Skip to main content Accessibility help
×
Hostname: page-component-5cf477f64f-bmd9x Total loading time: 0 Render date: 2025-04-08T02:13:47.072Z Has data issue: false hasContentIssue false

Bayesian Models of the Mind

Published online by Cambridge University Press:  30 January 2025

Michael Rescorla
Affiliation:
University of California, Los Angeles

Summary

Bayesian decision theory is a mathematical framework that models reasoning and decision-making under uncertain conditions. The Bayesian paradigm originated as a theory of how people should operate, not a theory of how they actually operate. Nevertheless, cognitive scientists increasingly use it to describe the actual workings of the human mind. Over the past few decades, cognitive science has produced impressive Bayesian models of mental activity. The models postulate that certain mental processes conform, or approximately conform, to Bayesian norms. Bayesian models offered within cognitive science have illuminated numerous mental phenomena, such as perception, motor control, and navigation. This Element provides a self-contained introduction to the foundations of Bayesian cognitive science. It then explores what we can learn about the mind from Bayesian models offered by cognitive scientists.
Get access
Type
Element
Information
Online ISBN: 9781108955973
Publisher: Cambridge University Press
Print publication: 30 January 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abend, O., Kwiatkowski, T., Smith, N., Goldwater, S. & Steedman, S. (2017). Bootstrapping language acquisition. Cognition, 164, 116143.CrossRefGoogle ScholarPubMed
Ackerman, N., Freer, C. & Roy, D. (2019). On the computability of conditional probability. Journal of the ACM, 66, 140.CrossRefGoogle Scholar
Adams, W., Graf, E. & Ernst, M. (2004). Experience can change the “light-from-above” prior. Nature Neuroscience, 7, 10571058.CrossRefGoogle ScholarPubMed
Aitchison, L. & Lengyel, M. (2017). With or without you: predictive coding and Bayesian inference in the brain. Current Opinion in Neurobiology, 46, 219227.CrossRefGoogle ScholarPubMed
Ashby, D. (2006). Bayesian statistics in medicine: a 25 year review. Statistics in Medicine, 25, 35893631.CrossRefGoogle ScholarPubMed
Baker, C. & Tenenbaum, J. (2014). Modeling human plan recognition using Bayesian theory of mind. In Sukthankar, G., Goldman, R. P., Geib, C., Pynadath, D. & Bui, H., eds., Plan, Activity, and Intent Recognition: Theory and Practice. Waltham: Morgan Kaufmann, pp. 177204.CrossRefGoogle Scholar
Battaglia, P. W., Hamrick, J. & Tenenbaum, J. (2013). Simulation as an engine of physical scene understanding. Proceedings of the National Academy of Sciences, 110, 1832718332.CrossRefGoogle Scholar
Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53, 470–418.Google Scholar
Beck, J., Ma, W. J., Latham, P. E. & Pouget, A. (2007). Probabilistic population codes and the exponential family of distributions. In Cisek, P., Drew, T. & Kalaska, J. F., eds., Computational Neuroscience: Theoretical Insights into Brain Function. New York: Elsevier.Google Scholar
Berger, J. (1985). Statistical Decision Theory: Foundations, Concepts, and Methods, 2nd ed., New York: Springer.Google Scholar
Berniker, M., & Voss, M. (2010). Learning priors for Bayesian computations in the nervous system. PLOS One, 10, e12686.CrossRefGoogle Scholar
Bernstein, N. (1967). The Coordination and Regulation of Movements. Oxford: Pergamon.Google Scholar
Billingsley, P. (1995). Probability and Measure. 3rd ed. New York: Wiley.Google Scholar
Block, N. (2018). If perception is probabilistic, why does it not seem probabilistic? Philosophical Transactions of the Royal Society B, 373, 20170341.CrossRefGoogle Scholar
Block, N. (2023). The Border Between Perception and Cognition. Cambridge, MA: MIT Press.Google Scholar
