Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T17:04:52.342Z Has data issue: false hasContentIssue false

Dynamic Approaches to Phonological Processing

Published online by Cambridge University Press:  06 April 2023

Hunter Hatfield
Affiliation:
University of Otago, New Zealand

Summary

Natural language occurs in time. Events happen earlier, later, or simultaneously with other events; however, this temporal dimension is often downplayed or overlooked. This Element introduces readers with a background in structural linguistics to dynamic approaches to phonological processing. It covers models of serial order, speech production and speech perception, with special attention to how they can enhance one another. The work then asks whether dynamic approaches have the potential to change how we think of phonological structure. Key ideas discussed include phonemes and auditory targets, control mechanisms creating structure, and the shape of phonological representations in a dynamic context. The work should function as a bridge for those with linguistic questions who want to learn answers derived from the study of speech as a dynamic system.
Get access
Type
Element
Information
Online ISBN: 9781009258661
Publisher: Cambridge University Press
Print publication: 11 May 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arvaniti, A. (2009). Rhythm, timing and the timing of rhythm. Phonetica, 66(1–2), 4663.CrossRefGoogle ScholarPubMed
Bauer, L., Warren, P., Bardsley, D., Kennedy, M., & Major, G. (2007). New Zealand English. Journal of the International Phonetic Association, 37(1), 97102. http://doi.org/10.1017/S0025100306002830.Google Scholar
Baxter, G. J., Blythe, R. A., Croft, W., & McKane, A. J. (2009). Modeling language change: An evaluation of Trudgill’s theory of the emergence of New Zealand English. Language Variation and Change, 21(2), 257–96. https://doi.org/10.1017/S095439450999010X.Google Scholar
Beckner, C., Blythe, R., Bybee, J., et al. (2009). Language is a complex adaptive system: Position paper. Language Learning, 59, 126. https://doi.org/10.1111/j.1467-9922.2009.00533.x.Google Scholar
Bod, R., Hay, J., & Jannedy, S. (2003). Probabilistic Linguistics. Cambridge, MA: MIT Press.Google Scholar
Boersma, P. (1998). Functional Phonology: Formalizing the Interaction between Articulatory and Perceptual Drives. The Hague: Holland Academic Graphics.Google Scholar
Bohland, J. W., Bullock, D., & Guenther, F. H. (2010). Neural representations and mechanisms for the performance of simple speech sequences. Journal of Cognitive Neuroscience, 22(7), 1504–29.Google Scholar
Boucher, V. J. (2021). The Study of Speech Processes: Addressing the Writing Bias in Language Science. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Boucher, V. J., Gilbert, A. C., & Jemel, B. (2019). The role of low-frequency neural oscillations in speech processing: Revisiting delta entrainment. Journal of Cognitive Neuroscience, 31(8), 111. https://doi.org/10.1162/jocn_a_01410.Google Scholar
Bowers, J. S., Kazanina, N., & Andermane, N. (2016). Spoken word identification involves accessing position invariant phoneme representations. Journal of Memory and Language, 87, 7183. https://doi.org/10.1016/j.jml.2015.11.002.Google Scholar
Browman, C. P., & Goldstein, L. M. (1986). Towards an articulatory phonology. Phonology Yearbook, 3, 219–52.Google Scholar
Browman, C. P., & Goldstein, L. M. (1989). Articulatory gestures as phonological units. Phonology, 6(2), 201–51.CrossRefGoogle Scholar
