Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T05:27:11.396Z Has data issue: false hasContentIssue false

Elements of Scene Perception

Published online by Cambridge University Press:  06 October 2021

Monica S. Castelhano
Affiliation:
Queen's University, Ontario
Carrick C. Williams
Affiliation:
California State University, San Marcos

Summary

Visual cognitive processes have traditionally been examined with simplified stimuli, but generalization of these processes to the real-world is not always straightforward. Using images, computer-generated images, and virtual environments, researchers have examined processing of visual information in the real-world. Although referred to as scene perception, this research field encompasses many aspects of scene processing. Beyond the perception of visual features, scene processing is fundamentally influenced and constrained by semantic information as well as spatial layout and spatial associations with objects. In this review, we will present recent advances in how scene processing occurs within a few seconds of exposure, how scene information is retained in the long-term, and how different tasks affect attention in scene processing. By considering the characteristics of real-world scenes, as well as different time windows of processing, we can develop a fuller appreciation for the research that falls under the wider umbrella of scene processing.
Get access
Type
Element
Information
Online ISBN: 9781108924092
Publisher: Cambridge University Press
Print publication: 11 November 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, G. J., Ni, R., Bian, Z., & Kang, J. (2011). Limits of spatial attention in three-dimensional space and dual-task driving performance. Accident Analysis & Prevention, 43(1), 381390. https://doi.org/10.1016/j.aap.2010.09.007CrossRefGoogle ScholarPubMed
Anderson, J. (1996). The reality of illusion: An ecological approach to cognitive film theory. Carbondale: Southern Illinois University Press.Google Scholar
Antes, J. R. (1974). The time course of picture viewing. Journal of Experimental Psychology, 103(1), 6270.Google Scholar
Aribarg, A., & Schwartz, E. M. (2020). Native advertising in online news: Trade-offs among clicks, brand recognition, and website trustworthiness. Journal of Marketing Research, 57(1), 2034. https://doi.org/10.1177/0022243719879711Google Scholar
Au-Yeung, S. K., Benson, V., Castelhano, M. S., & Rayner, K. (2011). Eye movement sequences during simple versus complex information processing of scenes in autism spectrum disorder. Autism Research and Treatment, 2011, 17. https://doi.org/10.1155/2011/657383Google Scholar
Awh, E., Armstrong, K. M., & Moore, T. (2006). Visual and oculomotor selection: Links, causes and implications for spatial attention. Trends in Cognitive Sciences, 10(3), 124130. www.sciencedirect.com/science/article/pii/S1364661306000167CrossRefGoogle ScholarPubMed
Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437443. https://doi.org/10.1016/j.tics.2012.06.010Google Scholar
Bacon-Mace, N., Mace, M. J. M., Fabre-Thorpe, M., & Thorpe, S. J. (2005). The time course of visual processing: Backward masking and natural scene categorisation. Vision Research, 45(11), 14591469. https://doi.org/10.1016/j.visres.2005.01.004CrossRefGoogle ScholarPubMed
Barhorst-Cates, E. M., Rand, K. M., & Creem-Regehr, S. H. (2016). The effects of restricted peripheral field-of-view on spatial learning while navigating. PLOS One, 11(10), e0163785. https://doi.org/10.1371/journal.pone.0163785Google Scholar
Bassett-Gunter, R. L., Latimer-Cheung, A. E., Martin Ginis, K. A., & Castelhano, M. S. (2014). I spy with my little eye: Cognitive processing of framed physical activity messages. Journal of Health Communication, 19(6), 676691. https://doi.org/10.1080/10810730.2013.837553Google Scholar
Becker, M. W., Pashler, H., & Lubin, J. (2007). Object-intrinsic oddities draw early saccades. Journal of Experimental Psychology: Human Perception and Performance, 33(1), 2030. https://doi.org/10.1037/0096-1523.33.1.20Google Scholar
Benson, V., Castelhano, M. S., Au-Yeung, S. K., & Rayner, K. (2012). Eye movements reveal no immediate “WOW” (“which one’s weird”) effect in autism spectrum disorder. Quarterly Journal of Experimental Psychology, 65(6), 1139–1150. https://doi.org/10.1080/17470218.2011.644305Google Scholar
Benson, V., Castelhano, M. S., Howard, P. L., Latif, N., & Rayner, K. (2016). Looking, seeing and believing in autism: Eye movements reveal how subtle cognitive processing differences impact in the social domain. Autism Research, 9(8), 879887. https://doi.org/10.1002/aur.1580Google Scholar
Benway, J. P., & Lane, D. M. (1998). Banner blindness: Web searchers often miss “obvious” links. Itg Newsletter, 1(3), 1–22.Google Scholar
Berbaum, K. S., Caldwell, R. T., Schartz, K. M., Thompson, B. H., & Franken, E. A. (2007). Does computer-aided diagnosis for lung tumors change satisfaction of search in chest radiography? Academic Radiology, 14(9), 10691076. https://doi.org/10.1016/j.acra.2007.06.001Google Scholar
Biederman, I. (1972). Perceiving real-world scenes. Science, 177(4043), 7780. https://doi.org/10.1126/SCIENCE.177.4043.77Google Scholar
Biederman, I. (1988). Aspects and extensions of a theory of human image understanding. In Pylyshyn, Z. (Ed.), Computational processes in human vision (pp. 370–428). Norwood, NJ: Ablex.Google Scholar
Biederman, I., & Gerhardstein, P. C. (1993). Recognizing depth-rotated objects: Evidence and conditions for three-dimensional viewpoint invariance. Journal of Experimental Psychology: Human Perception and Performance, 19(6), 11621182. https://doi.org/10.1037/0096-1523.19.6.1162Google Scholar
Biederman, I., & Ju, G. (1988). Surface versus edge-based determinants of visual recognition. Cognitive Psychology, 20(1), 3864. https://doi.org/10.1016/0010-0285(88)90024-2Google Scholar
Biederman, I., Glass, A. L., & Stacy, E. W. (1973). Searching for objects in real-world scenes. Journal of Experimental Psychology, 97(1), 2227. https://doi.org/10.1037/h0033776Google Scholar
Bindemann, M. (2010). Scene and screen center bias early eye movements in scene viewing. Vision Research, 50(23), 25772587. https://doi.org/10.1016/J.VISRES.2010.08.016Google Scholar
Boettcher, S. E. P., Draschkow, D., Dienhart, E., & , M. L.-H. (2018). Anchoring visual search in scenes: Assessing the role of anchor objects on eye movements during visual search. Journal of Vision, 18(13), 11. https://doi.org/10.1167/18.13.11Google Scholar
Bonner, M. F., & Epstein, R. A. (2017). Coding of navigational affordances in the human visual system. Proceedings of the National Academy of Sciences of the United States of America, 114(18), 47934798. https://doi.org/10.1073/pnas.1618228114Google Scholar
Bonner, M. F., & Epstein, R. A. (2018). Computational mechanisms underlying cortical responses to the affordance properties of visual scenes. PLOS Computational Biology, 14(4), e1006111. https://doi.org/10.1371/journal.pcbi.1006111CrossRefGoogle Scholar
Borji, A., Sihite, D. N., & Itti, L. (2013). Quantitative analysis of human-model agreement in visual saliency modeling: A comparative study. IEEE Transactions on Image Processing, 22(1), 5569. https://doi.org/10.1109/TIP.2012.2210727Google Scholar
Brockmole, J. R., & Henderson, J. M. (2005). Prioritization of new objects in real-world scenes: Evidence from eye movements. Journal of Experimental Psychology, 31(5), 857868.Google Scholar
Brockmole, J. R., & Henderson, J. M. (2006). Using real-world scenes as contextual cues for search. Visual Cognition, 13(1), 99108. https://doi.org/10.1080/13506280500165188Google Scholar
Brockmole, J. R., Castelhano, M. S., & Henderson, J. M. (2006). Contextual cueing in naturalistic scenes: Global and local contexts. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(4), 699706. https://doi.org/10.1037/0278-7393.32.4.699Google Scholar
Brooks, D. I., Rasmussen, I. P., & Hollingworth, A. (2010). The nesting of search contexts within natural scenes: Evidence from contextual cuing. Journal of Experimental Psychology. Human Perception and Performance, 36(6), 14061418. https://doi.org/10.1037/a0019257Google Scholar
Bruce, N. D. B., Wloka, C., Frosst, N., & Rahman, S. (2015). On computational modeling of visual saliency: Examining what’s right, and what’s left. Vision Research, 116, 95112. https://doi.org/10.1016/J.VISRES.2015.01.010Google Scholar
Bülthoff, I., & Bülthoff, H. H. (2003). Image-based recognition of biological motion, scenes, and objects. In Peterson, M. A. & Rhodes, G. (Eds.), Perception of faces, objects, and scenes: Analytic and holistic processes (pp. 146–172). Oxford: Oxford University Press.Google Scholar
Burgess, N., Maguire, E. A., & O’Keefe, J. (2002). The human hippocampus and spatial and episodic memory. Neuron, 35(4), 625641. https://doi.org/10.1016/S0896-6273(02)00830-9CrossRefGoogle ScholarPubMed
Burgess, N., Spiers, H. J., & Paleologou, E. (2004). Orientational manoeuvres in the dark: Dissociating allocentric and egocentric influences on spatial memory. Cognition, 94(2), 149166. https://doi.org/10.1016/j.cognition.2004.01.001Google Scholar
Buswell, G. (1935). How people look at pictures: A study of the psychology of perception in art. Chicago, IL: University of Chicago Press.Google Scholar
Cain, M. S., Adamo, S. H., & Mitroff, S. R. (2013). A taxonomy of errors in multiple-target visual search. Visual Cognition, 21(7), 899921. https://doi.org/10.1080/13506285.2013.843627Google Scholar
Cardwell, B. A., Henkel, L. A., Garry, M., Newman, E. J., & Foster, J. L. (2016). Nonprobative photos rapidly lead people to believe claims about their own (and other people’s) pasts. Memory & Cognition, 44(6), 883896. https://doi.org/10.3758/s13421-016-0603-1Google Scholar
