Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T13:32:35.949Z Has data issue: false hasContentIssue false

Emerging Patterns in Proterozoic Lipid Biomarker Records

Published online by Cambridge University Press:  01 March 2021

Gordon D. Love
Affiliation:
University of California, Riverside
J. Alex Zumberge
Affiliation:
GeoMark Research, Ltd.

Summary

Diverse and abundant lipid biomarker assemblages have been reported from a variety of Proterozoic marine environments from the careful analysis of well-preserved rocks and oils. These molecular biosignatures have provided unique insights into the communities and the environmental conditions which characterized the Proterozoic marine biosphere. We summarize some of the major temporal patterns evident in Proterozoic lipid biomarkers found to date, whilst emphasizing the scale of local heterogeneity found within Neoproterozoic oceans from region to region, and their relationship with the evolving ecological, climatic and ocean/atmospheric redox conditions. Short commentaries on a selection of papers published from the last 15 years of biomarker literature are given. The focus here is on key studies, highlighted for further reading, which have helped to better constrain the timing of the ecological expansion of eukaryotes in Proterozoic oceans or which have impacted on our knowledge of the biological sources of Proterozoic biomarkers.
Get access
Type
Element
Information
Online ISBN: 9781108847117
Publisher: Cambridge University Press
Print publication: 25 March 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, P., Schaeffer, P., and Brocks, J. J. (2018) Synthesis of 26-methylcholestane and identification of cryostane in mid-Neoproterozoic sediments. Organic Geochemistry 115, 246249.CrossRefGoogle Scholar
Ai, J. Y., George, S. C., and Zhong, N. N. (2020) Organic geochemical characteristics of highly mature Late Neoproterozoic black shales from South China. Precambrian Research 336, 115.CrossRefGoogle Scholar
Ballantine, J. A., Lavis, A., Roberts, J. C., and Morris, R. J. (1977) Marine sterols. V. Sterols of the Tunicata. The occurrence of saturated ring sterols in these filter-feeding organisms. Journal of Experimental Marine Biology and Ecology 30, 2944.Google Scholar
Banta, A. B., Wei, J. H., and Welander, P. V. (2015) A distinct pathway for tetrahymanol synthesis in bacteria. Proceedings of the National Academy of Sciences of the United States of America 112(44), 1347813483. doi: 10.1073/pnas.1511482112Google Scholar
Barnathan, G., Mirallès, J., Kornprobst, J.-M., Mangoni, A., Fattoruso, E., and Boury-Esnault, N. (1998) Unusual sterol composition and classification of two marine sponge families. In Marine lipids. Proceedings of the Symposium held in Brest, 19–20 November 1998. Actes de Colloques – Ifremer, 27. pp. 8794.Google Scholar
Bishop, A. N., Love, G. D., McAulay, A. D., Snape, C. E., and Farrimond, P. (1998) Release of kerogen-bound hopanoids by hydropyrolysis. Organic Geochemistry 29, 9891001.CrossRefGoogle Scholar
Blumenberg, M., Thiel, V., Riegel, W., Kah, L. C., and Reitner, J. (2012) Biomarkers of black shales formed by microbial mats, Late Mesoproterozoic (1.1 Ga) Taoudeni Basin, Mauritania. Precambrian Research 196197, 113127. doi: 10.1016/j.precamres.2011.11.010CrossRefGoogle Scholar
Blumenberg, M., Thiel, V., and Reitner, J. (2015) Organic matter preservation in the carbonate matrix of a recent microbial mat – Is there a ‘mat seal effect’? Organic Geochemistry 87, 2534.Google Scholar
Bobrovskiy, I., Hope, J. M., Ivantsov, A., Nettersheim, B. J., Hallmann, C., and Brocks, J. J. (2018a). Ancient steroids establish the Ediacaran fossil Dickinsonia as one of the earliest animals. Science 361, 12461249.CrossRefGoogle ScholarPubMed
Bobrovskiy, I., Hope, J. M., Krasnova, A., Ivantsov, A., and Brocks, J. J. (2018b) Molecular fossils from organically preserved Ediacara biota reveal cyanobacterial origin for Beltanelliformis. Nature Ecology & Evolution 2, 437440. doi: 10.1038/s41559-017–0438-6Google Scholar