Bowers, J. & Davis, C. (2012). Bayesian just-so stories in psychology and neuroscience. Psychological Bulletin, 138, 389414.CrossRefGoogle ScholarPubMed
Brooks, S., Gelman, A., Jones, G. & Meng, X.-L., eds. (2011). Handbook of Markov Chain Monte Carlo. New York: CRC Press.CrossRefGoogle Scholar
Burge, T. (2010). Origins of Objectivity. Oxford: Oxford University Press.CrossRefGoogle Scholar
Burge, T. (2022). Perception: First Form of Mind. Oxford: Oxford University Press.CrossRefGoogle Scholar
Burns, J. & Blohm, G. (2010). Multi-sensory weights depend on contextual noise in reference frame transformations. Frontiers in Human Neuroscience, 4, 116.CrossRefGoogle ScholarPubMed
Cao, R. (2020). New labels for old ideas: predictive processing and the interpretation of neural signals. Review of Philosophy and Psychology, 11, 517546.CrossRefGoogle Scholar
Carey, S. (2009). The Origin of Concepts. Oxford: Oxford University Press.CrossRefGoogle Scholar
Chalmers, D. (2011). Frege’s puzzle and the objects of credence. Mind, 120, 587–635.CrossRefGoogle Scholar
Chater, N. & Oaksford, M. eds. (2008). The Probabilistic Mind. Oxford: Oxford University Press.CrossRefGoogle Scholar
Chater, N., Zhu, J.-Q., Spicer, J., Sundh, J., León-Villagrá, P. & Sanborn, A. (2020). Probabilistic biases meet the Bayesian brain. Current Directions in Psychological Science, 29, 506512.CrossRefGoogle Scholar
Chemero, A. (2009). Radical Embodied Cognitive Science. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Chen, X., McNamara, T., Kelly, J. & Wolbers, T. (2017). Cue combination in human spatial navigation. Cognitive Psychology, 95, 105144.CrossRefGoogle ScholarPubMed
Cheyette, S. & Piantadosi, S. (2017). Knowledge transfer in a probabilistic language of thought. Proceedings of the Annual Meeting of the Cognitive Science Society, 39, 222227.Google Scholar
Churchland, P. (1981). Eliminative materialism and the propositional attitudes. Journal of Philosophy, 78, 6790.Google Scholar
Clark, A. (2015). Surfing Uncertainty. Oxford: Oxford University Press.Google Scholar
Colombo, M. & Seriès, P. (2012). Bayes in the brain—on Bayesian modeling in neuroscience. The British Journal for the Philosophy of Science, 63, 697723.CrossRefGoogle Scholar
Dasgupta, I., Schulz, E. & Gershman, S. (2017). Where do hypotheses come from? Cognitive Psychology, 96, 125.CrossRefGoogle ScholarPubMed
de Finetti, B. (1937/1980). Foresight. Its logical laws, its subjective sources. Rpt. in Kyburg, H. E., Jr. & Smokler, H. E., eds., Studies in Subjective Probability. Huntington, NY: Robert E. Krieger, pp. 53118.Google Scholar
de Finetti, B. (1972). Probability, Induction, and Statistics. New York: Wiley.Google Scholar
DeGroot, M. (1970). Optimal Statistical Decisions. New York: McGraw-Hill.Google Scholar
Dener, E., Kacelnik, A. & Shemesh, H. (2016). Pea plants show risk sensitivity. Current Biology, 26, 17631767.CrossRefGoogle ScholarPubMed
Dennett, D. (1987). The Intentional Stance. Cambridge, MA: MIT Press.Google Scholar
Duffy, S., Huttenlocher, J., Hedges, L. & Crawford, L. E. (2010). Category effects on stimulus estimation: shifting and skewed frequency distributions. Psychonomic Bulletin and Review, 17, 224230.CrossRefGoogle ScholarPubMed
Earman, J. (1992). Bayes or Bust? Cambridge, MA: MIT Press.Google Scholar
Easwaran, K. (2011a). Bayesianism I: introduction and arguments in favor. Philosophy Compass, 6, 312320.CrossRefGoogle Scholar
Easwaran, K. (2011b). The varieties of conditional probability. In Bandyo-padhyay, P. & Forster, M., eds., Philosophy of Statistics. Amsterdam: Elsevier, pp. 137148.CrossRefGoogle Scholar
Easwaran, K. (2013). Why countable additivity? Thought, 2, 5361.CrossRefGoogle Scholar
Easwaran, K. (2019). Conditional probabilities. In Pettigrew, R. & Weisberg, J., eds., The Open Handbook of Formal Epistemology. London, ON: The PhilPapers Foundation, pp. 131198.Google Scholar