Casarotti, M., Lisi, M., Umiltà, C., & Zorzi, M. (2012). Paying attention through eye movements: A computational investigation of the premotor theory of spatial attention. Journal of Cognitive Neuroscience, 24(7), 15191531. https://doi.org/10.1162/jocn_a_00231Google Scholar
Castelhano, M. S., & Heaven, C. (2010). The relative contribution of scene context and target features to visual search in scenes. Attention, Perception & Psychophysics, 72(5), 12831297. https://doi.org/10.3758/APP.72.5.1283Google Scholar
Castelhano, M. S., & Heaven, C. (2011). Scene context influences without scene gist: Eye movements guided by spatial associations in visual search. Psychonomic Bulletin & Review, 18(5), 890896. https://doi.org/10.3758/s13423-011-0107-8Google Scholar
Castelhano, M. S., & Henderson, J. M. (2003). Flashing scenes and moving windows: An effect of initial scene gist on eye movements. Journal of Vision, 3(9), 67a. https://doi.org/10.1167/3.9.67Google Scholar
Castelhano, M. S., & Henderson, J. M. (2005). Incidental visual memory for objects in scenes. Visual Cognition, 12(6), 10171040. https://doi.org/10.1080/13506280444000634Google Scholar
Castelhano, M. S., & Henderson, J. M. (2007). Initial scene representations facilitate eye movement guidance in visual search. Journal of Experimental Psychology: Human Perception and Performance, 33(4), 753763. https://doi.org/10.1037/0096-1523.33.4.753Google Scholar
Castelhano, M. S., & Henderson, J. M. (2008a). Stable individual differences across images in human saccadic eye movements. Canadian Journal of Experimental Psychology = Revue Canadienne de Psychologie Expérimentale, 62(1), 114. https://doi.org/10.1037/1196-1961.62.1.1Google Scholar
Castelhano, M. S., & Henderson, J. M. (2008b). The influence of color on the perception of scene gist. Journal of Experimental Psychology: Human Perception and Performance, 34(3), 660675. https://doi.org/10.1037/0096-1523.34.3.660Google Scholar
Castelhano, M. S., & Krzyś, K. (2020). Rethinking space: A review of perception, attention, and memory in scene processing. Annual Review of Vision Science, 6(1), 563–586. https://doi.org/10.1146/annurev-vision-121219-081745Google Scholar
Castelhano, M. S., & Pereira, E. J. (2018). The influence of scene context on parafoveal processing of objects. Quarterly Journal of Experimental Psychology, 71(1), 229–240. https://doi.org/10.1080/17470218.2017.1310263Google Scholar
Castelhano, M. S., & Pollatsek, A. (2010). Extrapolating spatial layout in scene representations. Memory Cognition, 38(8), 10181025.Google Scholar
Castelhano, M. S., & Rayner, K. (2008). Eye movements during reading, visual search, and scene perception: An overview. In K. Rayner, D. Shen, X. Bai, and G. Yan (Eds.), Cognitive and cultural influences on eye movements (Vol. 2175, pp. 333). Tianjin: Tianjin People’s Press/Psychology Press.Google Scholar
Castelhano, M. S., & Witherspoon, R. L. (2016). How you use it matters: Object function guides attention during visual search in scenes. Psychological Science, 27(5), 606621. https://doi.org/10.1177/0956797616629130Google Scholar
Castelhano, M. S., Fernandes, S., & Theriault, J. (2019). Examining the hierarchical nature of scene representations in memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(9), 16191633. https://doi.org/10.1037/xlm0000660Google Scholar
Castelhano, M. S., Mack, M. L., & Henderson, J. M. (2009). Viewing task influences eye movement control during active scene perception. Journal of Vision, 9(3), 6. https://doi.org/10.1167/9.3.6CrossRefGoogle ScholarPubMed
Castelhano, M. S., Pollatsek, A., & Cave, K. R. (2008). Typicality aids search for an unspecified target, but only in identification and not in attentional guidance. Psychonomic Bulletin & Review, 15(4), 795801. https://doi.org/10.3758/PBR.15.4.795Google Scholar
Castelhano, M. S., Pollatsek, A., & Rayner, K. (2009). Integration of multiple views of scenes. Attention Perception Psychophysics, 71(3), 490502. https://doi.org/10.3758/APPGoogle Scholar
Castelhano, M. S., Wieth, M., & Henderson, J. M. (2007). I see what you see: Eye movements in real-world scenes are affected by perceived direction of gaze. Attention in Cognitive Systems Theories and Systems from an Interdisciplinary Viewpoint, 4840(9), 251262. https://doi.org/10.1167/3.9.307Google Scholar
Cavanagh, P., Hunt, A. R., Afraz, A., & Rolfs, M. (2010). Visual stability based on remapping of attention pointers. Trends in Cognitive Sciences, 14(4), 147153. https://doi.org/10.1016/J.TICS.2010.01.007CrossRefGoogle ScholarPubMed
Choe, K. W., Kardan, O., Kotabe, H. P., Henderson, J. M., & Berman, M. G. (2017). To search or to like: Mapping fixations to differentiate two forms of incidental scene memory. Journal of Vision, 17(12), 8. https://doi.org/10.1167/17.12.8CrossRefGoogle ScholarPubMed
Choi, H. S., & Lane, S. A. (2013). Impact of visuospatial characteristics of video games on improvements in cognitive abilities. Proceedings of the Human Factors and Ergonomics Society, 57(1), 17351739. https://doi.org/10.1177/1541931213571387Google Scholar
Chrastil, E. R. (2013). Neural evidence supports a novel framework for spatial navigation. Psychonomic Bulletin and Review, 20(2), 208227. https://doi.org/10.3758/s13423-012-0351-6Google Scholar
Christou, C. G., & Bülthoff, H. H. (1999). View dependence in scene recognition after active learning. Memory & Cognition, 27(6), 9961007. https://doi.org/10.3758/BF03201230Google Scholar
Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36(1), 2871. https://doi.org/10.1006/cogp.1998.0681Google Scholar
Codispoti, M., De Cesarei, A., & Ferrari, V. (2012). The influence of color on emotional perception of natural scenes. Psychophysiology, 49(1), 1116. https://doi.org/10.1111/j.1469-8986.2011.01284.xGoogle Scholar
Collegio, A. J., Nah, J. C., Scotti, P. S., & Shomstein, S. (2019). Attention scales according to inferred real-world object size. Nature Human Behaviour, 3(1), 4047. https://doi.org/10.1038/s41562-018-0485-2Google Scholar
Costantini, M., Ambrosini, E., Scorolli, C., & Borghi, A. M. (2011). When objects are close to me: Affordances in the peripersonal space. Psychonomic Bulletin & Review, 18(2), 302308. https://doi.org/10.3758/s13423-011-0054-4Google Scholar
Cronin, D. A., Hall, E. H., Goold, J. E., Hayes, T. R., & Henderson, J. M. (2020). Eye movements in real-world scene photographs: General characteristics and effects of viewing task. Frontiers in Psychology, 10. https://doi.org/10.3389/fpsyg.2019.02915Google Scholar
Cunningham, C. A., Drew, T., & Wolfe, J. M. (2017). Analog Computer-Aided Detection (CAD) information can be more effective than binary marks. Attention, Perception, and Psychophysics, 79(2), 679690. https://doi.org/10.3758/s13414-016-1250-0Google Scholar
Cutting, J. E., & Vishton, P. M. (1995). Perceiving layout and knowing distances: The integration, relative potency, and contextual use of different information about depth. In Epstein, W. & Rogers, S. J. (Eds.), Handbook of perception and cognition (2nd ed., pp. 69117). Cambridge, MA: Academic Press. https://doi.org/10.1016/B978-012240530-3/50005-5Google Scholar
Darken, R., & Peterson, B. (2014). Spatial orientation, wayfinding, and representation. In K. S. Hale and K. M. Stanney (Eds.), Handbook of virtual environments (pp. 467–491). Boca Raton, FL: CRC Press. https://doi.org/10.1201/b17360-24Google Scholar
De Graef, P., Christiaens, D., & D’Ydewalle, G. (1990). Perceptual effects of scene context on object identification. Psychological Research, 52(4), 317329. https://doi.org/10.1007/BF00868064Google Scholar
de la Rosa, S., Moraglia, G., & Schneider, B. A. (2008). The magnitude of binocular disparity modulates search time for targets defined by a conjunction of depth and colour. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 62(3), 150155. https://doi.org/10.1037/1196-1961.62.3.150Google Scholar
DeAngelus, M., & Pelz, J. B. (2009). Top-down control of eye movements: Yarbus revisited. Visual Cognition, 17(6–7), 790811. https://doi.org/10.1080/13506280902793843Google Scholar
Delorme, A., Richard, G., & Fabre-Thorpe, M. (2000). Ultra-rapid categorisation of natural scenes does not rely on colour cues: A study in monkeys and humans. Vision Research, 40(16), 21872200. https://doi.org/10.1016/S0042-6989(00)00083-3Google Scholar
Deubel, H., & Schneider, W. X. (1996). Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vision Research, 36(12), 18271837. https://doi.org/10.1016/0042-6989(95)00294-4Google Scholar
Deubel, H., Schneider, W. X., & Bridgeman, B. (2002). Transsaccadic memory of position and form. Progress in Brain Research, 140, 165180. https://doi.org/12508589Google Scholar
Dodhia, R. M., & Metcalfe, J. (1999). False memories and source monitoring. Cognitive Neuropsychology, 16(3–5), 489508. https://doi.org/10.1080/026432999380898Google Scholar
Dorr, M., Martinetz, T., Gegenfurtner, K. R., & Barth, E. (2010). Variability of eye movements when viewing dynamic natural scenes. Journal of Vision, 10(10), 28. https://doi.org/10.1167/10.10.28Google Scholar
Downing, C. J., & Pinker, S. (1985). The spatial structure of visual attention. In Posner, M. I. & Martin, O. S. M. (Eds.), Attention and performance XI (pp. 171187). Mahwah, NJ: Erlbaum.Google Scholar
Draschkow, D., & , M. L.-H. (2017). Scene grammar shapes the way we interact with objects, strengthens memories, and speeds search. Scientific Reports, 7(1), 16471. https://doi.org/10.1038/s41598-017-16739-xGoogle Scholar