Bortolotto, M., Braekman, J. C., Daloze, D., and Tursch, B. (1978) Chemical Studies of Marine-Invertebrates. 36. Strongylosterol, a Novel C-30 Sterol from Sponge Strongylophora-Durissima Dendy. Bull. Soc. Chim. Belg. 87, 539543.CrossRefGoogle Scholar
Botting, J. P., Cárdenas, P., and Peel, J. S. (2015) A crown-group demosponge from the early Cambrian Sirius Passet Biota, North Greenland. Palaeontology 58, 3543.CrossRefGoogle Scholar
Botting, J. P. and Muir, L. A. (2018) Early sponge evolution: a review and phylogenetic framework. Palaeoworld 27, 129.Google Scholar
Bowden, S. A., Farrimond, P., Snape, C. E., and Love, G. D. (2006) Compositional differences in biomarker constituents of the hydrocarbon, resin, asphaltene and kerogen fractions: An example from the Jet Rock (Yorkshire, UK). Organic Geochemistry 37, 369383.CrossRefGoogle Scholar
Briggs, D. E. G. and Summons, R. E. (2014) Ancient biomolecules: their origins, fossilization, and role in revealing the history of life. BioEssays 36, 482490.Google Scholar
Brocks, J. J., Logan, G. A., Buick, R., and Summons, R. E. (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285, 10331036.CrossRefGoogle ScholarPubMed
Brocks, J. J., Love, G. D., Summons, R. E., Knoll, A. H., Logan, G. A., and Bowden, S. A. (2005) Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437, 866870.Google Scholar
Brocks, J. J. (2011) Millimeter-scale concentration gradients of hydrocarbons in Archean shales: Live-oil escape or fingerprint of contamination?: Geochimica et Cosmochimica Acta 75, 31963213. doi: 10.1016/j.gca.2011.03.014CrossRefGoogle Scholar
Brocks, J. J., Jarrett, A. J. M., Sirantoine, E., Kenig, F., Moczydłowska, M., Porter, S., and Hope, J. (2016) Early sponges and toxic protists: possible sources of cryostane, an age diagnostic biomarker antedating Sturtian Snowball Earth. Geobiology 14, 129149. doi: 10.1111/gbi.12165Google Scholar
Brocks, J. J., Jarrett, A. J. M., Sirantoine, E., Hallmann, C., Hoshino, Y., and Liyanage, T. (2017) The rise of algae in Cryogenian oceans and the emergence of animals. Nature 548(7669), 578581. doi: 10.1038/nature23457Google Scholar
Brocks, J. J., 2018. The transition from a cyanobacterial to algal world and the emergence of animals. Emerging Topics in Life Sciences 2, 181190.Google ScholarPubMed
Butterfield, N. J. (2000) Bangiomorpha pubescens n. Gen., n. sp.: Implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26, 386404.Google Scholar
Calderόn, G. J., Castellanos, L., Duque, C., Echigo, S., Hara, N., and Fujimoto, Y. (2004) Ophirasterol, a new C31 sterol from the marine sponge Topsentia ophiraphidites. Steroids 69, 93100.Google Scholar
Cassani, F. and Eglinton, G. (1986) Organic geochemistry of Venezuelan extra-heavy oils. 1. Pyrolysis of asphaltenes: a technique for the correlation and maturity evaluation of crude oils. Chemical Geology 56, 167183.CrossRefGoogle Scholar
Chang, S., Zhang, L., Clausen, S., Bottjer, D., and Feng, Q. (2019) The Ediacaran-Cambrian rise of siliceous sponges and development of modern oceanic ecosystems. Precambrian Research 333, 105438.Google Scholar
Chen, J. H., Philp, R. P., Fu, J. M., and Sheng, G. Y. (1989) The occurrence and identification of C30-C32 lanostanes: A novel series of tetracyclic triterpenoid hydrocarbons. Geochimica et Cosmochimica Acta 53, 27752779.CrossRefGoogle Scholar
Cho, J. H., Thompson, J. E., Stoilov, I. L., and Djerassi, C. (1988) Biosynthetic studies of marine lipids. 14. 24 (28)-Dehydroaplysterol and other sponge sterols from Jaspis stellifera. J. Org. Chem. 53, 34663469.Google Scholar
Crockford, P. W., Hayles, J. A., Bao, H., Planavsky, N. J., Bekker, A., Fralick, P. W . . and Wing, B. A. (2018) Triple oxygen isotope evidence for limited mid-Proterozoic primary productivity. Nature 559 (7715), 613616. doi:10.1038/s41586-018-0349-yCrossRefGoogle ScholarPubMed