Brown, G. D. A., Preece, T., & Hulme, C. (2000). Oscillator-based memory for serial order. Psychological Review, 107(1), 127181. https://psycnet.apa.org/doi/10.1037/0033-295X.107.1.127Google Scholar
Burgess, N., & Hitch, G. J. (1992). Towards a network model of the articulatory loop. Journal of Memory and Language, 31, 429–60.Google Scholar
Burgess, N., & Hitch, G. J. (1999). Memory for serial order: A network model of the phonological loop and its timing. Psychological Review, 106, 551–81.Google Scholar
Burgess, N., & Hitch, G. J. (2006). A revised model of short-term memory and long-term learning of verbal sequences. Journal of Memory and Language, 55, 627–52. https://doi.org/10.1016/j.jml.2006.08.005.Google Scholar
Buzsaki, G. (2006). Rhythms of the Brain. New York: Oxford University Press.CrossRefGoogle Scholar
Bybee, J. (2003). Phonology and Language Use (vol. 94). Cambridge: Cambridge University Press.Google Scholar
Byrd, D. (1996). A phase window framework for articulatory timing. Phonology, 13, 139–69.CrossRefGoogle Scholar
Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181204. https://doi.org/10.1017/S0140525X12000477.Google Scholar
Clark, A. (2015). Surfing Uncertainty: Prediction, Action, and the Embodied Mind. Oxford: Oxford University Press.Google Scholar
Collins, J. (2019). Neural attractors and phonological grammar: What the sounds patterns of language can tell us about the brain (Doctoral thesis, The Arctic University of Norway).Google Scholar
Coltheart, M., & Rastle, K. (1994). Serial processing in reading aloud: Evidence for dual-route models of reading. Journal of Experimental Psychology: Human Perception and Performance, 20(6), 1197–211. https://doi.org/10.1037/0096-1523.20.6.1197.Google Scholar
Cutini, S., Szűcs, D., Mead, N., Huss, M., & Goswami, U. (2016). Atypical right hemisphere response to slow temporal modulations in children with developmental dyslexia. Neuroimage, 143, 40–9. https://doi.org/10.1016/j.neuroimage.2016.08.012.Google Scholar
De Saussure, F. (2011[1916]). Course in General Linguistics. New York: Columbia University Press.Google Scholar
Dell, G. S. (1986). A spreading activation theory of retrieval in sentence production. Psychological Review, 93, 283321.Google Scholar
Di Lollo, V. (2012). The feature-binding problem is an ill-posed problem. Trends in Cognitive Sciences, 16(6), 317–21. https://doi.org/10.1016/j.tics.2012.04.007.Google Scholar
Donegan, P. J., & Stampe, D. (1979). The study of Natural Phonology. In Dinnsen, D., ed., Current Approaches to Phonological Theory. Bloomington: Indiana University Press, 126–73.Google Scholar
Drager, K. (2009). A sociophonetic ethnography of Selwyn Girls’ High (Doctoral thesis, University of Canterbury).Google Scholar
Elliott, J. G. (2020). It’s time to be scientific about dyslexia. Reading Research Quarterly, 55, S61S75. https://doi.org/10.1002/rrq.333.Google Scholar
Erlhagen, W., & Schöner, G. (2002). Dynamic field theory of movement preparation. Psychological Review, 109(3), 545–72. https://doi.org/10.1037/0033-295x.109.3.545.Google Scholar
Evans, V. (2009). How Words Mean: Lexical Concepts, Cognitive Models, and Meaning Construction. Oxford: Oxford University Press.Google Scholar
Foulkes, P., & Docherty, G. (2006). The social life of phonetics and phonology. Journal of Phonetics, 34(4), 409–38. https://doi.org/10.1016/j.wocn.2005.08.002.CrossRefGoogle Scholar
Fowler, C. A., Shankweiler, D., & Studdert-Kennedy, M. (2016). Perception of the speech code revisited: Speech is alphabetic after all. Psychological Review, 123(2), 125–50. https://doi.org/10.1037/rev0000013.Google Scholar