Eberhardt, F. & Danks, D. (2011). Confirmation in the cognitive sciences: the problematic case of Bayesian models. Minds and Machines, 21, 389410.CrossRefGoogle Scholar
Egan, F. (2010). Computational models: a modest role for content. Studies in History and Philosophy of Science, 41, 253259.CrossRefGoogle Scholar
Egan, F. (2020). A deflationary account of mental representation. In Smorthchkova, J., Schlicht, T. & Dolega, K., eds., What Are Mental Representations? Oxford: Oxford University Press, pp. 2653.CrossRefGoogle Scholar
Erikkson, L. & Hájek, A. (2007). What are degrees of belief? Studia Logica, 86, 183213.CrossRefGoogle Scholar
Ernst, M. (2006). A Bayesian view on multimodal cue integration. In Knoblich, G., Thornton, I., Grosjean, M. & Shiffrar, M., eds., Human Body Perception From the Inside Out. Oxford: Oxford University Press, pp. 105132.Google Scholar
Ernst, M. (2007). Learning to integrate arbitrary signals from vision and touch. Journal of Vision, 7, 114.CrossRefGoogle ScholarPubMed
Ernst, M. & Banks, M. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415, 429433.CrossRefGoogle Scholar
Fernandes, H., Stevenson, I., Vilares, I. & Kording, K. (2014). The generalization of prior uncertainty during reaching. The Journal of Neuroscience, 34, 1147011484.CrossRefGoogle ScholarPubMed
Fiehler, K., Wolf, C., Klinghammer, M. & Blohm, G. (2014). Integration of egocentric and allocentric information during memory-guided reaching to images of a natural environment. Frontiers in Human Neuroscience, 8, 112.CrossRefGoogle ScholarPubMed
Field, H. (2001). Truth and the Absence of Fact. Oxford: Clarendon Press.CrossRefGoogle Scholar
Fiser, J., Berkes, P., Orbán, G. & Lengyel, M. (2010). Statistically optimal perception and learning: from behavior to neural representations. Trends in Cognitive Sciences, 14, 119130.CrossRefGoogle ScholarPubMed
Fodor, J. (1975). The Language of Thought. New York: Thomas Y. Crowell.Google Scholar
Fodor, J. (1987). Psychosemantics. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Fodor, J. (2008). LOT2. Oxford: Clarendon Press.Google Scholar
Fodor, J. & Pylyshyn, Z. (1981). How direct is visual perception? Some reflections on Gibson’s “ecological approach.” Cognition, 9, 139196.CrossRefGoogle ScholarPubMed
Frege, G. (1892/1997). On Sinn and Bedeutung. Rpt. in Beaney, M., ed., The Frege Reader, trans. M. Black. Malden, MA: Blackwell.Google Scholar
Fristedt, B. & Gray, L. (1997). A Modern Approach to Probability Theory. Boston: Birkhäuser.CrossRefGoogle Scholar
Friston, K. (2010). The free-energy principle: a unified brain theory? Nature Reviews Neuroscience, 11, 127138.CrossRefGoogle ScholarPubMed
Gaifman, H. & Snir, M. (1982). Probabilities over rich languages, testing, and randomness. The Journal of Symbolic Logic, 47, 495548.CrossRefGoogle Scholar
Gallistel, C. R. (1990). The Organization of Learning. Cambridge, MA: MIT Press.Google Scholar
Gallistel, C. R. (2008). Dead reckoning, cognitive maps, animal navigation, and the representation of space: an introduction. In Jeffries, M. & Yeap, W.-K., eds., Robotics and Cognitive Approaches to Spatial Mapping. Berlin: Springer, pp. 137143.CrossRefGoogle Scholar
Gallistel, C. R. & King, A. (2009). Memory and the Computational Brain. Malden, MA: Wiley-Blackwell.CrossRefGoogle Scholar
Ganguli, D. & Simoncelli, E. (2014). Efficient sensory encoding and Bayesian inference with heterogeneous neural populations. Neural Computation, 26, 21032134.CrossRefGoogle ScholarPubMed
Gardner, J. (2019). Optimality and heuristics in perceptual neuroscience. Nature Neuroscience, 22, 514523.CrossRefGoogle ScholarPubMed
Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehatri, A. & Rubin, D. (2014). Bayesian Data Analysis, 3rd ed. New York: CRC Press.Google Scholar