Cui, X., Liu, X.-L., Shen, G., Ma, J., Husain, F., Rocher, D., Zumberge, J. E., Bryant, D. A., and Summons, R. E. (2020) Niche expansion for phototrophic sulfur bacteria at the Proterozoic–Phanerozoic transition. Proceedings of the National Academy of Sciences of the United States of America 117 1759917606. doi: 10.1073/pnas.2006379117Google Scholar
Dahl, J., Moldowan, J. M., McCaffrey, M. A., and Lipton, P. A. (1992) A new class of natural products revealed by 3β-alkyl steranes in petroleum. Nature 355, 154157.CrossRefGoogle Scholar
Dastillung, M. and Albrecht, P. (1977) Δ2-Sterenes as diagenetic intermediates in sediments. Nature 269, 678679.Google Scholar
Derkowski, A., Bristow, T., Wampler, J. M., Srodόn, J., Marynowski, L., Elliot, W. C., and Chamberlain, C. P. (2013) Hydrothermal alteration of the Ediacaran Doushantuo Formation in the Yangtze Gorges area (South China). Geochimica et Cosmochimica Acta 107, 279298.CrossRefGoogle Scholar
Duda, J.-P., Blumenberg, M., Thiel, V., Simon, K., Zhu, M., and Reitner, J. (2014a) Geobiology of a palaeoecosystem with Ediacara-type fossils: The Shibantan Member (Dengying Formation, South China). Precambrian Research 255, 4862.Google Scholar
Duda, J.-P., Thiel, V., Reitner, J., and Blumenberg, M. (2014b) Assessing possibilities and limitations for biomarker analyses on outcrop samples: A case study on carbonates of the Shibantan Member (Ediacaran Period, Dengying Formation, South China). Acta Geologica Sinica (English Edition) 88, 16961704.Google Scholar
Duda, J.-P., Thiel, V., Reitner, J., and Grazhdankin, D. (2016) Opening up a window into ecosystems with Ediacara-type organisms: Preservation of molecular fossils in the Khatyspyt Lagerstätte (Arctic Siberia). PalZ 90, 659671.Google Scholar
Duda, J.-P., Love, G. D., Rogov, V. I., Melnik, D. S., Reitner, J., Blumenberg, M., and Grazhdankin, D. V. (2020) Understanding the geobiology of the terminal Ediacaran Khatyspyt Lagerstätte (Arctic Siberia, Russia). Geobiology, in press. doi: 10.1111/gbi.12412CrossRefGoogle Scholar
Dutta, S., Bhattacharya, S., and Raju, S. V. (2013) Biomarker signatures from Neoproterozoic-Early Cambrian oil, western India. Organic Geochemistry 56, 6880. doi: 10.1016/j.orggeochem.2012.12.007Google Scholar
Dutkiewicz, A., Volk, H., Ridley, J., and George, S. (2003) Biomarkers, brines, and oil in the Mesoproterozoic, Roper Superbasin, Australia. Geology 31, 981984. doi: 10.1130/G19754.1Google Scholar
Eglinton, G., Scott, P. M., Besky, T., Burlingame, A. L., and Calvin, M. (1964) Hydrocarbons of biological origin from a one-billion-year-old sediment. Science 145, 263264.Google Scholar
Eglinton, T.I. and Douglas, A.G. (1988) Quantitative study of biomarker hydrocarbons released from kerogens during hydrous pyrolysis. Energy Fuels 2, 8188.Google Scholar
Farrimond, P. F., Love, G. D., Bishop, A. N., Innes, H. E., Watson, D. F., and Snape, C. E. (2003) Evidence for the rapid incorporation of hopanoids into kerogen. Geochimica et Cosmochimica Acta 67, 13831394.Google Scholar
Flannery, E. N. and George, S. C. (2014) Assessing the syngeneity and indigeneity of hydrocarbons in the ~1.4 Ga Velkerri Formation, McArthur Basin, using slice experiments. Organic Geochemistry 77, 115125.CrossRefGoogle Scholar
French, K. L., Hallmann, C., Hope, J. M., Schoon, P. L., Zumberge, J. A., Hoshino, Y., Peters, C. A., George, S. C., Love, G. D., Brocks, J. J., Buick, R., and Summons, R. E. (2015) Reappraisal of hydrocarbon biomarkers in Archean rocks. Proceedings of the National Academy of Sciences of the United States of America 112, 59155920. doi: 10.1073/pnas.1419563112Google Scholar
French, K. L., Birdwell, J. E., and Vanden Berg, M. D. (2020) Biomarker similarities between the saline lacustrine Green River and the Paleoproterozoic Barney Creek Formations. Geochimica et Cosmochimica Acta 274, 228245.Google Scholar