Fraga González, G., Karipidis, I. I., & Tijms, J. (2018). Dyslexia as a neurodevelopmental disorder and what makes it different from a chess disorder. Brain Sciences, 8(10), 189.Google Scholar
Frisch, S. A. (2017). Exemplar theories in phonology. In Hannahs, S. J. & Bosch, A. R. K., eds., The Routledge Handbook of Phonological Theory. London: Routledge, 553–68.Google Scholar
Friston, K. (2009) The free-energy principle: A rough guide to the brain? Trends in Cognitive Sciences, 13(7), 293301.Google Scholar
Friston, K. J. (2010) The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–38.Google Scholar
Fusaroli, R., & Tylén, K. (2016). Investigating conversational dynamics: Interactive alignment, Interpersonal synergy, and collective task performance. Cognitive Science, 40(1), 145–71. https://doi.org/10.1111/cogs.12251.CrossRefGoogle ScholarPubMed
Gafos, A., & Kirov, C. (2009). A dynamical model of change in phonological representations: The case of lenition. In Chitoran, J., Marsico, E., Pellegrino, F., & Coupé, C., eds., Approaches to Phonological Complexity. Berlin: Mouton de Gruyter, 219–40.Google Scholar
Galantucci, B., Fowler, C. A., & Turvey, M. T. (2006). The motor theory of speech perception reviewed. Psychonomic Bulletin & Review, 13(3), 361–77.Google Scholar
Ghitza, O. (2011). Linking speech perception and neurophysiology: Speech decoding guided by cascaded oscillators locked to the input rhythm. Frontiers in Psychology, 2, 113. https://doi: 10.3389/fpsyg.2011.00130.Google Scholar
Ghitza, O., & Greenberg, S. (2009). On the possible role of brain rhythms in speech perception: Intelligibility of time-compressed speech with periodic and aperiodic insertions of silence. Phonetica, 66, 113–26. https://doi.org/10.1159/000208934.Google Scholar
Giraud, A.-L., & Poeppel, D. (2012). Cortical oscillations and speech processing: Emerging computational principles and operations. Nature Neuroscience, 15(4), 511–17. https://doi.org/10.1038/nn.3063.CrossRefGoogle ScholarPubMed
Goldberg, A. E. (2006). Constructions at Work: The Nature of Generalization in Language. Oxford: Oxford University Press.Google Scholar
Goldberg, A., & Suttle, L. (2010). Construction grammar. Wiley Interdisciplinary Reviews: Cognitive Science, 1(4), 468–77.Google Scholar
Goldstein, L., & Iskarous, K. (2018). The dynamics of prominence profiles: From local computation to global patterns. In Brentari, D. & Lee, J. L., eds., Shaping Phonology. Chicago: University of Chicago Press, 253–77.Google Scholar
Goldstein, L., Nam, H., Saltzman, E., & Chitoran, I. (2009). Coupled oscillator planning model of speech timing and syllable structure. In Fant, C., Gunnar, M., Fujisaki, H., & Shen, J., eds., Frontiers in Phonetics and Speech Science. Shanghai: The Commercial Press, 239–49.Google Scholar
Goswami, U. (2011). A temporal sampling framework for developmental dyslexia. Trends in Cognitive Sciences, 15(1), 310. https://doi.org/10.1016/j.tics.2010.10.001.Google Scholar
Grabe, E., & Low, E. L. (2002) Durational variability in speech and the rhythm class hypothesis. In Gussenhoven, C. & Warner, N., eds., Laboratory Phonology 7. Berlin: Mouton deGruyter, 515–46.Google Scholar
Grossberg, S. (1978). A theory of human memory: Self-organization and performance of sensory-motor codes, maps, and plans. In Rosen, R. & Snell, F., eds., Progress in Theoretical Biology. New York: Academic Press, 233374.CrossRefGoogle Scholar
Guenther, F. H. (2016). Neural Control of Speech. Cambridge, MA: MIT PressGoogle Scholar