Ghosal, S. & van der Vaart, A. (2017). Fundamentals of Nonparametric Bayesian Inference. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Gibson, J. J. (1979). The Ecological Approach to Visual Perception. Boston: Houghton Mifflin.Google Scholar
Glasauer, S. (2019). Sequential Bayesian updating as a model for human perception. Progress in Brain Research, 249, 318.CrossRefGoogle Scholar
Glasauer, S. & Shi, Z. (2022). Individual beliefs about temporal continuity explain variation of perceptual biases. Scientific Reports, 12, 10746.CrossRefGoogle ScholarPubMed
Goodman, N., Tenenbaum, J., Feldman, J. & Griffiths, T. (2008). A rational analysis of rule-based concept learning. Cognitive Science, 32, 108154.CrossRefGoogle ScholarPubMed
Goodman, N., Ullman, T. & Tenenbaum, J. (2011). Learning a theory of causality. Psychological Review, 118, 110199.CrossRefGoogle ScholarPubMed
Greaves, H. & Wallace, D. (2006). Justifying conditionalization: conditionalization maximizes expected epistemic utility. Mind, 115, 607632.CrossRefGoogle Scholar
Griffiths, T., Kemp, C. and Tenenbaum, J. (2008). Bayesian models of cognition. In Sun, R., ed., The Cambridge Handbook of Computational Psychology. Cambridge: Cambridge University Press, pp. 59100.Google Scholar
Griffiths, T. & Tenenbaum, J. (2009). Theory-based causal induction. Psychological Review, 116, 661716.CrossRefGoogle ScholarPubMed
Hacking, I. (2001). An Introduction to Probability and Inductive Logic. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Haith, A. & Krakauer, J. (2013). Theoretical models of motor control and motor learning. In Richardson, M., Riley, M., and Shockley, K., eds., Progress in Motor Control VII: Neural Computational and Dynamic Approaches. New York: Springer, pp. 728.Google Scholar
Helbig, H. & Ernst, M. (2008). Haptic perception in interaction with other senses. In Grunwald, M., ed., Human Haptic Perception: Basics and Applications. Boston: Birkhäuser Verlag, pp. 235249.CrossRefGoogle Scholar
Helmholtz, H. von. (1867/1925). Treatise on Physiological Optics, trans. and ed. Southall, J.. Manasha, WI: George Banta Publishing Company.Google Scholar
Hemmer, P. & Steyvers, M. (2009). A Bayesian account of reconstructive memory. Topics in Cognitive Science, 1, 189202.CrossRefGoogle ScholarPubMed
Hillis, J., Ernst, M., Banks, M. & Landy, M. (2002). Combining sensory information: mandatory fusion within, but not between, senses. Science, 298, 16271630.CrossRefGoogle Scholar
Hohwy, J. (2014). The Predictive Mind. Oxford: Oxford University Press.Google Scholar
Hollingworth, H. (1910). The central tendency of judgment. The Journal of Philosophy, Psychology, and Scientific Methods, 7, 461469.CrossRefGoogle Scholar
Huttegger, S. (2015). Merging of opinions and probability kinematics. The Review of Symbolic Logic, 8, 611648.CrossRefGoogle Scholar
Hutto, D. & Myin, E. (2017). Evolving Enactivism: Basic Minds Meet Content. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Icard, T. (2016). Subjective probability as sampling propensity. The Review of Philosophy and Psychology, 7, 863903.CrossRefGoogle Scholar
Jazayeri, M. & Shadlen, M. (2010). Temporal context calibrates interval timing. Nature Neuroscience, 13, 10201026.CrossRefGoogle ScholarPubMed
Jetzschke, S., Ernst, M., Froehlich, J. & Boeddeker, N. (2014). Finding home: landmark ambiguity in human navigation. Frontiers in Behavioral Neuroscience, 11, 115.Google Scholar
Jones, M. & Love, B. (2011). Bayesian fundamentalism or enlightenment? On the explanatory status and theoretical contribution of Bayesian models of cognition. Behavioral and Brain Sciences, 34, 169188.CrossRefGoogle ScholarPubMed
Kahneman, D. & Tversky, A. (1979). Prospect theory: an analysis of decision under risk. Econometrica, 47, 263291.CrossRefGoogle Scholar