Gibson, T. M., Shih, P. M., Cumming, V. M., Fischer, W. W., Crockford, P. W., Hodgskiss, M. S. W., … and Halverson, G. P. (2017) Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis. Geology 46, 135138.CrossRefGoogle Scholar
Gold, D. A., Grabenstatter, J., de Mendoza, A., Riesgo, A., Ruiz-Trillo, I., and Summons, R. E. (2016) Sterol and genomic analyses validate the sponge biomarker hypothesis. Proceedings of the National Academy of Sciences of the United States of America 113, 26842689.CrossRefGoogle ScholarPubMed
Goryl, M., Marynowski, L., Brocks, J. J., Bobrovskiy, I., and Derkowski, A. (2018) Exceptional preservation of hopanoid and steroid biomarkers in Ediacaran sedimentary rocks of the East European Craton. Precambrian Research 316, 3847.CrossRefGoogle Scholar
Grantham, P. J. and Wakefield, L. L. (1988) Variations in the sterane carbon number distributions of marine source rock derived crude oils through geological time. Organic Geochemistry 12, 6173. doi: 10.1016/0146-6380(88)90115-5Google Scholar
Grosjean, E. and Logan, G. A. (2007) Incorporation of organic contaminants into geochemical samples and an assessment of potential sources: Examples from Geoscience Australia marine survey S282. Organic Geochemistry 38, 853869. doi: 10.1016/j.orggeochem.2006.12.013Google Scholar
Grosjean, E., Love, G. D., Stalvies, C., Fike, D. A., and Summons, R. E. (2009) Origin of petroleum in the Neoproterozoic–Cambrian South Oman Salt Basin. Organic Geochemistry 40, 87110. doi: 10.1016/j.orggeochem.2008.09.011Google Scholar
Hoefs, M. J. L., Rijpstra, W. I., and Sinninghe Damsté, J. S. (2002) The influence of oxic degradation on the sedimentary biomarker record I: Evidence from Madeira Abyssal Plain turbidites. Geochimica et Cosmochimica Acta 66, 27192735.Google Scholar
Hofheinz, W. and Oesterhelt, G. (1979) 24-Isopropylcholesterol and 22-Dehydro-24-Isopropylcholesterol, Novel Sterols from a Sponge. Helvetica Chimica Acta 62, 13071309.Google Scholar
Hoshino, Y., Poshibaeva, A., Meredith, W., Snape, C., Poshibaev, V., Versteegh, G. J. M., Hallmann, C. (2017) Cryogenian evolution of stigmasteroid biosynthesis. Science Advances 3(9). doi: ARTN e1700887Google Scholar
Isson, T. T., Love, G. D., Dupont, C. L., Reinhard, C. T., Zumberge, A. J., Asael, D., … and Planavsky, N. J. (2018) Tracking the rise of eukaryotes to ecological dominance with zinc isotopes. Geobiology 16, 341352. doi: 10.1111/gbi.12289Google Scholar
Jones, D. M., Douglas, A. G., and Connan, J. (1988) Hydrous pyrolysis of asphaltenes and polar fractions of biodegraded oils. Organic Geochemistry 13, 981993.Google Scholar
Kelly, A. E., Love, G. D., Stalvies, C., Fike, D. A., and Summons, R. E. (2011) Hydrocarbon biomarkers of Neoproterozoic to Lower Cambrian oils from eastern Siberia. Organic Geochemistry 42, 640654.Google Scholar
Kerr, R. G., Stoilov, I. L., Thompson, J. E., and Djerassi, C. (1989) Biosynthetic studies of marine lipids. 16. De novo sterol biosynthesis in sponges. Incorporation and transformation of cycloartenol and lanosterol into unconventional sterols of marine and freshwater sponges. Tetrahedron 45, 18931904.Google Scholar
Kerr, R. G. and Baker, B. J. (1991) Marine sterols. Nat. Prod. Rep. 8, 465497.Google Scholar
Kerr, R. G., Foss, C., Matsunaga, S., and Fusetani, N. (1997) Isolation and structure elucidation of epipolasterol and 22,23-dihydroepipolasterol from the marine sponge Epipolapsis sp. Comp. Biochem. Physiol. 4, 561563.CrossRefGoogle Scholar
Knoll, A. H., Summons, R. E., Waldbauer, J., and Zumberge, J. (2007) The geological succession of primary producers in the oceans. In: Falkowski, P., Knoll, A. H. (Eds.), The Evolution of Primary Producers in the Sea. Elsevier, Burlington, pp.133163.Google Scholar
Kodner, R. B., Pearson, A., Summons, R. E., and Knoll, A. H. (2008) Sterols in red and green algae: quantification, phylogeny, and relevance for the interpretation of geologic steranes. Geobiology 6, 411420. doi: 10.1111/j.1472-4669.2008.00167.xCrossRefGoogle ScholarPubMed