Guy, G. R. (2014). Linking usage and grammar: Generative phonology, exemplar theory, and variable rules. Lingua, 142, 5765. https://doi.org/10.1016/j.lingua.2012.07.007.CrossRefGoogle Scholar
Haegens, S., & Golumbic, E. Z. (2018). Rhythmic facilitation of sensory processing: A critical review. Neuroscience & Biobehavioral Reviews, 86, 150–65. https://doi.org/10.1016/j.neubiorev.2017.12.002.Google Scholar
Hämäläinen, J. A., Rupp, A., Soltész, F., Szücs, D., & Goswami, U. (2012). Reduced phase locking to slow amplitude modulation in adults with dyslexia: An MEG study. Neuroimage, 59(3), 2952–61. https://doi.org/10.1016/j.neuroimage.2011.09.075.Google Scholar
Harper, S. (2021). Individual differences in phonetic variability and phonological representation (Doctoral thesis, University of Southern California).Google Scholar
Hartley, T., Hurlstone, M. J., & Hitch, G. J. (2016). Effects of rhythm on memory for spoken sequences: A model and tests of its stimulus-driven mechanism. Cognitive Psychology, 87, 135–78. http://dx.doi.org/10.1016/j.cogpsych.2016.05.001.Google Scholar
Hayes, B. (1995). Metrical Stress Theory: Principles and Case Studies. Chicago: University of Chicago Press.Google Scholar
Hitch, G. J., Hurlstone, M. J., & Hartley, T. (2022). Computational models of working memory for language. In Schwieter, J. W. & Zhisheng, W., eds., The Cambridge Handbook of Working Memory and Language. Cambridge: Cambridge University Press, 143–74.Google Scholar
Hoffmann, T., & Trousdale, G. (2013). The Oxford Handbook of Construction Grammar. Oxford: Oxford University Press.Google Scholar
Houghton, G., & Hartley, T. (1995). Parallel models of serial behavior: Lashley revisited. Psyche, 2(25), 125.Google Scholar
Hurlstone, M. J. (2021). Serial recall. In Kahana, M. J., & Wagner, A. D., eds., The Oxford Handbook of Human Memory. Oxford: Oxford University Press.Google Scholar
Hurring, G., Hay, J., Drager, K., Podlubny, R., Manhire, L., & Ellis, A. (2022). Social priming in speech perception: Revisiting kangaroo/kiwi priming in New Zealand English. Brain Sciences, 12(6), 684. https://doi.org/10.3390/brainsci12060684.Google Scholar
Iskarous, K. (2016). Compatible dynamical models of environment, sensory, and perceptual systems. Ecological Psychology, 28(4), 295311. http://dx.doi.org/10.1080/10407413.2016.1230377.Google Scholar
Izhikevich, E. M (2010). Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. Cambridge, MA: MIT Press.Google Scholar
Jones, M. R. (1976). Time, our lost dimension: Toward a new theory of perception, attention, and memory. Psychological Review, 83, 323–35.Google Scholar
Jones, M. R. (1986). Attentional rhythmicity in human perception. In Evans, J. R. & Clynes, M., eds., Rhythm in Psychological, Linguistic and Musical Processes. Springfield, IL: Charles C Thomas, Publisher, 1340.Google Scholar
Jun, S. A. (Ed.). (2005). Prosodic Typology: The Phonology of Intonation and Phrasing. Oxford: Oxford University Press.CrossRefGoogle Scholar
Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S., Hudspeth, A. J., & Mack, S., eds. (2000). Principles of Neural Science. New York: McGraw-Hill.Google Scholar
Kazanina, N., Bowers, J. S., & Idsardi, W. (2018). Phonemes: Lexical access and beyond. Psychonomic Bulletin & Review, 25(2), 560–85. https://doi.org/10.3758/s13423-017-1362-0.Google Scholar
Kemmerer, D. (2014). Cognitive Neuroscience of Language. London: Psychology Press.Google Scholar