Katz, Y., Goodman, N., Kersting, K., Kemp, C. & Tenenbaum, J. (2008). Modeling semantic cognition as logical dimensionality reduction. Proceedings of the Annual Meeting of the Cognitive Science Society, 30. https://escholarship.org/uc/item/50r1c7qh.Google Scholar
Kemeny, J. (1955). Fair bets and inductive probabilities. The Journal of Symbolic Logic, 20, 263273.CrossRefGoogle Scholar
Kessler, F., Frankenstein, J. & Rothkopf, C. (2024). Human navigation strategies and their errors result from dynamic interactions of spatial uncertainties. Nature Communications, 15, 5677.CrossRefGoogle ScholarPubMed
Knill, D. & Richards, W., eds. (1996). Perception as Bayesian inference. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kolmogorov, A. N. (1933/1956). Foundations of the Theory of Probability. 2nd English ed, trans. N. Morrison. New York: Chelsea.Google Scholar
Kording, K., Beierholm, U., Ma, W. J., Quartz, S., Tenenbaum, J. & Shams, L. (2007). Causal inference in multisensory perception. PLoS One, 2, e943.CrossRefGoogle ScholarPubMed
Kording, K. & Wolpert, D. (2004). Bayesian integration in sensorimotor learning. Nature, 427, 244247.CrossRefGoogle ScholarPubMed
Kwisthout, J., Wareham, T. & van Rooij, I. (2011). Bayesian intractability is not an ailment that approximation can cure. Cognitive Science, 35, 779784.CrossRefGoogle Scholar
Kwon, O.-S. & Knill, D. (2013). The brain uses adaptive internal models of scene statistics for sensorimotor estimation and planning. Proceedings of the National Academy of Sciences, 110, E1064E1073.CrossRefGoogle ScholarPubMed
Kwon, O.-S., Tadin, D. & Knill, D. (2015). Unifying account of visual motion and position perception. Proceedings of the National Academy of Sciences, 112, 81428147.CrossRefGoogle ScholarPubMed
Lakshminarasimhan, K., Petsalis, M., Park, H., DeAngelis, G., Pitkow, X. & Angelaki, D. (2018). A dynamic Bayesian observer model reveals origins of bias in visual path integration. Neuron, 99, 194206.CrossRefGoogle ScholarPubMed
Laplace, P.-S. (1814/1902). A Philosophical Essay on Probabilities, trans. F. Truscott & F. Emory. New York: Wiley.Google Scholar
Lappe, M., Stiels, M., Frenz, H. & Loomis, J. (2011). Keeping track of the distance from home by leaking integration along veering paths. Experimental Brain Research, 212, 8189.CrossRefGoogle Scholar
Lee, T. S. & Mumford, D. (2003). Hierarchical Bayesian inference in the visual cortex. Journal of the Optical Society of America, 20, 14341448.CrossRefGoogle ScholarPubMed
Lewis, D. (1999). Why conditionalize? In Papers in Metaphysics and Epistemology. Cambridge: Cambridge University Press, pp. 403407.CrossRefGoogle Scholar
Lieder, F., Griffiths, T., Huys, Q. & Goodman, N. (2018). The anchoring bias reflects rational use of cognitive resources. Psychonomic Bulletin and Review, 25, 322349.CrossRefGoogle ScholarPubMed
Liu, Y. (2020). Countable additivity, idealization, and conceptual realism. Economics and Philosophy, 36, 127147.CrossRefGoogle Scholar
McGrayne, S. (2011). The Theory that Would Not Die. New Haven, CT: Yale University Press.Google Scholar
McNamee, D. & Wolpert, D. (2019). Internal models in biological control. Annual Review of Control, Robotics, and Autonomous Systems, 2, 339364.CrossRefGoogle ScholarPubMed
Ma, W. J. (2019). Bayesian decision models: a primer. Neuron, 104, 164175.CrossRefGoogle ScholarPubMed
Ma, W. J., Beck, J., Latham, P. & Pouget, A. (2006). Bayesian inference with probabilistic population codes. Nature Neuroscience, 9, 14321438.CrossRefGoogle ScholarPubMed
Ma, W. J., Kording, K. & Goldreich, D. (2023). Bayesian Models of Perception and Action: An Introduction. Cambridge, MA: MIT Press.Google Scholar
Mahtani, A. (2024). The Objects of Credence. Oxford: Oxford University Press.CrossRefGoogle Scholar