Draschkow, D., Wolfe, J. M., & , M. L.-H. (2014). Seek and you shall remember: Scene semantics interact with visual search to build better memories. Journal of Vision, 14(8), 1–18. https://doi-org.ezproxy.csusm.edu/10.1167/14.8.10CrossRefGoogle Scholar
Drew, T., Cunningham, C., & Wolfe, J. M. (2012). When and why might a computer-aided detection (CAD) system interfere with visual search? An eye-tracking study. Academic Radiology, 19(10), 12601267. https://doi.org/10.1016/j.acra.2012.05.013CrossRefGoogle ScholarPubMed
Drew, T., , M. L.-H., Olwal, A., Jacobson, F., Seltzer, S. E., & Wolfe, J. M. (2013). Scanners and drillers: Characterizing expert visual search through volumetric images. Journal of Vision, 13(10), 3. https://doi.org/10.1167/13.10.3Google Scholar
Eckstein, M. P. (2017). Probabilistic computations for attention, eye movements, and search. Annual Review of Vision Science, 3(1), 319342. https://doi.org/10.1146/annurev-vision-102016-061220Google Scholar
Edelman, S. (1999). Representation and recognition in vision. Brain, 124(5), 1055–1056.Google Scholar
Epstein, R. A., & Baker, C. I. (2019). Scene perception in the human brain. Annual Review of Vision Science, 5(1), 373397. https://doi.org/10.1146/annurev-vision-091718-014809Google Scholar
Epstein, R. A., Graham, K. S., & Downing, P. E. (2003). Viewpoint-specific scene representations in human parahippocampal cortex. Neuron, 37(5), 865876.Google Scholar
Epstein, R. A., Higgins, J. S., & Thompson-Schill, S. L. (2005). Learning places from views: Variation in scene processing as a function of experience and navigational ability. Journal of Cognitive Neuroscience, 17(1), 7383. https://doi.org/10.1162/0898929052879987Google Scholar
Epstein, R. A., Harris, A., Stanley, D., & Kanwisher, N. (1999). The parahippocampal place area: Recognition, navigation, or encoding? Neuron, 23(1), 115125.Google Scholar
Epstein, R. A., Higgins, J. S., Jablonski, K., & Feiler, A. M. (2007). Visual scene processing in familiar and unfamiliar environments. Journal of Neurophysiology, 97(5), 36703683. https://doi.org/10.1152/jn.00003.2007Google Scholar
Erdem, E., & Erdem, A. (2013). Visual saliency estimation by nonlinearly integrating features using region covariances. Journal of Vision, 13(4), 11. https://doi.org/10.1167/13.4.11Google Scholar
Fazal, M. I., Patel, M. E., Tye, J., & Gupta, Y. (2018). The past, present and future role of artificial intelligence in imaging. European Journal of Radiology, 105, 246250. https://doi.org/10.1016/j.ejrad.2018.06.020Google Scholar
Fernandes, S., & Castelhano, M. (2019, July 17). The Foreground Bias: Initial Scene Representations across the Depth Plane. https://doi.org/10.31234/osf.io/s32wzGoogle Scholar
Fernandes, S., & Castelhano, M. S. (2021). The foreground bias: Initial scene representations across the depth plane. Psychological Science, 095679762098446. https://doi.org/10.1177/0956797620984464Google Scholar
Ferrara, K., & Park, S. (2016). Neural representation of scene boundaries. Neuropsychologia, 89, 180190. https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2016.05.012Google Scholar
Finlayson, N. J., & Grove, P. M. (2015). Visual search is influenced by 3D spatial layout. Attention, Perception, & Psychophysics, 77(7), 23222330. https://doi.org/10.3758/s13414-015-0924-3Google Scholar
Frey, H.-P., König, P., & Einhäuser, W. (2007). The role of first- and second-order stimulus features for human overt attention. Perception & Psychophysics, 69(2), 153161. https://doi.org/10.3758/BF03193738Google Scholar
Friedman, A. (1979). Framing pictures: The role of knowledge in automatized encoding and memory for gist. Journal of Experimental Psychology: General, 108(3), 316355. https://doi.org/10.1037/0096-3445.108.3.316Google Scholar
Friedman, A., & Waller, D. (2008). View combination in scene recognition. Memory & Cognition, 36(3), 467478. https://doi.org/10.3758/MC.36.3.467Google Scholar
Fuggetta, G., Campana, G., & Casco, C. (2007). The principle of good continuation in space and time can guide visual search in absence of priming or contextual cueing. Visual Cognition, 15(7), 834853.CrossRefGoogle Scholar
Gandomkar, Z., & Mello-Thoms, C. (2019). Visual search in breast imaging. British Journal of Radiology, 92(1102), 20190057. https://doi.org/10.1259/bjr.20190057Google Scholar
Garry, M., & Gerrie, M. P. (2005). When photographs create false memories. Current Directions in Psychological Science, 14(6), 321–325. https://doi.org/10.1111/j.0963-7214.2005.00390.xGoogle Scholar
Garry, M., & Wade, K. A. (2005). Actually, a picture is worth less than 45 words: Narratives produce more false memories than photographs do. Psychonomic Bulletin and Review, 12(2), 359366. https://doi.org/10.3758/BF03196385CrossRefGoogle Scholar
Garsoffky, B., Schwan, S., & Hesse, F. W. (2002). Viewpoint dependency in the recognition of dynamic scenes. Journal of Experimental Psychology: Learning, Memory and Cognition, 28(6), 10351050.Google Scholar
Gaspar, J. G., Ward, N., Neider, M. B., Crowell, J., Carbonari, R., Kaczmarski, H., Ringer, R. V., Johnson, A. P., Kramer, A. F., & Loschky, L. C. (2016). Measuring the useful field of view during simulated driving with gaze-contingent displays. Human Factors: The Journal of the Human Factors and Ergonomics Society, 58(4), 630641. https://doi.org/10.1177/0018720816642092Google Scholar
Gauthier, I., & Tarr, M. J. (2016). Visual object recognition: Do we (finally) know more now than we did? Annual Review of Vision Science, 2(1), 377396. https://doi.org/10.1146/annurev-vision-111815-114621Google Scholar
Gawryszewski, L. de G., Riggio, L., Rizzolatti, G., & Umiltá, C. (1987). Movements of attention in the three spatial dimensions and the meaning of “neutral” cues. Neuropsychologia, 25(1), 1929. https://doi.org/10.1016/0028-3932(87)90040-6Google Scholar
Gegenfurtner, K. R., & Rieger, J. (2000). Sensory and cognitive contributions of color to the recognition of natural scenes. Current Biology, 10(13), 805808. https://doi.org/10.1016/S0960-9822(00)00563-7Google Scholar
Gibson, J. (1950). The perception of the visual world. Boston, MA: Houghton Mifflin. BostonGoogle Scholar
Gibson, J. J. (1979). The ecological approach to visual perception. Boston, MA: Houghton Mifflin.Google Scholar
Gilman, D. (1994). Simplicity, cognition and adaptation: Some remarks on Marr’s theory of vision. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, 1994(1), 454464. https://doi.org/10.1086/psaprocbienmeetp.1994.1.193050Google Scholar
Goffaux, V., Jacques, C., Mouraux, A., Oliva, A., Schyns, P. G., & et al. (2005). Diagnostic colours contribute to the early stages of scene categorization: Behavioural and neurophysiological evidence. Visual Cognition, 12(6), 878892.Google Scholar
Gordon, R. D., Vollmer, S. D., & Frankl, M. L. (2008). Object continuity and the transsaccadic representation of form. Perception & Psychophysics, 70(4), 667679. https://doi.org/18556928Google Scholar
Gottesman, C. V. (2011). Mental layout extrapolations prime spatial processing of scenes. Journal of Experimental Psychology: Human Perception and Performance, 37(2), 382395. https://doi.org/10.1037/a0021434Google Scholar
Green, C. S., & Bavelier, D. (2007). Action-video-game experience alters the spatial resolution of vision. Psychological Science, 18(1), 8894. https://doi.org/10.1111/j.1467-9280.2007.01853.xGoogle Scholar
Greene, M. R., & Oliva, A. (2009a). Recognition of natural scenes from global properties: Seeing the forest without representing the trees. Cognitive Psychology, 58(2), 137176. https://doi.org/10.1016/j.cogpsych.2008.06.001Google Scholar
Greene, M. R., & Oliva, A. (2009b). The briefest of glances: The time course of natural scene understanding. Psychological Science, 20(4), 464472. https://doi.org/10.1111/j.1467-9280.2009.02316.xGoogle Scholar
Greene, M. R., & Oliva, A. (2010). High-level aftereffects to global scene properties. Journal of Experimental Psychology: Human Perception and Performance, 36(6), 14301442. https://doi.org/10.1037/a0019058Google Scholar
Greene, M. R., & Wolfe, J. M. (2011). Global image properties do not guide visual search. Journal of Vision, 11(6), 19.Google Scholar
Greene, M. R., Baldassano, C., Esteva, A., Beck, D. M., & Fei-Fei, L. (2016). Visual scenes are categorized by function. Journal of Experimental Psychology: General, 145(1), 8294. https://doi.org/10.1037/xge0000129Google Scholar
Grimes, J. A. (1996). On the failure to detect changes in scenes across saccades. In Akins, K. A. (Ed.), Perception: Vancouver Studies in Cognitive Science (pp. 89–110). Oxford: Oxford University Press.Google Scholar
Gronau, N., & Shachar, M. (2015). Contextual consistency facilitates long-term memory of perceptual detail in barely seen images. Journal of Experimental Psychology: Human Perception and Performance, 41(4), 10951111. https://doi.org/10.1037/xhp0000071Google Scholar
Haji-Abolhassani, A., & Clark, J. J. (2014). An inverse Yarbus process: Predicting observers’ task from eye movement patterns. Vision Research, 103, 127142. https://doi.org/10.1016/j.visres.2014.08.014Google Scholar
Hassabis, D., & Maguire, E. A. (2007). Deconstructing episodic memory with construction. Trends in Cognitive Sciences, 11(7), 299306.Google Scholar
He, C., Peelen, M. V., Han, Z., Lin, N., Caramazza, A., & Bi, Y. (2013). Selectivity for large nonmanipulable objects in scene-selective visual cortex does not require visual experience. NeuroImage, 79, 19. https://doi.org/10.1016/j.neuroimage.2013.04.051Google Scholar
Hebert, C. R., Sha, L. Z., Remington, R. W., & Jiang, Y. V. (2020). Redundancy gain in visual search of simulated X-ray images. Attention, Perception, and Psychophysics, 82, 1–13. https://doi.org/10.3758/s13414-019-01934-xGoogle Scholar