Kirchner, R. M. (1998). An Effort-Based Approach to Consonant Lenition (Doctoral thesis, University of California, Los Angeles).Google Scholar
Lakatos, P., Musacchia, G., O’Connell, M. N., et al. (2013) The spectrotemporal filter mechanism of auditory selective attention. Neuron, 77, 750–61. https://doi.org/10.1016/j.neuron.2012.11.034.Google Scholar
Large, E. W., & Jones, M. R. (1999). The dynamics of attending: How people track time-varying events. Psychological Review, 106(1), 119–59. https://doi.org/10.1037/0033-295X.106.1.119.Google Scholar
Lashley, K. S. (1951). The Problem of Serial Order in Behavior. Oxford: Bobbs-Merrill.Google Scholar
Lehiste, I. (1977). Isochrony reconsidered. Journal of Phonetics, 5(3), 253–63.Google Scholar
Levelt, W. J. (1993). Speaking: From Intention to Articulation. Cambridge, MA: MIT press.Google Scholar
Levy, R. (2008). Expectation-based syntactic comprehension. Cognition, 106(3), 1126–77.Google Scholar
Lewandowsky, S., & Farrell, S. (2008). Short-term memory: New data and a model. The Psychology of Learning and Motivation, 49, 148. https://doi.org/10.1016/S0079-7421(08)00001-7.Google Scholar
Liang, P., Wu, S., & Gu, F. (2016). An Introduction to Neural Information Processing. Dordrecht: Springer.Google Scholar
Liberman, A. M., & Mattingly, I. G. (1985). The motor theory of speech perception revised. Cognition, 21(1), 136.Google Scholar
Lisman, J. E., & Jensen, O. (2013) The theta-gamma neural code. Neuron, 77, 1002–16. https://doi.org/10.1016/j.neuron.2013.03.007.Google Scholar
Lizarazu, M., Lallier, M., Molinaro, N., Bourguignon, M., et al. (2015). Developmental evaluation of atypical auditory sampling in dyslexia: Functional and structural evidence. Human Brain Mapping, 36(12), 49865002. https://doi.org/10.1002/hbm.22986.Google Scholar
Logan, G. D. (2018). Automatic control: How experts act without thinking. Psychological Review, 125(4), 453-85.Google Scholar
Luo, H., & Poeppel, D. (2007). Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex. Neuron, 54, 1001–10. https://doi.org/10.1016/j.neuron.2007.06.004.CrossRefGoogle ScholarPubMed
Marr, D. (1982). Vision: A Computational Approach. San Francisco: Freeman & Co.Google Scholar
McClelland, J. L., & Elman, J. L. (1986). The TRACE model of speech perception. Cognitive Psychology, 18(1), 186.Google Scholar
Mesgarani, N., & Chang, E.F. (2012) Selective cortical representation of attended speaker in multi-talker speech perception. Nature, 485, 233–6. https://doi.org/10.1038/nature11020.Google Scholar
Meyer, L. (2018) The neural oscillations of speech processing and language comprehension: State of the art and emerging mechanisms. European Journal of Neuroscience, 28, 26092621. https://doi.org/10.1111/ejn.13748.Google Scholar
Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 8197. https://doi.org/10.1037/h0043158.Google Scholar
Mills, G. J. (2014). Dialogue in joint activity: Complementarity, convergence and conventionalization. New Ideas in Psychology, 32, 158–73. https://doi.org/10.1016/j.newideapsych.2013.03.006.Google Scholar
Monahan, P. J., Schertz, J., Fu, Z., & Pérez, A. (2022). Unified coding of spectral and temporal phonetic cues: Electrophysiological evidence for abstract phonological features. Journal of Cognitive Neuroscience, 34(4), 618–38. https://doi.org/10.1162/jocn_a_01817.CrossRefGoogle ScholarPubMed
Munson, B., McDonald, E. C., DeBoe, N. L., & White, A. R. (2006). The acoustic and perceptual bases of judgments of women and men’s sexual orientation from read speech. Journal of Phonetics, 34(2), 202–40.Google Scholar