Kohnen, M. E. L., Sinninghe Damsté, J. S., and de Leeuw, J. W. (1991) Biases from natural sulphurization in palaeoenvironmental reconstruction based on hydrocarbon biomarker distributions. Nature 349, 775778.Google Scholar
Koopmans, M. P., Rijpstra, W. I. C., de Leeuw, J. W., Lewan, M. D., and Sinninghe Damsté, J. S. (1998) Artificial maturation of an immature sulfur-and organic matter-rich limestone from the Gahreb Formation, Jordan. Organic Geochemistry 28, 503521.Google Scholar
Kvenvolden, K. A. (2006) Organic geochemistry – A retrospective of its first 70 years. Organic Geochemistry 37, 111. doi: 10.1016/j.orggeochem.2005.09.001Google Scholar
Lamb, D. M., Awramik, S. M., Chapman, D. J., and Zhu, S. (2009) Evidence for eukaryotic diversification in the ~1800 million-year-old Changzhougou Formation, North China. Precambrian Research 173, 93104. doi: 10.1016/j.precamres.2009.05.005Google Scholar
Leblond, J. D., Seipelt, R. L., Elrod-Erickson, M., and Kincaid, R. P. (2005) Lipid composition of chlorarachniophytes (Chlorarachniophyceae) from the Genera Bigelowiella, Gymnochlora, and Lotharella. Journal of Phycology 41, 311321.Google Scholar
Lee, C., Love, G. D., Jahnke, L. L., Kubo, M. D., and Des Marais, D. J. (2019) Early diagenetic sequestration of microbial mat lipid biomarkers through covalent binding into insoluble organic matter (IOM) as revealed by sequential chemolysis and catalytic hydropyrolysis. Organic Geochemistry 132, 1122.Google Scholar
Lewan, M. D. (1985) Evaluation of petroleum generation by hydrous pyrolysis experimentation. Philosophical Transactions of the Royal Society of London A 315, 123134.Google Scholar
Li, L. N. and Djerassi, C. (1981) Minor and trace sterols in marine invertebrates. 30. Isolation, structure elucidation and partial synthesis of 26-methylstrongylosterol and 28-methylxestosterol- Two marine sterols arising by a novel quadruple biomethylation sequence. Tetrahedron Letters 22, 46394642.Google Scholar
Logan, G. A., Hayes, J. M., Hieshima, G. B., and Summons, R. E. (1995) Terminal Proterozoic reorganization of biogeochemical cycles. Nature 376, 5356.Google Scholar
Love, G. D., Snape, C. E., Carr, A. D., and Houghton, R. C. (1995) Release of covalently bound biomarkers in high yields from kerogen via catalytic hydropyrolysis. Organic Geochemistry 23, 981986.Google Scholar
Love, G. D., McAulay, A., Snape, C. E., and Bishop, A. N. (1997) Effect of process variables in catalytic hydropyrolysis on the release of covalently bound aliphatic hyrocarbons from sedimentary organic matter. Energy & Fuels 11, 522531.CrossRefGoogle Scholar
Love, G. D., Snape, C. E., and Fallick, A. E. (1998) Differences in the mode of incorporation and biogenicity of the principal aliphatic constituents of a Type I oil shale. Organic Geochemistry 28, 797811.Google Scholar
Love, G. D., Bowden, S. A, Summons, R. E., Jahnke, L. L., Snape, C. E., Campbell, C. N., and Day, J. G. (2005) An optimised catalytic hydropyrolysis method for the rapid screening of microbial cultures for lipid biomarkers. Organic Geochemistry. 36, 6382.CrossRefGoogle Scholar
Love, G. D., Stalvies, C., Grosjean, E., Meredith, W., and Snape, C. E. (2008) in Paleontological Society Papers Vol. 14 (eds Kelley, P. H. and Bambach, R. K.), 67–83 (The Paleontological Society).Google Scholar
Love, G. D., Grosjean, E., Stalvies, C., Fike, D. A., Grotzinger, J. P., Bradley, A. S., Kelly, A. E., Bhatia, M., Meredith, W., Snape, C. E., Bowring, S. A., Condon, D. J., and Summons, R. E. (2009) Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457, 718721. doi: 10.1038/nature07673Google Scholar
Love, G.D. and Summons, R.E. (2015) The record of Cryogenian sponges. A response to Antcliffe. Palaeontology 58, 11311136 (2015).Google Scholar