Makin, J., Fellows, M. & Sabes, P. (2013). Learning multisensory integration and coordinate transformation via density estimation. PLOS Computational Biology, 9, e1003035.CrossRefGoogle ScholarPubMed
Mamassian, P., Landy, M. & Maloney, L. (2002). Bayesian modeling of visual perception. In Rao, R., Olshausen, B. & Lewicki, M., eds., Probabilistic Models of the Brain. Cambridge, MA: MIT Press, pp. 1336.CrossRefGoogle Scholar
Mandelbaum, E. (2019). Troubles with Bayesianism: an introduction to the psychological immune system. Mind and Language 34: 141157.CrossRefGoogle Scholar
Mandelbaum, E., Won, I., Gross, S. & Firestone, C. (2020). Can resources save rationality? “Anti-Bayesian” updating in cognition and perception. Behavioral and Brain Sciences, 43, 3132.CrossRefGoogle ScholarPubMed
Meehan, A. & Zhang, S. (2020). Jeffrey meets Kolmogorov: a general theory of conditioning. Journal of Philosophical Logic, 49, 941979.CrossRefGoogle Scholar
Morales, J., Solovey, G., Maniscalco, B., Rahnev, D., de Lange, F. & Lau, H. (2015). Low attention impairs optimal incorporation of prior knowledge in perceptual decisions. Attention, Perception, and Psychophysics, 77, 20212036.CrossRefGoogle ScholarPubMed
Murphy, K. (2023). Probabilistic machine learning: advanced topics. Cambridge, MA: MIT Press.Google Scholar
Narayanan, S. & Jurafsky, D. (1998). Bayesian models of human sentence processing. In Proceedings of the Annual Meeting of the Cognitive Science Society, 20, 752757.Google Scholar
Nashed, J., Crevecoeur, F. & Scott, S. (2012). Influence of the behavioral goal and environmental obstacles on rapid feedback responses. Journal of Neurophysiology, 108, 9991009.CrossRefGoogle ScholarPubMed
Nielsen, M. (2021). A new argument for Kolmogorov Conditionalization. The Review of Symbolic Logic, 14, 930945.CrossRefGoogle Scholar
Norris, D. (2006). The Bayesian reader: explaining word recognition as an optimal Bayesian decision process. Psychological Review, 113, 327357.CrossRefGoogle Scholar
Oaksford, M. & Chater, N. (2007). Bayesian Rationality: The Probabilistic Approach to Human Reasoning. Oxford: Oxford University Press.CrossRefGoogle Scholar
Oaksford, M. & Chater, N. (2020). New paradigms in the psychology of reasoning. Annual Review of Psychology, 71, 305330.CrossRefGoogle ScholarPubMed
Olkkonen, M., McCarthy, P. & Allred, S. (2014). The central tendency bias in color perception: effects of internal and external noise. Journal of Vision, 14, 115.CrossRefGoogle ScholarPubMed
Orbán, G., Berkes, P., Fiser, J. & Lengyel, M. (2016). Neural variability and sampling-based probabilistic representations in the visual cortex. Neuron, 92, 530542.CrossRefGoogle ScholarPubMed
Orlandi, N. (2014). The Innocent Eye: Why Vision is not Cognitive Process. Oxford: Oxford University Press.CrossRefGoogle Scholar
Peacocke, C. (1994). Content, computation, and externalism. Mind and Language, 9, 303335.CrossRefGoogle Scholar
Peacocke, C. (1999). Computation as involving content: a response to Egan. Mind and Language, 14, 195202.CrossRefGoogle Scholar
Peacocke, C. (2019). The Primacy of Metaphysics. Oxford: Oxford University Press.CrossRefGoogle Scholar
Peters, M., Ma, W. J. & Shams, L. (2016). The size-weight illusion is not anti-Bayesian after all. PeerJ, 4, e2124.CrossRefGoogle ScholarPubMed
Pettigrew, R. (2019). Epistemic utility arguments for probabilism. In Zalta, E., ed., The Stanford Encyclopedia of Philosophy (Winter 2019). https://plato.stanford.edu/archives/win2019/entries/epistemic-utility.Google Scholar
Pettigrew, R. (2020). Dutch Book Arguments. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Petzschner, F. & Glasauer, S. (2011). Iterative Bayesian estimation as an explanation for range and regression effects: a study on human path integration. The Journal of Neuroscience, 31, 1722017229.CrossRefGoogle Scholar