Nagy, N. (2013). Phonology and sociolinguistics. In Bayley, R., Cameron, R., and Lucas, C., eds., The Oxford Handbook of Sociolinguistics. Oxford: Oxford University Press, pp. 425-444.Google Scholar
Nathan, G. S. (2008). Phonology: A Cognitive Grammar Introduction. Amsterdam: John BenjaminsGoogle Scholar
Oganian, Y., & Chang, E. F. (2019). A speech envelope landmark for syllable encoding in human superior temporal gyrus. Science Advances, 5(11), 113. https://doi.org/10.1126/sciadv.aay6279.Google Scholar
Oganian, Y., Fox, N. P., & Chang, E. F. (2022). Cortical representation of speech sounds: Insights from intracranial electrophysiology of speech sound processing. In Holt, L.L., Peelle, J. E., Coffin, A. B., Popper, A. N., & Fay, R. R., eds., Speech Perception. New York: The ASA Press, 4580.Google Scholar
Ojemann, G. A. (1987). Surgical therapy for medically intractable epilepsy. Journal of Neurosurgery, 66(4), 489–99. https://doi.org/10.3171/jns.1987.66.4.0489.Google Scholar
Ostrand, R., & Chodroff, E. (2021). It’s alignment all the way down, but not all the way up: Speakers align on some features but not others within a dialogue. Journal of Phonetics, 88, article 101074. https://doi.org/10.1016/j.wocn.2021.101074.Google Scholar
O’Sullivan, J. A., Herrero, J., Smith, E. et al. (2019). Hierarchical encoding of attended auditory objects in multi-talker speech perception. Neuron, 104(6), 1195–209. https://doi.org/10.1016/j.neuron.2019.09.007.Google Scholar
Pasley, B. N., David, S. V., Mesgarani, N., et al. (2012). Reconstructing speech from human auditory cortex. PLoS Biology, 10(1), article e1001251. https://doi.org/10.1371/journal.pbio.1001251.Google Scholar
Peelle, J. E. & Davis, M. H. (2012) Neural oscillations carry speech rhythm through to comprehension. Frontiers in Psychology, 3, article 320. https://doi.org/10.3389/fpsyg.2012.00320.Google Scholar
Piai, V., & Zheng, X. (2019). Chapter Eight – Speaking waves: Neuronal oscillations in language production. Psychology of Learning and Motivation, 71, 265302. https://doi.org/10.1016/bs.plm.2019.07.002.Google Scholar
Pickering, M. J., & Clark, A. (2014). Getting ahead: Forward models and their place in cognitive architecture. Trends in Cognitive Science, 18(9), 451–56. http://dx.doi.org/10.1016/j.tics.2014.05.006.CrossRefGoogle ScholarPubMed
Pickering, M. J., & Garrod, S. (2004). Toward a mechanistic psychology of dialogue. Behavioral and Brain Sciences, 27(2), 169–90. https://doi.org/10.1017/S0140525X04000056.Google Scholar
Pickering, M. J., & Garrod, S. (2013). An integrated theory of language production and comprehension. Behavioral and Brain Sciences, 36(4), 329–47. https://doi.org/10.1017/S0140525X12001495.Google Scholar
Pickering, M. J., & Garrod, S. (2014). Self-, other-, and joint monitoring using forward models. Frontiers in Human Neuroscience, 8, article 132. https://doi.org/10.3389/fnhum.2014.00132.Google Scholar
Pierrehumbert, J. (2001). Exemplar dynamics: Word frequency, lenition, and contrast. In Bybee, J. and Hopper, P., eds., Frequency Effects and the Emergence of Linguistic Structure. Amsterdam: John Benjamins, Amsterdam, 137–57.Google Scholar
Pierrehumbert, J. B. (2003) Phonetic diversity, statistical learning, and acquisition of phonology. Language and Speech, 46, 115–54.Google Scholar
Protopas, A. (2014). From temporal processing to developmental language disorders: mind the gap. Philosophical Transactions of the Royal Society B, 369, 111. https://doi.org/10.1098/rstb.2013.0090.Google Scholar