Love, G. D., Zumberge, J. A., Cárdenas, P., Sperling, E. A., Rohrssen, M., Grosjean, E., and Summons, R. E. (2020) Sources of C30 steroid biomarkers in Neoproterozoic–Cambrian rocks and oils. Nature Ecology & Evolution 4, 3436. doi.10.1038/s41559-019–1048-2Google Scholar
Luo, G., Hallmann, C., Xie, S., Ruan, X., and Summons, R. E. (2015) Comparative microbial diversity and redox environments of black shale and stromatolite facies in the Mesoproterozoic Xiamaling Formation. Geochimica et Cosmochimica Acta 151, 150167. doi: 10.1016/j.gca.2014.12.022Google Scholar
Maldonado, M., Carmona, M. C., Uriz, M. U., and Cruzado, A. (1999) Decline in Mesozoic reef-building sponges explained by silica limitation. Nature 401, 758788.Google Scholar
McCaffrey, M. A., Moldowan, J. M., Lipton, P. A., Summons, R. E., Peters, K. E., Jeganathan, A., and Watt, D. S. (1994) Paleoenvironmental implications of novel C-30 steranes in Precambrian to Cenozoic age petroleum and bitumen. Geochimica et Cosmochimica Acta, 58(1), 529532. doi: 10.1016/0016-7037(94)90481-2Google Scholar
McKirdy, D. M., Webster, L. J., Arouri, K. R., Grey, K., and Gostin, V. A. (2006) Contrasting sterane signatures in Neoproterozoic marine rocks of Australia before and after the Acraman asteroid impact. Organic Geochemistry 37, 189207. doi: 10.1016/j.orggeochem.2005.09.005Google Scholar
Miao, L., Moczydłowska, M., Zhu, S., and Zhu, M. (2019) New record of organic-walled, morphologically distinct microfossils from the late Paleoproterozoic Changcheng Group in the Yanshan Range, North China. Precambrian Research 321, 172198.Google Scholar
Michaelis, W. and Albrecht, P. (1979) Molecular fossils of archaebacteria in kerogen. Naturwissenschaften 66, 420421.Google Scholar
Moldowan, J. M., Fago, F. J., Lee, C. Y., Jacobson, S. R., Watt, D. S., Slouqui, N. E., Jeganathan, A., and Young, D. C. (1990) Sedimentary 24-n-propylcholestanes, molecular fossils diagnostic of marine algae. Science 247, 309312.Google Scholar
Murray, I. P, Love, G. D., Snape, C. E., and Bailey, N. J. L. (1998) Comparison of covalently-bound aliphatic biomarkers released via hydropyrolysis with their solvent-extractable counterparts for a suite of Kimmeridge clays. Organic Geochemistry 29, 14871505.Google Scholar
Nabbefeld, B., Grice, K., Schimmelmann, A., Summons, R. E., Troitzsch, U., Twitchett, R. (2010) A comparison of thermal maturity parameters between freely extracted hydrocarbons (Bitumen I) and a second extract (Bitumen II) from within the kerogen matrix of Permian and Triassic sedimentary rocks. Organic Geochemistry 41, 7887.Google Scholar
Nettersheim, B. J., Brocks, J. J., Schwelm, A., Hope, J. M., Not, F., Lomas, M., Schmidt, C., Schiebel, R., Nowack, E. C. M., De Deckker, P., Pawlowski, J., Bowser, S. S., Bobrovskiy, I., Zonneveld, K., Kucera, M., Stuhr, M., and Hallmann, C. (2019) Putative sponge biomarkers in unicellular Rhizaria question an early rise of animals. Nature Ecology and Evolution 3, 577581.Google Scholar
Nguyen, K., Love, G. D., Zumberge, J. A., Kelly, A. E., Owens, J. D., Rohrssen, M. K., Bates, S., Cai, C., and Lyons, T. W. (2019) Absence of biomarker evidence for early eukaryotic life from the Mesoproterozoic Roper Group: Searching across a marine redox gradient in mid‐Proterozoic habitability. Geobiology 17, 247260. doi: 10.1111/gbi.12329Google Scholar
Parfenova, T. M. (2011) Lanostanes in Cambrian organic matter (Southeastern part of the Siberian platform) Doklady Earth Sciences 436, 143147.CrossRefGoogle Scholar
Pawlowska, M. M., Butterfield, N. J., and Brocks, J. J. (2013) Lipid taphonomy in the Proterozoic and the effect of microbial mats on biomarker preservation. Geology 41, 103106.CrossRefGoogle Scholar
Pehr, K., Love, G. D., Kuznetsov, A., Podkovyrov, V., Junium, C. K., Shumlyanskyy, L., Sokur, T., and Bekker, A., (2018) Ediacara biota flourished in oligotrophic and bacterially dominated marine environments across Baltica. Nature Communications 9, 1807. 10.1038/s41467-018–04195-8CrossRefGoogle ScholarPubMed