Hecht, H., & Kalkofen, H. (2009). Questioning the rules of continuity editing: An empirical study. Empirical Studies of the Arts, 27(1), 123. https://doi.org/10.2190/em.27.1.aaGoogle Scholar
Heidenreich, S. M., & Turano, K. A. (2011). Where does one look when viewing artwork in a museum? Empirical Studies of the Arts, 29(1), 5172. https://doi.org/10.2190/EM.29.1.dGoogle Scholar
Helbren, E., Phillips, P., & Altman, D. (2015). The effect of computer-aided detection markers on visual search and reader performance during concurrent reading of CT colonography. Springer, 25(6), 15701578. https://doi.org/10.1007/s00330-014-3569-zGoogle Scholar
Henderson, J. M. (2003). Human gaze control during real-world scene perception. Trends in Cognitive Sciences, 7(11), 498504. https://doi.org/10.1016/j.tics.2003.09.006Google Scholar
Henderson, J. M., & Castelhano, M. S. (2005). Eye movements and visual memory for scenes. In Underwood, G. (Ed.), Cognitive processes in eye guidance (pp. 213–235). Oxford: Oxford University Press.Google Scholar
Henderson, J. M., & Hayes, T. R. (2017). Meaning-based guidance of attention in scenes as revealed by meaning maps. Nature Human Behaviour, 1(10), 743747. https://doi.org/10.1038/s41562-017-0208-0Google Scholar
Henderson, J. M., Weeks, P. A. J., & Hollingworth, A. (1999). The effects of semantic consistency on eye movements during complex scene viewing. Journal of Experimental Psychology: Human Perception and Performance, 25(1), 210228. https://doi.org/10.1037/0096-1523.25.1.210Google Scholar
Henderson, J. M., Williams, C. C., Castelhano, M. S., & Falk, R. J. (2003). Eye movements and picture processing during recognition. Perception & Psychophysics, 65(5), 725734. https://doi.org/10.3758/BF03194809Google Scholar
Henderson, J. M., Brockmole, J. R., Castelhano, M. S., & Mack, M. (2007). Visual saliency does not account for eye movements during visual search in real-world scenes. In van Gompel, R., Fischer, M., Murray, W. S., & Hill, R. L. (Eds.), Eye movements: A window on mind and brain (pp. 537–562). New York: Elsevier. https://doi.org/10.1016/B978-008044980-7/50027-6Google Scholar
Henderson, J. M., Shinkareva, S. V., Wang, J., Luke, S. G., & Olejarczyk, J. (2013). Predicting cognitive state from eye movements. PLoS ONE, 8(5), e64937. https://doi.org/10.1371/journal.pone.0064937Google Scholar
Henkel, L. A., & Milliken, A. (2020). The benefits and costs of editing and reviewing photos of one’s experiences on subsequent memory. Journal of Applied Research in Memory and Cognition, 9(4), 480–494. https://doi.org/10.1016/j.jarmac.2020.07.002Google Scholar
Hervet, G., Guérard, K., Tremblay, S., & Chtourou, M. S. (2011). Is banner blindness genuine? Eye tracking internet text advertising. Applied Cognitive Psychology, 25(5), 708716. https://doi.org/10.1002/acp.1742Google Scholar
Higgins, E., Leinenger, M., & Rayner, K. (2014). Eye movements when viewing advertisements. Frontiers in Psychology, 5(Mar), 210. https://doi.org/10.3389/fpsyg.2014.00210Google Scholar
Hinde, S. J., Smith, T. J., & Gilchrist, I. D. (2017). In search of oculomotor capture during film viewing: Implications for the balance of top-down and bottom-up control in the saccadic system. Vision Research, 134, 717.Google Scholar
Hirtle, S. C., & Jonides, J. (1985). Evidence of hierarchies in cognitive maps. Memory & Cognition, 13(3), 208217. https://doi.org/10.3758/BF03197683Google Scholar
Hoffman, J. E., & Subramaniam, B. (1995). The role of visual attention in saccadic eye movements. Perception & Psychophysics, 57, 787.Google Scholar
Hollingworth, A. (2004). Constructing visual representations of natural scenes: The roles of short- and long-term visual memory. Journal of Experimental Psychology. Human Perception and Performance, 30(3), 519537. https://doi.org/10.1037/0096-1523.30.3.519Google Scholar
Hollingworth, A. (2005). Memory for object position in natural scenes. Visual Cognition, 12(6), 10031016.Google Scholar
Hollingworth, A. (2006). Scene and position specificity in visual memory for objects. Journal of Experimental Psychology Learning Memory and Cognition, 32(1), 58.Google Scholar
Hollingworth, A., & Henderson, J. M. (2000). Semantic informativeness mediates the detection of changes in natural scenes. Change Blindness and Visual Memory, 2000(7), 213235.Google Scholar
Hollingworth, A., & Henderson, J. M. (2002). Accurate Visual memory for previously attended objects in natural scenes. Journal of Experimental Psychology Human Perception and Performance, 28(1), 113136.Google Scholar
Hollingworth, A., & Rasmussen, I. P. (2010). Binding objects to locations: The relationship between object files and visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 36(3), 543564. https://doi.org/10.1037/a0017836Google Scholar
Hollingworth, A., Williams, C. C., & Henderson, J. M. (2001). To see and remember: Visually specific information is retained in memory from previously attended objects in natural scenes. Psychonomic Bulletin & Review, 8(4), 761768. https://doi.org/10.3758/BF03196215Google Scholar
Hout, M. C., & Goldinger, S. D. (2012). Incidental learning speeds visual search by lowering response thresholds, not by improving efficiency: Evidence from eye movements. Journal of Experimental Psychology: Human Perception and Performance, 38(1), 90112. https://doi.org/10.1037/a0023894Google Scholar
Hout, M. C., Walenchok, S. C., Goldinger, S. D., & Wolfe, J. M. (2015). Failures of perception in the low-prevalence effect: Evidence from active and passive visual search. Journal of Experimental Psychology: Human Perception and Performance, 41(4), 977994. https://doi.org/10.1037/xhp0000053Google Scholar
Hristova, E., Georgieva, S., & Grinberg, M. (2011). Top-down influences on eye-movements during painting perception: The effect of task and titles. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6456 LNCS, 104115. https://doi.org/10.1007/978-3-642-18184-9_10Google Scholar
Hubbard, T. L. (2005). Representational momentum and related displacements in spatial memory: A review of the findings. Psychonomic Bulletin and Review, 12(5), 822851. https://doi.org/10.3758/BF03196775CrossRefGoogle ScholarPubMed
Hutson, J. P., Smith, T. J., Magliano, J. P., & Loschky, L. C. (2017). What is the role of the film viewer? The effects of narrative comprehension and viewing task on gaze control in film. Cognitive Research: Principles and Implications, 2(1), 46. https://doi.org/10.1186/s41235-017-0080-5Google Scholar
Hwang, A. D., Wang, H.-C., & Pomplun, M. (2011). Semantic guidance of eye movements in real-world scenes. Vision Research, 51(10), 11921205. https://doi.org/10.1016/j.visres.2011.03.010Google Scholar
Ildirar, S., & Schwan, S. (2015). First-time viewers’ comprehension of films: Bridging shot transitions. British Journal of Psychology, 106(1), 133151. https://doi.org/10.1111/bjop.12069Google Scholar
Intraub, H. (2010). Rethinking scene perception: A multisource model. Psychology of Learning and Motivation, 52, 231264. https://doi.org/10.1016/S0079-7421(10)52006-1Google Scholar
Intraub, H. (2012). Rethinking visual scene perception. Wiley Interdisciplinary Reviews: Cognitive Science, 3(1), 117127. https://doi.org/10.1002/wcs.149Google Scholar
Intraub, H., & Richardson, M. (1989). Wide-angle memories of close-up scenes. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15(2), 179187. https://doi.org/10.1037//0278-7393.15.2.179Google Scholar
Intraub, H., Gottesman, C. V., & Bills, A. J. (1998). Effects of perceiving and imagining scenes on memory for pictures. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24(1), 186201. https://doi.org/10.1037/0278-7393.24.1.186Google Scholar
Itti, L., & Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research, 40(10–12), 14891506.Google Scholar
Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11), 12541259. https://doi.org/10.1109/34.730558Google Scholar
Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Shah, P. (2011). Short-and long-term benefits of cognitive training. Proceedings of the National Academy of Sciences, 108(25), 10081–10086.Google Scholar
Jorritsma, W., Cnossen, F., & van Ooijen, P. M. A. (2015). Improving the radiologist–CAD interaction: Designing for appropriate trust. Clinical Radiology, 70(2), 115122. https://doi.org/10.1016/j.crad.2014.09.017Google Scholar
Joseph, J. E., & Proffitt, D. R. (1996). Semantic versus perceptual influences of color in object recognition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22(2), 407429. https://doi.org/10.1037/0278-7393.22.2.407Google Scholar
Josephs, E. L., & Konkle, T. (2019). Perceptual dissociations among views of objects, scenes, and reachable spaces. Journal of Experimental Psychology: Human Perception and Performance, 45(6), 715728. https://doi.org/10.1037/xhp0000626Google Scholar
Josephs, E., Drew, T., & Wolfe, J. (2016). Shuffling your way out of change blindness. Psychonomic Bulletin & Review, 23(1), 193200. https://doi.org/10.3758/s13423-015-0886-4Google Scholar
Josephs, E. L., Draschkow, D., Wolfe, J. M., & , M. L.-H. (2016). Gist in time: Scene semantics and structure enhance recall of searched objects. Acta Psychologica, 169, 100108. https://doi.org/10.1016/J.ACTPSY.2016.05.013Google Scholar
Kahneman, D., Treisman, A., & Gibbs, B. J. (1992). The reviewing of object files: Object-specific integration of information. Cognitive Psychology, 24(2), 175219. https://doi.org/10.1016/0010-0285(92)90007-OGoogle Scholar
Kanan, C., Tong, M. H., Zhang, L., & Cottrell, G. W. (2009). SUN: Top-down saliency using natural statistics. Visual Cognition, 17(6–7), 9791003. https://doi.org/10.1080/13506280902771138Google Scholar