Protopapas, A., & Parrila, R. (2018). Is dyslexia a brain disorder? Brain Sciences, 8(4), 61. http://doi.org/10.3390/brainsci8040061.Google Scholar
Ramus, F., Nespor, M., & Mehler, J. (1999). Correlates of linguistic rhythm in the speech signal. Cognition, 73, 265–92.Google Scholar
Roelofs, A. (1997). The WEAVER model of word-form encoding in speech production. Cognition, 64, 249–84.Google Scholar
Roon, K. D., & Gafos, A. I. (2016). Perceiving while producing: Modeling the dynamics of phonological planning. Journal of Memory and Language, 89, 222–43. https://doi.org/10.1016/j.jml.2016.01.005.Google Scholar
Saltzman, E., & Byrd, D. 2000. Task-dynamics of gestural timing: Phase windows and multifrequency rhythms. Human Movement Science, 19, 499526.Google Scholar
Saltzman, E. L., & Munhall, K. G. 1989. A dynamical approach to gestural patterning in speech production. Ecological Psychology, 1, 333–82Google Scholar
Saltzman, E., Nam, H., Krivokapic, J., & Goldstein, L. (2008). A task-dynamic toolkit for modeling the effects of prosodic structure on articulation. In Barbosa, P. A., Madureira, S., & Reis, C., eds., Proceedings of the Speech Prosody 2008 Conference. Campinas: Editora RG/CNPq.Google Scholar
Samuel, A. G. (2020). Psycholinguists should resist the allure of linguistic units as perceptual units. Journal of Memory and Language, 111, 112. https://doi.org/10.1016/j.jml.2019.104070.Google Scholar
Sasisekaran, J. (2012). Effects of delayed auditory feedback on speech kinematics in fluent speakers. Perceptual and Motor Skills, 115(3), 845–64. https://doi.org/10.2466/15.22.PMS.115.6.845-864.Google Scholar
Schöner, G., & Spencer, J. (2015). Dynamic Thinking: A Primer on Dynamic Field Theory. Oxford: Oxford University Press.Google Scholar
Sedivy, J. (2019). Language in Mind: An Introduction to Psycholinguistics (2nd ed.). Oxford: Oxford University Press.Google Scholar
Segalowitz, S. J., & Chevalier, H. (1998). Event-related potential (ERP) research in neurolinguistics, part I, techniques and applications to lexical access. In Stemmer, B. E. & Whitaker, H. A., eds., Handbook of Neurolinguistics. San Diego: Academic Press, 95109.Google Scholar
Shattuck-Hufnagel, S. (1979). Speech errors as evidence for a serial-ordering mechanism in sentence production. In Cooper, W. E. & Walker, E. C. T., eds., Sentence Processing: Psycholinguistic Studies Presented to Merrill Garrett. Hillsdale, NJ: Erlbaum, 295342.Google Scholar
Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379423.Google Scholar
Spivey, M. (2008). The Continuity of Mind. Oxford: Oxford University Press.Google Scholar
Spivey, M., Joanisse, M., & McRae, K. (Eds.). (2012). The Cambridge Handbook of Psycholinguistics. Cambridge: Cambridge University Press.Google Scholar
Stevens, K. N. (2002). Toward a model for lexical access based on acoustic landmarks and distinctive features. The Journal of the Acoustical Society of America, 111(4), 1872–91.Google Scholar
Stevens, K. N., & Halle, M. (1967) Remarks on the analysis by synthesis and distinctive features. In Walthen-Dunn, W., ed., Models for the Perception of Speech and Visual Form. Cambridge, MA: MIT Press, 88102.Google Scholar
St. Pierre, T., Cooper, A., & Johnson, E. K. (2021). Cross-generational phonetic alignment between mothers and their children. Language Learning and Development, 18(4), 393414. https://doi.org/10.1080/15475441.2021.1979401.Google Scholar
Tilsen, S. (2013). A dynamical model of hierarchical selection and coordination in speech planning. PLoS One, 8(4), article e62800. https://doi.org/10.1371/journal.pone.0062800.Google Scholar