Peters, K. E., Walters, C. C., and Moldowan, J. M. (2005) The Biomarker Guide. Volumes 1 & 2. Cambridge University Press. 1155 pp.Google Scholar
Reinhard, C. T., Planavsky, N. J., Ward, B. A., Love, G. D., Le Hir, G., and Ridgwell, A. R. (2020) The impact of marine nutrient abundance on early eukaryotic ecosystems. Geobiology, doi.10.1111/gbi.12384Google Scholar
Reinhardt, M., Duda, J.-P, Blumenberg, M., Osterag-Henning, C., Reitner, J., Hiem, C., and Thiel, V. (2018) The taphonomic fate of isorenieratene in Lower Jurassic shales- controlled by iron? Geobiology 16, 237251.Google Scholar
Rohrssen, M., Gill, B. C., and Love, G. D. (2015) Scarcity of the C30 sterane biomarker, 24-n-propylcholestane, in Lower Paleozoic marine paleoenvironments. Organic Geochemistry 80, 17.Google Scholar
Rullkötter, J. and Michaelis, W. (1990) The structure of kerogen and related materials. A review of recent progress and future trends. In Advances in Organic Geochemistry 1989, ed. Durand, B., Organic Geochemistry 16, 829852. Pergamon Press, Oxford,Google Scholar
Sáenz, J. P., Waterbury, J. B., Eglinton, T. I., and Summons, R. E. (2012) Hopanoids in marine cyanobacteria: Probing their phylogenetic distribution and biological role. Geobiology 10, 311319.CrossRefGoogle ScholarPubMed
Schwark, L. and Empt, P. (2006) Sterane biomarkers as indicators of Palaeozoic algal evolution. Palaeogeography, Palaeoclimatology, Palaeoecology 240, 225236.CrossRefGoogle Scholar
Shen, Y., Thiel, V., Duda, J-P. , and Reitner, J., 2018. Tracing the fate of steroids through a hypersaline microbial mat (Kiritimati, Kiribati/Central Pacific). Geobiology 16, 307318.Google Scholar
Sherman, L. S., Waldbauer, J. R., and Summons, R. E. (2007) Improved methods for isolating and validating indigenous biomarkers in Precambrian rocks. Organic Geochemistry 38, 19872000.Google Scholar
Silva, C. J., Wünsche, L., and Djerassi, C. (1991) Biosynthetic studies of marine lipids. 35. The demonstration of de novo sterol biosynthesis in sponges using radiolabelled isoprenoid precursors. Comp. Biochem. Physiol. 99B, 763773.Google Scholar
Stoilov, I. L., Thompson, J. E., and Djerassi, C. (1986a) Biosynthetic studies of marine lipids. 7. Experimental demonstration of a double alkylation at C-28 in the biosynthesis of 24-isopropylcholesterols in a sponge. Tetrahedron 42, 41474160.Google Scholar
Stoilov, I. L., Thompson, J. E., Cho, J. H., and Djerassi, C. (1986b) Biosynthetic studies of marine lipids. 9. Stereochemical aspects and hydrogen migrations in the biosynthesis of the triply alkylated side-chain of the sponge sterol strongylosterol. J. Am. Chem. Soc. 108, 82358241.Google Scholar
Stolper, D. A., Love, G. D., Bates, S., Lyons, T. W., Young, E., Sessions, A. L., and Grotzinger, J. P. (2017) Paleoecology and paleoceanography of the Athel silicilyte, Ediacaran-Cambrian boundary, Sultanate of Oman. Geobiology 15, 401426. doi: 10.1111/gbi.12236CrossRefGoogle ScholarPubMed
Summons, R. E. and Capon, R. J. (1988) Fossil steranes with unprecedented methylation in ring A. Geochimica et Cosmochimica Acta 52, 23912395.Google Scholar
Summons, R. E., Brassell, S. C., Eglinton, G., Evans, E., Horodyski, R. J., Robinson, N., and Ward, D. M. (1988) Distinctive hydrocarbon biomarkers from fossiliferous sediment of the Late Proterozoic Walcott Member, Chuar Group, Grand Canyon, U.S.A. Geochimica et Cosmochimica Acta 52, 26252637.Google Scholar
Summons, R. E. and Walter, M. R. (1990) Molecular fossils and microfossils of prokaryotes and protists from Proterozoic sediments. American Journal of Science 290 -A, 212244.Google Scholar
Summons, R. E., Bradley, A. S., Jahnke, L. L., and Waldbauer, J. R. (2006) Steroids, triterpenoids and molecular oxygen. Philosophical Transactions of the Royal Society B 361, 951968. doi: 10.1098/rstb.2006.1837Google Scholar