Kim, Y. W., Mansfield, L. T., & Mansfield, L. T. (2014). Fool me twice: Delayed diagnoses in radiology with emphasis on perpetuated errors. American Journal of Roentgenology, 202(3), 465470. https://doi.org/10.2214/AJR.13.11493Google Scholar
Kneusel, R. T., & Mozer, M. C. (2017). Improving human-machine cooperative visual search with soft highlighting. ACM Trans. Appl. Percept, 15(3), 1–21. https://doi.org/10.1145/3129669Google Scholar
Koehler, K., & Eckstein, M. M. P. M. (2017). Beyond scene gist: Objects guide search more than scene background. Journal of Experimental Psychology, 43(6), 11771193. https://doi.org/10.1037/xhp0000363Google Scholar
Konkle, T., & Brady, T. (2010). Conceptual distinctiveness supports detailed visual long-term memory for real-world objects. Journal of Experimental Psychology.Google Scholar
Konkle, T., Brady, T. F., Alvarez, G. A., & Oliva, A. (2010). Scene memory is more detailed than you think: The role of categories in visual long-term memory. Psychological Science, 21(11), 15511556. https://doi.org/10.1177/0956797610385359Google Scholar
Krupinski, E. A. (1996). Visual scanning patterns of radiologists searching mammograms. Academic Radiology, 3(2), 137144. https://doi.org/10.1016/S1076-6332(05)80381-2Google Scholar
Kundel, H. L., & Nodine, C. F. (1975). Interpreting chest radiographs without visual search. Radiology, 116(3), 527532. https://doi.org/10.1148/116.3.527Google Scholar
Kundel, H. L., & Wright, D. J. (1969). The influence of prior knowledge on visual search strategies during the viewing of chest radiographs. Radiology, 93(2), 315320. https://doi.org/10.1148/93.2.315Google Scholar
Land, M. F., & Hayhoe, M. (2001). In what ways do eye movements contribute to everyday activities? Vision Research, 41(25–26), 35593565. https://doi.org/10.1016/S0042-6989(01)00102-XGoogle Scholar
LaPointe, M. R. P., & Milliken, B. (2016). Semantically incongruent objects attract eye gaze when viewing scenes for change. Visual Cognition, 24(1), 6377. https://doi.org/10.1080/13506285.2016.1185070Google Scholar
LaPointe, M. R. P., Lupianez, J., & Milliken, B. (2013). Context congruency effects in change detection: Opposing effects on detection and identification. Visual Cognition, 21(1), 99122. https://doi.org/10.1080/13506285.2013.787133Google Scholar
Larson, A. M., & Loschky, L. C. (2009). The contributions of central versus peripheral vision to scene gist recognition. Journal of Vision, 9(10), 6. https://doi.org/10.1167/9.10.6Google Scholar
Latif, N., Gehmacher, A., Castelhano, M. S., & Munhall, K. G. (2014). The art of gaze guidance. Journal of Experimental Psychology: Human Perception and Performance, 40(1), 3339. https://doi.org/10.1037/a0034932Google Scholar
Lea, G. (1975). Chronometric analysis of the method of loci. Journal of Experimental Psychology: Human Perception and Performance, 1(2), 95104. https://doi.org/10.1037/0096-1523.1.2.95Google Scholar
Li, C.-L., Aivar, M. P., Kit, D. M., Tong, M. H., & Hayhoe, M. M. (2016). Memory and visual search in naturalistic 2D and 3D environments. Journal of Vision, 16(8), 9. https://doi.org/10.1167/16.8.9Google Scholar
Li, F. F., Iyer, A., Koch, C., & Perona, P. (2007). What do we perceive in a glance of a real-world scene? Journal of Vision, 7(1), 10. https://doi.org/10.1167/7.1.10Google Scholar
Lindsay, D. S., Hagen, L., Read, J. D., Wade, K. A., & Garry, M. (2004). True photographs and false memories. Psychological Science, 15(3), 149154. https://doi.org/10.1111/j.0956-7976.2004.01503002.xGoogle Scholar
Liv, N., & Greenbaum, D. (2020). Deep fakes and memory malleability: False memories in the service of fake news. AJOB Neuroscience, 11(2), 96104. https://doi.org/10.1080/21507740.2020.1740351Google Scholar
Loftus, E. F. (2019). Eyewitness testimony. Applied Cognitive Psychology, 33(4), acp.3542. https://doi.org/10.1002/acp.3542Google Scholar
Loftus, G. R., & Mackworth, N. H. (1978). Cognitive determinants of fixation location during picture viewing. Journal of Experimental Psychology: Human Perception and Performance, 4(4), 565572. https://doi.org/10.1037/0096-1523.4.4.565Google Scholar
Loschky, L. C., Larson, A. M., Magliano, J. P., & Smith, T. J. (2015). What would Jaws do? The tyranny of film and the relationship between gaze and higher-level narrative film comprehension. PLoS ONE, 10(11), e0142474. https://doi.org/10.1371/journal.pone.0142474Google Scholar
Loschky, L. C., Larson, A. M., Smith, T. J., & Magliano, J. P. (2020). The Scene Perception & Event Comprehension Theory (SPECT) applied to visual narratives. Topics in Cognitive Science, 12(1), 311351. https://doi.org/10.1111/tops.12455Google Scholar
Macé, M. J. M., Delorme, A., Richard, G., & Fabre-Thorpe, M. (2010). Spotting animals in natural scenes: Efficiency of humans and monkeys at very low contrasts. Animal Cognition, 13(3), 405418. https://doi.org/10.1007/s10071-009-0290-4Google Scholar
Mack, S. C., & Eckstein, M. P. (2011). Object co-occurrence serves as a contextual cue to guide and facilitate visual search in a natural viewing environment. Journal of Vision, 11(9), 9. https://doi.org/10.1167/11.9.9Google Scholar
Mackworth, N. H., & Morandi, A. J. (1967). The gaze selects informative details within pictures. Perception & Psychophysics, 2(11), 547552. https://doi.org/10.3758/BF03210264Google Scholar
Magliano, J. P., & Zacks, J. M. (2011). The impact of continuity editing in narrative film on event segmentation. Cognitive Science, 35(8), 14891517. https://doi.org/10.1111/j.1551-6709.2011.01202.xGoogle Scholar
Maguire, E. A., Intraub, H., & Mullally, S. L. (2016). Scenes, spaces, and memory traces. The Neuroscientist, 22(5), 432439. https://doi.org/10.1177/1073858415600389Google Scholar
Maguire, E. A., Nannery, R., & Spiers, H. J. (2006). Navigation around London by a taxi driver with bilateral hippocampal lesions. Brain, 129(11), 28942907. https://doi.org/10.1093/brain/awl286Google Scholar
Maguire, E. A., Burgess, N., O’Keefe, J., & O’Keefe, J. (1999). Human spatial navigation: Cognitive maps, sexual dimorphism, and neural substrates. Current Opinion in Neurobiology, 9(2), 171177. https://doi.org/10.1016/S0959-4388(99)80023-3Google Scholar
Malcolm, G. L., & Henderson, J. M. (2009). The effects of target template specificity on visual search in real-world scenes: Evidence from eye movements. Journal of Vision, 9(11), 8.113. https://doi.org/10.1167/9.11.8Google Scholar
Malcolm, G. L., & Henderson, J. M. (2010). Combining top-down processes to guide eye movements during real-world scene search. Journal of Vision, 10(2), 4.111. https://doi.org/10.1167/10.2.4Google Scholar
Man, L. L. Y., Krzys, K., & Castelhano, M. (2019, October 22). The Foreground Bias: Differing impacts across depth on visual search in scenes. https://doi.org/10.31234/osf.io/w6j4aGoogle Scholar
Mandler, J. M., & Johnson, N. S. (1976). Some of the thousand words a picture is worth. Journal of Experimental Psychology: Human Learning and Memory, 2(5), 529540. https://doi.org/10.1037/0278-7393.2.5.529Google Scholar
Mandler, J. M., & Ritchey, G. H. (1977). Long-term memory for pictures. Journal of Experimental Psychology: Human Learning & Memory, 3(4), 386. https://doi.org/10.1037/0278-7393.3.4.386Google Scholar
Mapelli, D., & Behrmann, M. (1997). The role of color in object recognition: Evidence from visual agnosia. Neurocase, 3(4), 237247. https://doi.org/10.1080/13554799708405007Google Scholar
Margarida Barreto, A. (2013). Do users look at banner ads on Facebook? Journal of Research in Interactive Marketing, 7(2), 119139. https://doi.org/10.1108/JRIM-Mar-2012-0013Google Scholar
Marr, D., & Poggio, B. T. (1979). A computational theory of human stereo vision. Proceedings of the Royal Society of London. Series B. Biological Sciences, 204(1156), 301328. https://doi.org/10.1098/rspb.1979.0029Google Scholar
Marrara, M. T., & Moore, C. M. (2000). Role of perceptual organization while attending in depth. Perception & Psychophysics, 62(4), 786799. https://doi.org/10.3758/BF03206923Google Scholar
McConkie, G. W., & Zola, D. (1979). Is visual information integrated across successive fixations in reading? Perception & Psychophysics, 25(3), 221224. https://doi.org/10.3758/BF03202990Google Scholar
McNamara, T. P. (1986). Mental representations of spatial relations. Cognitive Psychology, 18(1), 87121. https://doi.org/10.1016/0010-0285(86)90016-2Google Scholar
McNamara, T. P., Hardy, J. K., & Hirtle, S. C. (1989). Subjective hierarchies in spatial memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15(2), 211227. https://doi.org/10.1037/0278-7393.15.2.211Google Scholar
Mills, M., Hollingworth, A., Van der Stigchel, S., Hoffman, L., & Dodd, M. D. (2011). Examining the influence of task set on eye movements and fixations. Journal of Vision, 11(8), 17. https://doi.org/10.1167/11.8.17Google Scholar
Mishra, J., Zinni, M., Bavelier, D., & Hillyard, S. A. (2011). Neural basis of superior performance of action videogame players in an attention-demanding task. Journal of Neuroscience, 31(3), 992998. https://doi.org/10.1523/JNEUROSCI.4834-10.2011Google Scholar
Mitroff, S., & Biggs, A. T. (2014). The ultra-rare-item effect: Visual search for exceedingly rare items is highly susceptible to error. Psychological Science, 25(1), 284289. https://doi.org/10.1177/0956797613504221Google Scholar
Mullally, S. L., & Maguire, E. A. (2011). A new role for the parahippocampal cortex in representing space. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31(20), 74417449. https://doi.org/10.1523/JNEUROSCI.0267-11.2011Google Scholar