Tilsen, S. (2014). Selection-coordination theory. Cornell Working Papers in Phonetics and Phonology.Google Scholar
Tilsen, S. (2016). Selection and coordination: The articulatory basis for the emergence of phonological structure. Journal of Phonetics, 55, 5377. https://doi.org/10.1016/j.wocn.2015.11.005.CrossRefGoogle Scholar
Tilsen, S. (2018). Three mechanisms for modeling articulation: Selection, coordination, and intention. Cornell Working Papers in Phonetics and Phonology.Google Scholar
Tilsen, S. (2019a). Motoric mechanisms for the emergence of non-local phonological patterns. Frontiers in Psychology, 10, 2143. https://doi.org/10.3389/fpsyg.2019.02143.Google Scholar
Tilsen, S. (2019b). Space and time in models of speech rhythm. Annals of the New York Academy of Sciences, 1453(1), 4766. https://doi.org/10.1111/nyas.14102.Google Scholar
Tilsen, S. (2019c). Syntax with Oscillators and Energy Levels. Berlin: Language Science Press.Google Scholar
Tilsen, S. (2020). Detecting anticipatory information in speech with signal chopping. Journal of Phonetics, 82, 126. https://doi.org/10.1016/j.wocn.2020.100996.Google Scholar
Tune, S., & Obleser, J. (2022). A parsimonious look at neural oscillations in speech perception. In Holt, L. L., Peelle, J. E., Coffin, A. B., Popper, A. N., & Fay, R. R., eds., Speech Perception. New York: The ASA Press, 81112.Google Scholar
Turk, A., & Shattuck-Hufnagel, S. (2013). What is speech rhythm? A commentary inspired by Arvaniti & Rodriquez, Krivokapić, and Goswami & Leong. Laboratory Phonology, 4(1), 93118.CrossRefGoogle Scholar
Turk, A., & Shattuck-Hufnagel, S. (2020). Speech Timing: Implications for Theories of Phonology, Phonetics, and Speech Motor Control. Oxford: Oxford University Press.Google Scholar
van Geert, P. (1991). A dynamic systems model of cognitive and language growth. Psychological Review, 98(1), 353. https://doi.org/10.1037/0033-295X.98.1.3.Google Scholar
van Geert, P. (2003). Dynamic systems approaches and modeling of developmental processes. In Schinka, J. A., Velicer, W. F., Healy, A. F., et al., eds., Handbook of Developmental Psychology. New York: Sage Publications,640–72.Google Scholar
Vousden, J. I., Brown, G. D., & Harley, T. A. (2000). Serial control of phonology in speech production: A hierarchical model. Cognitive Psychology, 41(2), 101–75.Google Scholar
White, L., & Mattys, S. L. (2007). Calibrating rhythm: First language and second language studies. Journal of Phonetics, 35, 501–22. https://doi.org/10.1016/j.wocn.2007.02.003.Google Scholar
Wijnants, M. L., Hasselman, F., Cox, R. F. A., Bosman, A. M. T., & Van Orden, G. (2012). An interaction-dominant perspective on reading fluency and dyslexia. Annals of Dyslexia, 62(2), 100–19. https://doi.org/10.1007/s11881-012-0067-3.Google Scholar
Wolpert, D.M. (1997). Computational approaches to motor control. Trends in Cognitive Science, 1, 209–16. https://doi.org/10.1016/s1364-6613(97)01070-x.Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Dynamic Approaches to Phonological Processing
  • Hunter Hatfield, University of Otago, New Zealand
  • Online ISBN: 9781009258661
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Dynamic Approaches to Phonological Processing
  • Hunter Hatfield, University of Otago, New Zealand
  • Online ISBN: 9781009258661
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Dynamic Approaches to Phonological Processing
  • Hunter Hatfield, University of Otago, New Zealand
  • Online ISBN: 9781009258661
Available formats
×