Petzschner, F., Glasauer, S. & Stephan, K. (2015). A Bayesian perspective on magnitude estimation. Trends in Cognitive Sciences, 19, 285293.CrossRefGoogle ScholarPubMed
Piantadosi, S. & Jacobs, R. (2016). Four problems solved by the probabilistic language of thought. Current Directions in Psychological Science, 25, 5459.CrossRefGoogle Scholar
Pouget, A., Beck, J., Ma., W. J. & Latham, P. (2013). Probabilistic brains: knowns and unknowns. Nature Neuroscience, 16, 11701178.CrossRefGoogle Scholar
Proschan, M. & Shaw, P. (2016). Essentials of Probability Theory for Statisticians. New York: CRC Press.Google Scholar
Putnam, H. (1975). Mathematics, Matter, and Method: Philosophical Papers, vol. 1. Cambridge: Cambridge University Press.Google Scholar
Pylyshyn, Z. (1984). Computation and Cognition. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Quine, W. V. (1960). Word and Object. Cambridge, MA: MIT Press.Google Scholar
Rahnev, D. & Denisov, R. (2018). Suboptimality in perceptual decision making. Behavioral and Brain Sciences, 41, e223.CrossRefGoogle ScholarPubMed
Ramsey, F. P. (1931). Truth and probability. In Braithwaite, R., ed., The Foundations of Mathematics and Other Logical Essays. London: Kegan, Paul, Trench, Trubner & Co., pp.156198.Google Scholar
Ramsey, W. (2007). Representation Reconsidered. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Rao, R. and Ballard, D. (1999). Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2, 7987.CrossRefGoogle ScholarPubMed
Rescorla, M. (2009). Cognitive maps and the language of thought. The British Journal for the Philosophy of Science, 60, 377407.CrossRefGoogle Scholar
Rescorla, M. (2015a). Bayesian perceptual psychology. In Matthen, M., ed., The Oxford Handbook of the Philosophy of Perception. Oxford: Oxford University Press, pp. 694716.Google Scholar
Rescorla, M. (2015b). Review of Nico Orlandi’s The Innocent Eye: Why Vision is not a Cognitive Process. Notre Dame Philosophical Reviews, January 2015.Google Scholar
Rescorla, M. (2015c). Some epistemological ramifications of the Borel‒Kolmogorov paradox. Synthese, 192, 735767.CrossRefGoogle Scholar
Rescorla, M. (2016). Bayesian sensorimotor psychology. Mind and Language, 31, 336.CrossRefGoogle Scholar
Rescorla, M. (2017). Review of Andy Clark’s Surfing Uncertainty. Notre Dame Philosophical Reviews, January 2017.Google Scholar
Rescorla, M. (2018a). A Dutch book theorem and converse Dutch book theorem for Kolmogorov Conditionalization. The Review of Symbolic Logic, 11, 705735.CrossRefGoogle Scholar
Rescorla, M. (2018b). An interventionist approach to psychological explanation. Synthese, 195, 19091940.CrossRefGoogle Scholar
Rescorla, M. (2019). Motor computation. In Colombo, M. & Sprevak, M., eds., The Routledge Handbook of the Computational Mind. New York: Routledge, pp. 424435.Google Scholar
Rescorla, M. (2020a). The computational theory of mind. In E. Zalta, ed. The Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/entries/computational-mind.Google Scholar
Rescorla, M. (2020b). Perceptual co-reference. The Review of Philosophy and Psychology, 11, 569589.CrossRefGoogle Scholar
Rescorla, M. (2020c). A realist perspective on Bayesian cognitive science. In Nes, A. & Chan, T., eds., Inference and Consciousness. New York: Routledge, pp. 4073.Google Scholar
Rescorla, M. (2020d). Reifying representations. In Smorthchkova, J., Schlicht, T. & Dolega, K., eds., What Are Mental Representations? Oxford: Oxford University Press, pp. 135177.CrossRefGoogle Scholar
Rescorla, M. (2021a). Bayesian modeling of the mind: from norm to neurons. WIREs Cognitive Science, 12, e1540.CrossRefGoogle Scholar
Rescorla, M. (2021b). On the proper formulation of Conditionalization. Synthese, 198, 19351965.CrossRefGoogle Scholar