Mullally, S. L., & Maguire, E. A. (2013). Exploring the role of space-defining objects in constructing and maintaining imagined scenes. Brain and Cognition, 82(1), 100107. https://doi.org/10.1016/J.BANDC.2013.02.013Google Scholar
Murch, W. (2001). In the blink of an eye. Hollywood, CA: Silman-James Press.Google Scholar
Murphy, G., Loftus, E. F., Grady, R. H., Levine, L. J., & Greene, C. M. (2019). False memories for fake news during Ireland’s abortion referendum. Psychological Science, 30(10), 14491459. https://doi.org/10.1177/0956797619864887Google Scholar
Nagata, S. (1991). How to reinforce perception of depth in single 2-D pictures. In S. Ellis (Ed.), Pictorial Communication in Virtual and Real Environments (1st ed., pp. 527–545). London: Taylor & Francis. https://doi.org/10.1201/9781482295177Google Scholar
Nash, R. A. (2018). Changing beliefs about past public events with believable and unbelievable doctored photographs. Memory, 26(4), 439450. https://doi.org/10.1080/09658211.2017.1364393Google Scholar
Neider, M. B., & Zelinsky, G. J. (2006a). Scene context guides eye movements during visual search. Vision Research, 46(5), 614–621. https://doi.org/10.1016/j.visres.2005.08.025Google Scholar
Neider, M. B., & Zelinsky, G. J. (2006b). Searching for camouflaged targets: Effects of target-background similarity on visual search. Vision Research, 46(14), 2217–2235. https://doi-org.ezproxy.csusm.edu/10.1016/j.visres.2006.01.006Google Scholar
Neisser, U., & Kerr, N. (1973). Spatial and mnemonic properties of visual images. Cognitive Psychology, 5(2), 138150. https://doi.org/10.1016/0010-0285(73)90030-3Google Scholar
Newman, E. J., Jalbert, M. C., Schwarz, N., & Ly, D. P. (2020). Truthiness, the illusory truth effect, and the role of need for cognition. Consciousness and Cognition, 78, 102866. https://doi.org/10.1016/j.concog.2019.102866Google Scholar
Nichols, R. M., & Loftus, E. F. (2019). Who is susceptible in three false memory tasks? Memory, 27(7), 962984. https://doi.org/10.1080/09658211.2019.1611862Google Scholar
Nickerson, R. S. (1965). Short-term memory for complex meaningful visual configurations: A demonstration of capacity. Canadian Journal of Psychology/Revue Canadienne de Psychologie, 19(2), 155160. https://doi.org/10.1037/h0082899Google Scholar
Nickerson, R. S. (1968). A note on long-term recognition memory for pictorial material. Psychonomic Science, 11(2), 58. https://doi.org/10.3758/BF03330991Google Scholar
Nijboer, T. C. W., Kanai, R., De Haan, E. H. F., Van Der Smagt, M. J., & de Hann, E. H. F. (2008). Recognising the forest, but not the trees: An effect of colour on scene perception and recognition. Consciousness and Cognition, 17(3), 741–752. https://doi.org/10.1016/j.concog.2007.07.008.Google Scholar
Nuthmann, A. (2017). Fixation durations in scene viewing: Modeling the effects of local image features, oculomotor parameters, and task. Psychonomic Bulletin & Review, 24(2), 370392. https://doi.org/10.3758/s13423-016-1124-4Google Scholar
Nuthmann, A., & Malcolm, G. L. (2016). Eye guidance during real-world scene search: The role color plays in central and peripheral vision. Journal of Vision, 16(2), 3. https://doi.org/10.1167/16.2.3Google Scholar
Oliva, A. (2005). Gist of the scene. In L. Itti, G. Rees, & Tsotsos, J. K. (Eds.), Neurobiology of attention (pp. 251256). New York: Academic Press. https://doi.org/10.1016/B978-012375731-9/50045-8Google Scholar
Oliva, A., & Schyns, P. G. (1997). Coarse blobs or fine edges? Evidence that information diagnosticity changes the perception of complex visual stimuli. Cognitive Psychology, 34(1), 72107.Google Scholar
Oliva, A., & Schyns, P. G. (2000). Diagnostic colors mediate scene recognition. Cognitive Psychology, 41(2), 176210. https://doi.org/10.1006/cogp.1999.0728Google Scholar
Oliva, A., & Torralba, A. (2001). Modeling the shape of the scene: A holistic representation of the spatial envelope. International Journal of Computer Vision, 42(3), 145175.Google Scholar
Oliva, A., & Torralba, A. (2007). The role of context in object recognition. Trends in Cognitive Sciences, 11(12), 520527. https://doi.org/10.1016/j.tics.2007.09.009Google Scholar
Oliva, A., Torralba, A., Castelhano, M. S., & Henderson, J. M. (2003). Top-down control of visual attention in object detection. IEEE International Conference on Image Processing, 1(9), 253256. https://doi.org/10.1167/3.9.3Google Scholar
Oliva, A., Wolfe, J. M., & Arsenio, H. C. (2004). Panoramic search: the interaction of memory and vision in search through a familiar scene. Journal of experimental psychology: Human perception and performance, 30(6), 1132–1146.Google Scholar
O’Regan, J. (1992). Solving the “real” mysteries of visual perception: The world as an outside memory. Canadian Journal of Psychology/Revue Canadienne, 46(3), 461488.Google Scholar
O’Regan, J., & Noë, A. (2001). A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences, 24(5), 939973.Google Scholar
O’Regan, J., Rensink, R., & Clark, J. (1999). Change-blindness as a result of “mudsplashes.” Nature, 398, 34.Google Scholar
Pannasch, S., & Velichkovsky, B. M. (2009). Distractor effect and saccade amplitudes: Further evidence on different modes of processing in free exploration of visual images. Visual Cognition, 17(6–7), 11091131. https://doi.org/10.1080/13506280902764422Google Scholar
Park, J., & Park, S. (2018). Coding of navigational distance in the visual scene-selective cortex. Journal of Vision, 18, 739. https://doi.org/10.1167/18.10.739Google Scholar
Park, S., Chun, M. M., & Johnson, M. K. (2010). Refreshing and integrating visual scenes in scene-selective cortex. Journal of Cognitive Neuroscience, 22(12), 28132822. https://doi.org/10.1162/jocn.2009.21406Google Scholar
Park, S., Intraub, H., Yi, D.-J., Widders, D., & Chun, M. M. (2007). Beyond the edges of a view: Boundary extension in human scene-selective visual cortex. Neuron, 54(2), 335342. https://doi.org/10.1016/j.neuron.2007.04.006Google Scholar
Parker, R. (1978). Picture processing during recognition. Journal of Experimental Psychology: Human Perception and Performance, 4(2), 284–293.Google Scholar
Patihis, L., Frenda, S. J., & Loftus, E. F. (2018). False memory tasks do not reliably predict other false memories. Psychology of Consciousness: Theory Research, and Practice, 5(2), 140160. https://doi.org/10.1037/cns0000147Google Scholar
Pennycook, G., & Rand, D. G. (2019). Lazy, not biased: Susceptibility to partisan fake news is better explained by lack of reasoning than by motivated reasoning. Cognition, 188, 3950. https://doi.org/10.1016/j.cognition.2018.06.011Google Scholar
Pereira, E. J., & Castelhano, M. S. (2012). On-line contributions of peripheral information to visual search in scenes: Further explorations of object content and scene context. Journal of Vision, 12(9), 740. https://doi.org/10.1167/12.9.740Google Scholar
Pereira, E. J., & Castelhano, M. S. (2014). Peripheral guidance in scenes: The interaction of scene context and object content. Journal of Experimental Psychology: Human Perception and Performance, 40(5), 20562072. https://doi.org/10.1037/a0037524Google Scholar
Pereira, E. J., & Castelhano, M. S. (2019). Attentional capture is contingent on scene region: Using surface guidance framework to explore attentional mechanisms during search. Psychonomic Bulletin & Review, 26(4), 12731281. https://doi.org/10.3758/s13423-019-01610-zGoogle Scholar
Pieters, R., & Wedel, M. (2004). Attention capture and transfer in advertising: Brand, pictorial, and text-size effects. Journal of Marketing, 68(2), 3650. https://doi.org/10.1509/jmkg.68.2.36.27794Google Scholar
Potter, M. C. (1976). Short-term conceptual memory for pictures. Journal of Experimental Psychology: Human Learning and Memory, 2(5), 509522. https://doi.org/1003124Google Scholar
Potter, M. C., & Levy, E. I. (1969). Recognition memory for a rapid sequence of pictures. Journal of Experimental Psychology, 81(1), 1015. https://doi.org/10.1037/h0027470Google Scholar
Powers, K. L., Brooks, P. J., Aldrich, N. J., Palladino, M. A., & Alfieri, L. (2013). Effects of video-game play on information processing: A meta-analytic investigation. Psychonomic Bulletin & Review, 20(6), 10551079. https://doi.org/10.3758/s13423-013-0418-zGoogle Scholar
Previc, F. H. (1998). The neuropsychology of 3-D space. Psychological Bulletin, 124(2), 123164.Google Scholar
Price, C. J., & Humphreys, G. W. (1989). The effects of surface detail on object categorization and naming. The Quarterly Journal of Experimental Psychology Section A, 41(4), 797828. https://doi.org/10.1080/14640748908402394Google Scholar
Radach, R., Lemmer, S., Vorstius, C., Heller, D., & Radach, K. (2003). Eye movements in the processing of print advertisements. In J. Hyönä, R. Radach, & H. Deubel (Eds.), The mind’s eye: Cognitive and applied aspects of eye movement research (pp. 609632). New York: Elsevier Inc. https://doi.org/10.1016/B978-044451020-4/50032-3Google Scholar
Rayner, K. (1975). The perceptual span and peripheral cues in reading. Cognitive Psychology, 7(1), 6581. https://doi.org/10.1016/0010-0285(75)90005-5Google Scholar
Rayner, K. (2009). Eye movements and attention in reading, scene perception, and visual search. The Quarterly Journal of Experimental Psychology, 62(8), 14571506. https://doi.org/10.1080/17470210902816461Google Scholar
Rayner, K., & Castelhano, M. S. (2007a). Eye movements. Scholarpedia, 2(10), 3649. https://doi.org/10.4249/scholarpedia.3649Google Scholar
Rayner, K., & Castelhano, M. S. (2007b). Eye movements during reading, scene perception, visual search, and while looking at print advertisements. Visual Marketing from Attention to Action, 2175, 942. https://doi.org/10.4324/9780203809617Google Scholar
