar
Williams, A. C. D. C. (2002). Facial expression of pain: An evolutionary account. Behavioral and Brain Sciences, 25(4), 439455. https://doi.org/10.1017/S0140525X02000080.Google ScholarPubMed
Wu, T., & Han, S. (2021). Neural mechanisms of modulations of empathy and altruism by beliefs of others’ pain. ELife, 10, 136. https://doi.org/10.7554/eLife.66043.CrossRefGoogle ScholarPubMed
Xiao, B., Can, D., Georgio, P. G., Atkins, D., & Natayanan, S. S. (2012). Analyzing the language of therapist empathy in motivational interview based psychotherapy. In Proceedings of the 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference, 14. https://ieeexplore.ieee.org/abstract/document/6411762.Google Scholar
Xiao, B., Imel, Z. E., Georgiou, P., Atkins, D. C., & Narayanan, S. S. (2016). Computational analysis and simulation of empathic behaviors: A survey of empathy modeling with behavioral signal processing framework. Current Psychiatry Reports, 18, 111.Google Scholar
Xygkou, A., Siriaraya, P., Covaci, A., et al. (2023). The ”conversation” about loss: Understanding how chatbot technology was used in supporting people in grief. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems.CrossRefGoogle Scholar
Yitzhak, N., Pertzov, Y., Guy, N., & Aviezer, H. (2020). Many ways to see your feelings: Successful facial expression recognition occurs with diverse patterns of fixation distributions. Emotion, 22(5), 844860. https://doi.org/10.1037/EMO0000812.CrossRefGoogle ScholarPubMed
Yoon, S., Byun, S., & Jung, K. (2018). Multimodal speech emotion recognition using audio and text. 2018 IEEE Spoken Language Technology Workshop (SLT), 112118. https://doi.org/10.1109/SLT.2018.8639583.CrossRefGoogle Scholar
Young, G. W., O’Dwyer, N., & Smolic, A. (2021). Exploring virtual reality for quality immersive empathy building experiences. Behaviour and Information Technology, 41(16), 34153431. https://doi.org/10.1080/0144929X.2021.1993336.CrossRefGoogle Scholar
Zaki, J. (2014). Empathy: A motivated account. Psychological Bulletin, 140(6), 16081647. https://doi.org/10.1037/a0037679.CrossRefGoogle ScholarPubMed
Zaki, J., Bolger, N., & Ochsner, K. (2008). It takes two the interpersonal nature of empathic accuracy. Psychological Science, 19(4), 399404.CrossRefGoogle ScholarPubMed
Zaki, J., & Ochsner, K. (2012). The neuroscience of empathy: Progress, pitfalls and promise. Nature Neuroscience, 15(5), 675680. https://doi.org/10.1038/nn.3085.CrossRefGoogle ScholarPubMed
Zaki, J., & Ochsner, K. (2011). Reintegrating the study of accuracy into social cognition research. Psychological Inquiry, 22(3), 159182. https://doi.org/10.1080/1047840X.2011.551743.CrossRefGoogle Scholar
Zaki, J., Wager, T. D., Singer, T., Keysers, C., & Gazzola, V. (2016). The anatomy of suffering: Understanding the relationship between nociceptive and empathic pain. Trends in Cognitive Sciences, 20(4), 249259. https://doi.org/10.1016/j.tics.2016.02.003.Google Scholar
Zaki, J., Weber, J., Bolger, N., & Ochsner, K. (2009). The neural bases of empathic accuracy. Proceedings of the National Academy of Sciences, 106(27), 1138211387. www.pnas.orgcgidoi10.1073pnas.0902666106.CrossRefGoogle ScholarPubMed
Zhao, Q., Neumann, D. L., Yan, C., Djekic, S., & Shum, D. H. (2021). Culture, sex, and group-bias in trait and state empathy. Frontiers in Psychology, 12, 119.Google Scholar
Zheng, L., Wang, Q., Cheng, X., et al. (2016). Perceived reputation of others modulates empathic neural responses. Experimental Brain Research, 234(1), 125132. https://doi.org/10.1007/s00221-015-4434-2.CrossRefGoogle ScholarPubMed
Zheng, L., Zhang, F., Wei, C., et al. (2016). Decreased empathic responses to the “lucky guy” in love: The effect of intrasexual competition. Frontiers in Psychology, 7, 18. https://doi.org/10.3389/fpsyg.2016.00660.Google Scholar
Zhou, Q., Valiente, C., & Eisenberg, N. (2004). Empathy and its measurement. In Lopez, S. J. & Snyder, C. R. (Eds.), Positive Psychological Assessment: A Handbook of Models and Measures. American Psychological Association, pp. 269284. https://doi.org/10.1037/10612-017.Google Scholar
Zhou, Z. H. (2021). Machine learning. In Machine Learning. Springer Nature, pp. 123. https://doi.org/10.1007/978-981-15-1967-3_8.CrossRefGoogle ScholarPubMed

Save element to Kindle

To save this element to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Empathy
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Empathy
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Empathy
Available formats
×