Summons, R. E. and Lincoln, S. A. (2012) Biomarkers: Informative molecules for studies in Geobiology. In Fundamentals of Geobiology (First Edition, eds. Knoll, A. H., Canfield, D. E., and Konhauser, K. O.) 371402, Blackwell Publishing Ltd.Google Scholar
Takishita, K., Chikaraishi, Y., Tanifuji, G., Ohkouchi, N., Hashimoto, T., Fujikura, K., and Roger, A. J. (2017) Microbial eukaryotes that lack sterols. Journal of Eukaryotic Microbiology 64, 897900. doi: 10.1111/jeu.12426Google Scholar
Talbot, H. M., Summons, R. E., Jahnke, L. L., Cockell, C. S., Rohmer, M., and Farrimond, P. (2008) Cyanobacterial bacteriohopanepolyol signatures from cultures and natural environmental settings. Organic Geochemistry 39, 232263.Google Scholar
Tang, Q., Wan, B., Muscente, A. D., and Xiao, S. (2019) Spiculogenesis and biomineralization in early sponge animals. Nature Communications 10, 3348.Google Scholar
Theobald, N. and Djerassi, C. (1978) Determination of absolute configuration of stelliferasterol and strongylosterol – 2 marine sterols with extended side-chains. Tetrahedron Letters 19, 43694372.Google Scholar
Theobald, N., Wells, R. J., and Djerassi, C. (1983) Minor and trace sterols in marine invertebrates .8. Isolation, structure elucidation, and partial synthesis of 2 novel sterols – stelliferasterol and isostelliferasterol. J. Am. Chem. Soc. 100, 76777684.Google Scholar
Tissot, B. P. and Welte, D. H. (1984) Petroleum formation and occurrence. Berlin: Springer-Verlag.Google Scholar
Treibs, A. E. (1936) Chlorophyll- und Häminderivate in organischen Mineralstoffen. Angew. Chem. 49, 682686. doi: 10.1002/ange.19360493803Google Scholar
Van Graas, G. (1986) Biomarker distributions in asphaltenes and kerogens analysed by flash pyrolysis- gas chromatography-mass spectrometry. Organic Geochemistry 10, 11271135.Google Scholar
van Maldegem, L. M., Sansjofre, P., Weijers, J. W. H., Wolkenstein, K., Strother, P. K., Wormer, L., … and Hallmann, C. (2019a). Bisnorgammacerane traces predatory pressure and the persistent rise of algal ecosystems after Snowball Earth. Nature Communications, 10. doi: ARTN 476Google Scholar
van Maldegem, L. M., Nettersheim, B. J., Leider, A., Brocks, J. J., and Hallmann, C. (2019b). Tracing the diagenetic origin of Neoproterozoic 26-alkylsteranes. In Abstracts of the 29th International Meeting on Organic Geochemistry. Vol. 209, pp. 12.Google Scholar
Vinnichenko, G., Jarrett, A. J. M., Hope, J. M., and Brocks, J. J. (2020) Discovery of the oldest known biomarkers provides evidence for phototrophic bacteria in the 1.73 Ga Wollogorang Formation, Australia. Geobiology 2020; 00: 116. doi: 10.1111/gbi.12390Google Scholar
Vogel, M. B., Moldowan, J. M., and Zinniker, D. (2005) Biomarkers from units in the Uinta Mountain and Chuar Groups. Utah Geological Association Publication 33, 7596.Google Scholar
Volkman, J. K. (2003) Sterols in microorganisms. Applied Microbiology & Biotechnology 60, 495506.Google Scholar
Wei, J. H., Yin, X. C., and Welander, P. V. (2016) Sterol synthesis in diverse bacteria. Frontiers in Microbiology, 7. doi: ARTN 990Google Scholar
Zumberge, J. A., Love, G. D., Cardenas, P., Sperling, E. A., Gunasekera, S., Rohrssen, M., and Summons, R. E. (2018) Demosponge steroid biomarker 26-methylstigmastane provides evidence for Neoproterozoic animals. Nature Ecology & Evolution 2, 17091714. doi: 10.1038/s41559-018-0676-2Google Scholar
Zumberge, J. A., Rocher, D., and Love, G. D. (2019) Free and kerogen-bound biomarkers from late Tonian sedimentary rocks record abundant eukaryotes in mid- Neoproterozoic marine communities. Geobiology. 2019; 00: 122. doi: 10.1111/gbi.12378Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Emerging Patterns in Proterozoic Lipid Biomarker Records
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Emerging Patterns in Proterozoic Lipid Biomarker Records
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Emerging Patterns in Proterozoic Lipid Biomarker Records
Available formats
×