Rayner, K., & McConkie, G. W. (1976). What guides a reader’s eye movements? Vision Research, 16(8), 829837. https://doi.org/10.1016/0042-6989(76)90143-7Google Scholar
Rayner, K., Castelhano, M. S., & Yang, J. (2009a). Eye movements and the perceptual span in older and younger readers. Psychology and Aging, 24(3), 755760. https://doi.org/10.1037/a0014300Google Scholar
Rayner, K., Castelhano, M. S., & Yang, J. (2009b). Eye movements when looking at unusual/weird scenes: Are there cultural differences? Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(1), 254259. https://doi.org/10.1037/a0013508Google Scholar
Rayner, K., Castelhano, M. S., & Yang, J. (2010). Preview benefit during eye fixations in reading for older and younger readers. Psychology and Aging, 25(3), 714718. https://doi.org/10.1037/a0019199Google Scholar
Rayner, K., McConkie, G. W., & Ehrlich, S. (1978). Eye movements and integrating information across fixations. Journal of Experimental Psychology: Human Perception and Performance, 4(4), 529544. https://doi.org/10.1037/0096-1523.4.4.529Google Scholar
Rayner, K., Miller, B., & Rotello, C. M. (2008). Eye movements when looking at print advertisements: The goal of the viewer matters. Wiley Online Library, 22(5), 697707. https://doi.org/10.1002/acp.1389Google Scholar
Rayner, K., Li, X., Williams, C. C., Cave, K. R., & Well, A. D. (2007). Eye movements during information processing tasks: Individual differences and cultural effects. Vision Research, 47(21), 27142726.Google Scholar
Rayner, K., Rotello, C. M., Stewart, A. J., Keir, J., & Duffy, S. A. (2001). Integrating text and pictorial information: Eye movements when looking at print advertisements. Journal of Experimental Psychology: Applied, 7(3), 219226. https://doi.org/10.1037//1076-898x.7.3.219Google Scholar
Reed, W. M., Ryan, J. T., McEntee, M. F., Evanoff, M. G., & Brennan, P. C. (2011). The effect of abnormality-prevalence expectation on expert observer performance and visual search. Radiology, 258(3), 938943. https://doi.org/10.1148/radiol.10101090Google Scholar
Reichle, E. D., Pollatsek, A., Fisher, D. L., & Rayner, K. (1998). Toward a model of eye movement control in reading. Psychological Review, 105(1), 125157. https://doi.org/9450374Google Scholar
Reisz, K., & Millar, G. (1971). The technique of film editing. New York: Hastings House Publishers Inc.Google Scholar
Rensink, R. A. (2000). The dynamic representation of scenes. Visual Cognition, 7(1–3), 1742.Google Scholar
Rensink, R. A., O’Regan, J. K., & Clark, J. J. (1997). To see or not to see: The need for attention to perceive changes in scenes. Psychological Science, 8(5), 368373. https://doi.org/10.1111/j.1467-9280.1997.tb00427.xGoogle Scholar
Resnick, M., & Albert, W. (2014). The impact of advertising location and user task on the emergence of banner ad blindness: An eye-tracking study. International Journal of Human-Computer Interaction, 30(3), 206219. https://doi.org/10.1080/10447318.2013.847762Google Scholar
Rizzolatti, G., Riggio, L., Dascola, I., & Umiltá, C. (1987). Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention. Neuropsychologia, 25(1), 3140. https://doi.org/10.1016/0028-3932(87)90041-8Google Scholar
Roediger, H. L. (1980). The effectiveness of four mnemonics in ordering recall. Journal of Experimental Psychology: Human Learning & Memory, 6(5), 558567. https://doi.org/10.1037/0278-7393.6.5.558Google Scholar
Rogé, J., Pébayle, T., Lambilliotte, E., Spitzenstetter, F., Giselbrecht, D., & Muzet, A. (2004). Influence of age, speed and duration of monotonous driving task in traffic on the driver’s useful visual field. Vision Research, 44(23), 27372744. https://doi.org/10.1016/j.visres.2004.05.026Google Scholar
Rolfs, M., Jonikaitis, D., Deubel, H., & Cavanagh, P. (2011). Predictive remapping of attention across eye movements. Nature Neuroscience, 14(2), 252256. https://doi.org/10.1038/nn.2711Google Scholar
Roos, J. E., Paik, D., Olsen, D., Liu, E. G., Chow, L. C., Leung, A. N., Mindelzun, R., Choudhury, K. R., Naidich, D. P., Napel, S., & Rubin, G. D. (2010). Computer-aided detection (CAD) of lung nodules in CT scans: Radiologist performance and reading time with incremental CAD assistance. European Radiology, 20(3), 549557. https://doi.org/10.1007/s00330-009-1596-yGoogle Scholar
Rosenberg, R., & Klein, C. (2015). The moving eye of the beholder: Eye tracking and the perception of paintings. Oxford: Oxford University Press.Google Scholar
Rothkegel, L. O. M., Trukenbrod, H. A., Schütt, H. H., Wichmann, F. A., & Engbert, R. (2017). Temporal evolution of the central fixation bias in scene viewing. Journal of Vision, 17(13), 3. https://doi.org/10.1167/17.13.3Google Scholar
Russell, B., Torralba, A., Murphy, K. P., & Freeman, W. T. (2008). LabelMe: A database and web-based tool for image annotation. International Journal of Computer Vision, 77(1–3), 157173.Google Scholar
Sanchez, C. A. (2012). Enhancing visuospatial performance through video game training to increase learning in visuospatial science domains. Psychonomic Bulletin and Review, 19(1), 5865. https://doi.org/10.3758/s13423-011-0177-7Google Scholar
Sanocki, T. (2003). Representation and perception of scenic layout. Cognitive Psychology, 47(1), 4386. https://doi.org/10.1016/S0010-0285(03)00002-1Google Scholar
Sanocki, T., & Epstein, W. (1997). Priming spatial layout of scenes. Psychological Science, 8(5), 374378. https://doi.org/10.1111/j.1467-9280.1997.tb00428.xGoogle Scholar
Schulman, A. I. (1973). Recognition memory and the recall of spatial location. Memory & Cognition, 1(3), 256260. https://doi.org/10.3758/BF03198106Google Scholar
Schyns, P. G., & Oliva, A. (1994). Evidence for time-and spatial-scale-dependent scene recognition. Psychological Science, 5(4), 195200.Google Scholar
Seltzer, S. E., Judy, P. F., Adams, D. F., Jacobson, F. L., Stark, P., Kikinis, R., Swensson, R. G., Hooton, S., Head, B., & Feldman, U. (1995). Spiral CT of the chest: Comparison of cine and film-based viewing. Radiology, 197(1), 7378. https://doi.org/10.1148/radiology.197.1.7568857Google Scholar
Serrano, A., Sitzmann, V., Ruiz-Borau, J., Wetzstein, G., Gutierrez, D., & Masia, B. (2017). Movie editing and cognitive event segmentation in virtual reality video. ACM Transactions on Graphics, 36(4), 112. https://doi.org/10.1145/3072959.3073668Google Scholar
Shafer-Skelton, A., & Brady, T. F. (2019). Scene layout priming relies primarily on low-level features rather than scene layout. Journal of Vision, 19(1), 14. https://doi.org/10.1167/19.1.14Google Scholar
Shepard, R. N. (1967). Recognition memory for words, sentences, and pictures. Journal of Verbal Learning and Verbal Behavior, 6(1), 156163. https://doi.org/10.1016/S0022-5371(67)80067-7Google Scholar
Simons, D., Chabris, C., Schnur, T., & Levin, D. (2002). Evidence for preserved representations in change blindness. Consciousness and Cognition, 11(1), 78–97.Google Scholar
Smelter, T. J., & Calvillo, D. P. (2020). Pictures and repeated exposure increase perceived accuracy of news headlines. Applied Cognitive Psychology, 34, 1061–1071. https://doi.org/10.1002/acp.3684Google Scholar
Smith, T. J., & Martin-Portugues Santacreu, J. Y. (2017). Match-action: The role of motion and audio in creating global change blindness in film. Media Psychology, 20(2), 317348. https://doi.org/10.1080/15213269.2016.1160789Google Scholar
Smith, T. T. J., & Henderson, J. J. M. (2008). Edit blindness: The relationship between attention and global change blindness in dynamic scenes. Journal of Eye Movement Research, 2(2). https://doi.org/10.16910/jemr.2.2.6Google Scholar
Song, J., Bennett, P., Sekuler, A., & Sun, H.-J. (2017). Effect of apparent depth in peripheral target detection in driving under focused and divided attention. Journal of Vision, 17(10), 388. https://doi.org/10.1167/17.10.388Google Scholar
Spence, I., & Feng, J. (2010). Video games and spatial cognition. Review of General Psychology, 14(2), 92104. https://doi.org/10.1037/a0019491Google Scholar
Spence, I., Wong, P., Rusan, M., & Rastegar, N. (2006). How color enhances visual memory for natural scenes. Psychological Science, 17(1), 16. https://doi.org/10.1111/j.1467-9280.2005.01656.xGoogle Scholar
Spiers, H. J., & Maguire, E. A. (2007). A navigational guidance system in the human brain. Hippocampus, 17(8), 618626. https://doi.org/10.1002/hipo.20298Google Scholar
Spinney, L. (2017). How Facebook, fake news and friends are warping your memory. Nature, 543(7644), 168170. https://doi.org/10.1038/543168aGoogle Scholar
Spotorno, S., Malcolm, G. L., & Tatler, B. W. (2014). How context information and target information guide the eyes from the first epoch of search in real-world scenes. Journal of Vision, 14(2), 7. https://doi.org/10.1167/14.2.7Google Scholar
Spotorno, S., Tatler, B. W., & Faure, S. (2013). Semantic consistency versus perceptual salience in visual scenes: Findings from change detection. Acta Psychologica, 142(2), 168176. https://doi.org/10.1016/J.ACTPSY.2012.12.009Google Scholar
Standing, L. (1973). Learning 10000 pictures. Quarterly Journal of Experimental Psychology, 25(2), 207222. https://doi.org/10.1080/14640747308400340Google Scholar
Standing, L., Conezio, J., & Haber, R. N. (1970). Perception and memory for pictures: Single-trial learning of 2500 visual stimuli. Psychonomic Science, 19(2), 7374. https://doi.org/10.3758/BF03337426Google Scholar
Summerfield, J. J., Lepsien, J., Gitelman, D. R., Mesulam, M. M., & Nobre, A. C. (2006). Orienting attention based on long-term memory experience. Neuron, 49(6), 905916. https://doi.org/10.1016/j.neuron.2006.01.021Google Scholar
Tanaka, J. W., & Presnell, L. M. (1999). Color diagnosticity in object recognition. Perception and Psychophysics, 61(6), 11401153. https://doi.org/10.3758/BF03207619Google Scholar
Tarr, M. J., & Pinker, S. (1989). Mental rotation and orientation-dependence in shape recognition. Cognitive Psychology, 21(2), 233282. https://doi.org/10.1016/0010-0285(89)90009-1Google Scholar
Tatler, B. W. (2007). The central fixation bias in scene viewing: Selecting an optimal viewing position independently of motor biases and image feature distributions. Journal of Vision, 7(14), 4. https://doi.org/10.1167/7.14.4Google Scholar
Tatler, B. W., & Land, M. F. (2011). Vision and the representation of the surroundings in spatial memory. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1564), 596610. https://doi.org/10.1098/rstb.2010.0188Google Scholar
Tatler, B., Hayhoe, M., Land, M., & Ballard, D. (2011). Eye guidance in natural vision: Reinterpreting salience. Journal of Vision, 11, 5.Google Scholar
Tatler, B. W., & Tatler, S. L. (2013). The influence of instructions on object memory in a real-world setting. Journal of Vision, 13(2):5, 1–13.Google Scholar
Torralba, A., Oliva, A., Castelhano, M. S., & Henderson, J. M. (2006). Contextual guidance of eye movements and attention in real-world scenes: The role of global features in object search. Psychological Review, 113(4), 766786. https://doi.org/10.1037/0033-295X.113.4.766Google Scholar
Treisman, A., & Kahneman, D. (1984). Changing views of attention and automaticity. In Parasuraman, R. & Davies, D. R. (Eds.), Varieties of attention (pp. 2961). New York: Academic Press.Google Scholar
Triesch, J., Ballard, D. H., Hayhoe, M. M., & Sullivan, B. T. (2003). What you see is what you need. Journal of Vision, 3(1), 8694. https://doi.org/10:1167/3.1.9Google Scholar
Tseng, P. H., Carmi, R., Cameron, I. G. M., Munoz, D. P., & Itti, L. (2009). Quantifying center bias of observers in free viewing of dynamic natural scenes. Journal of Vision, 9(7), 4. https://doi.org/10.1167/9.7.4Google Scholar
Ullman, S. (1989). Aligning pictorial descriptions: An approach to object recognition. Cognition, 32(3), 193254. https://doi.org/10.1016/0010-0277(89)90036-XGoogle Scholar
Underwood, G., Humphreys, L., & Cross, E. (2007). Congruency, saliency and gist in the inspection of objects in natural scenes. Eye Movements, 563, 7. https://doi.org/10.1016/B978-008044980-7/50028-8Google Scholar
van der Lans, R., & Wedel, M. (2017). Eye movements during search and choice. International Series in Operations Research and Management Science, 254, 331359. https://doi.org/10.1007/978-3-319-56941-3_11Google Scholar
, Melissa L.-H., & Henderson, J. M. (2009). Does gravity matter? Effects of semantic and syntactic inconsistencies on the allocation of attention during scene perception. Journal of Vision, 9(3), 24.115. https://doi.org/10.1167/9.3.24Google Scholar
, Melissa L. -H., & Henderson, J. M. (2011). Object-scene inconsistencies do not capture gaze: Evidence from the flash-preview moving-window paradigm. Attention, Perception & Psychophysics, 73(6), 17421753. https://doi.org/10.3758/s13414-011-0150-6Google Scholar
, M. L. H., & Wolfe, J. M. (2013). Differential electrophysiological signatures of semantic and syntactic scene processing. Psychological science, 24(9), 1816–1823.Google Scholar
, Melissa L.-H., Boettcher, S. E., & Draschkow, D. (2019). Reading scenes: How scene grammar guides attention and aids perception in real-world environments. Current Opinion in Psychology, 29, 205210. https://doi.org/10.1016/J.COPSYC.2019.03.009Google Scholar
Wade, K. A., Garry, M., Read, J. D., & Lindsay, D. S. (2002). A picture is worth a thousand lies: Using false photographs to create false childhood memories. Psychonomic Bulletin and Review, 9(3), 597603. https://doi.org/10.3758/BF03196318Google Scholar
Waller, D., Friedman, A., Hodgson, E., & Greenauer, N. (2009). Learning scenes from multiple views: Novel views can be recognized more efficiently than learned views. Memory & Cognition, 37(1), 9099. https://doi.org/10.3758/MC.37.1.90Google Scholar
Warren, W. H. (2012). Does this computational theory solve the right problem? Marr, Gibson, and the goal of vision. Perception, 41(9), 10531060. https://doi.org/10.1068/p7327Google Scholar
Wedel, M. (2017). Improving ad interfaces with eye tracking. In K. L. Norman and J. Kirakowski (Eds.), The Wiley Handbook of Human Computer Interaction Set (vol. 2, pp. 889907). New York: Wiley. https://doi.org/10.1002/9781118976005.ch41Google Scholar
Wedel, M., & Pieters, R. (2000). Eye fixations on advertisements and memory for brands: A model and findings. Marketing Science, 19(4), 297312. https://doi.org/10.1287/mksc.19.4.297.11794Google Scholar
Wichmann, F. A., Sharpe, L. T., & Gegenfurtner, K. R. (2002). The contributions of color to recognition memory for natural scenes. Journal of Experimental Psychology: Learning Memory and Cognition, 28(3), 509520. https://doi.org/10.1037/0278-7393.28.3.509Google Scholar
Williams, C. C. (2010). Incidental and intentional visual memory: What memories are and are not affected by encoding tasks? Visual Cognition, 18(9), 13481367. https://doi.org/10.1080/13506285.2010.486280Google Scholar
Williams, C. C. (2020). Looking for your keys: The interaction of attention, memory, and eye movements in visual search. In Federmeier, K. & Schotter, E. R. (Eds.), Gazing toward the future: Advances in eye movement theory and applications (p. 195). New York: Academic Press.Google Scholar
Williams, C. C., & Castelhano, M. S. (2019). The changing landscape: High-level influences on eye movement guidance in scenes. Vision, 3(3), 33. https://doi.org/10.3390/vision3030033Google Scholar
Williams, C. C., Zacks, R. T., & Henderson, J. M. (2009). Age differences in what is viewed and remembered in complex conjunction search. Quarterly Journal of Experimental Psychology, 62(5), 946966. https://doi.org/10.1080/17470210802321976Google Scholar
Williams, L. H., & Drew, T. (2019). What do we know about volumetric medical image interpretation? A review of the basic science and medical image perception literatures. Cognitive Research: Principles and Implications, 4(1), 124. https://doi.org/10.1186/s41235-019-0171-6Google Scholar
Wirth, S., Baraduc, P., Planté, A., Pinède, S., & Duhamel, J. R. (2017). Gaze-informed, task-situated representation of space in primate hippocampus during virtual navigation. PLoS Biology, 15(2), e2001045. https://doi.org/10.1371/journal.pbio.2001045Google Scholar
Wolfe, J. M. (2007). Guided search 4.0. In Wayne D. Gray (Ed.), Integrated models of cognitive systems (pp. 99–119). Oxford: Oxford University Press.Google Scholar
Wolfe, J. M., Alaoui Soce, A., & Schill, H. M. (2017). How did I miss that? Developing mixed hybrid visual search as a “model system” for incidental finding errors in radiology. Cognitive Research: Principles and Implications, 2(1), 110. https://doi.org/10.1186/s41235-017-0072-5Google Scholar
Wolfe, J. M., Horowitz, T. S., & Kenner, N. M. (2005). Rare items often missed in visual searches. Nature, 435(7041), 439440. https://doi.org/10.1038/435439aGoogle Scholar
Wolfe, J. M., Evans, K. K., Drew, T., Aizenman, A., & Josephs, E. (2016). How do radiologists use the human search engine? Radiation Protection Dosimetry, 169(1), 2431. https://doi.org/10.1093/rpd/ncv501Google Scholar
Wolfe, J. M., Horowitz, T. S., Van Wert, M. J., Kenner, N. M., Place, S. S., & Kibbi, N. (2007). Low target prevalence is a stubborn source of errors in visual search tasks. Journal of Experimental Psychology: General, 136(4), 623638. https://doi.org/10.1037/0096-3445.136.4.623Google Scholar
Wu, S., Cheng, C. K., Feng, J., D’Angelo, L., Alain, C., & Spence, I. (2012). Playing a first-person shooter video game induces neuroplastic change. Journal of Cognitive Neuroscience, 24(6), 18. https://doi.org/10.1162/jocn_a_00192Google Scholar
Yao, A. Y. J., & Einhauser, W. (2008). Color aids late but not early stages of rapid natural scene recognition. Journal of Vision, 8(16), 12–12. https://doi.org/10.1167/8.16.12Google Scholar
Yarbus, A. L. (1967). Eye movements and vision. New York: Springer. https://doi.org/10.1007/978-1-4899-5379-7Google Scholar
Zelinsky, G. J. (2008). A theory of eye movements during target acquisition. Psychological Review, 115(4), 787835. https://doi.org/2008-14936-011Google Scholar
Zelinsky, G. J., & Loschky, L. C. (2005). Eye movements serialize memory for objects in scenes. Perception & Psychophysics, 67(4), 676690. https://doi.org/10.3758/bf03193524Google Scholar
Zelinsky, G. J., Chen, Y., Ahn, S., & Adeli, H. (2020). Changing perspectives on goal-directed attention control: The past, present, and future of modeling fixations during visual search. In Federmeier, K. D. & Schotter, E. R. (Eds.), Gazing toward the future: Advances in eye movement theory and applications (pp. 231286). New York: Academic Press. https://doi.org/10.1016/bs.plm.2020.08.001Google Scholar
Zelinsky, G. J., Rao, R. P. N., Hayhoe, M. M., & Ballard, D. H. (1997). Eye movements reveal the spatiotemporal dynamics of visual search. Psychological Science, 8(6), 448453. https://doi.org/10.1111/j.1467-9280.1997.tb00459.xGoogle Scholar
Zhao, M., Gersch, T. M., Schnitzer, B. S., Dosher, B. A., & Kowler, E. (2012). Eye movements and attention: The role of pre-saccadic shifts of attention in perception, memory and the control of saccades. Vision Research, 74, 4060. https://doi.org/10.1016/J.VISRES.2012.06.017Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Elements of Scene Perception
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Elements of Scene Perception
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Elements of Scene Perception
Available formats
×