Rescorla, M. (2022). An improved Dutch book theorem for Conditionalization. Erkenntnis, 87, 10131041.CrossRefGoogle Scholar
Rescorla, M. (2024). Neural implementation of (approximate) Bayesian inference. In Cheng, T., Sato, R. & Hohwy, J., eds., Expected Experiences: The Predictive Mind in an Uncertain World. Routledge, pp. 197239.Google Scholar
Rescorla, M. (Forthcoming). Non-factive Kolmogorov conditionalization. The Review of Symbolic Logic. https://doi.org/10.1017/S1755020323000345.CrossRefGoogle Scholar
Rittenhouse, D. (1786). Explanation of an optical deception. Transactions of the American Philosophical Society, 2, 3742.CrossRefGoogle Scholar
Sanborn, A., Griffiths, T. & Navarro, D. (2010). Rational approximations to rational models: alternative algorithms for category learning. Psychological Review, 117, 11441167.CrossRefGoogle ScholarPubMed
Sanborn, A., Masinghka, J. & Griffiths, T. (2013). Reconciling intuitive physics and Newtonian mechanics for colliding objects. Psychological Review, 120, 411437.CrossRefGoogle ScholarPubMed
Sato, Y. & Kording, K. (2014). How much to trust the senses: likelihood learning. Journal of Vision, 14, 113.CrossRefGoogle ScholarPubMed
Sato, Y., Toyoizumi, T. & Aihara, K. (2007). Bayesian inference explains perception of unity and ventriloquism aftereffect: identification of common sources of audiovisual stimuli. Neural Computation, 19, 33353355.CrossRefGoogle ScholarPubMed
Saunders, J. & Knill, D. (2004). Visual feedback control of hand movements. The Journal of Neuroscience, 24, 32233234.CrossRefGoogle ScholarPubMed
Savage, L. (1972). The Foundations of Statistics, 2nd ed. New York: Dover.Google Scholar
Savelli, F. & Knierim, J. (2019). Origin and role of path integration in the cognitive representations of the hippocampus: computational insights into open questions. Journal of Experimental Biology, 222, 113.CrossRefGoogle ScholarPubMed
Scott, S. (2012). The computational and neural basis of voluntary motor control and planning. Trends in Cognitive Sciences, 16, 541549.CrossRefGoogle ScholarPubMed
Seydell, A., Knill, D. & Trommershäuser, J. (2010). Adapting internal statistical models for interpreting visual cues to depth. Journal of Vision, 10, 127.CrossRefGoogle ScholarPubMed
Shadmehr, R. & Mussa-Ivaldi, S. (2012). Biological Learning and Control. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Shea, N. (2018). Representation in Cognitive Science. Oxford: Oxford University Press.CrossRefGoogle Scholar
Shikauchi, Y., Miyakoshi, M., Makeig, S. & Iversen, J. (2021). Bayesian models of human navigation behavior in an augmented reality audiomaze. European Journal of Neuroscience, 54, 83088317.CrossRefGoogle Scholar
Skyrms, B. (1980). Causal Necessity. New Haven, CT: Yale University Press.Google Scholar
Skyrms, B. (1987). Dynamic coherence and probability kinematics. Philosophy of Science, 54, 120.CrossRefGoogle Scholar
Skyrms, B. (1995). Strict coherence, sigma coherence, and the metaphysics of quantity. Philosophical Studies, 77, 3955.CrossRefGoogle Scholar
Sotiropoulos, G., Seitz, A. & Seriès, P. (2011). Changing expectations about speed alters perceived motion direction. Current Biology, 21, R883R884.CrossRefGoogle ScholarPubMed
Stalnaker, R. (1970). Probabilities and conditionals. Philosophy of Science, 37, 6480.CrossRefGoogle Scholar
Stalnaker, R. (1984). Inquiry. Cambridge, MA: MIT Press.Google Scholar
Steele, K. & Stefánsson, H. (2016). Decision theory. In Zalta, E., ed., The Stanford Encyclopedia of Philosophy (Winter 2016). https://plato.stanford.edu/archives/win2016/entries/decision-theory.Google Scholar
Stich, S. (1983). From Folk Psychology to Cognitive Science. Cambridge, MA: MIT Press.Google Scholar
Stocker, A. (2018). Credo for optimality. Behavioral and Brain Sciences, 41, e244.CrossRefGoogle ScholarPubMed
Stocker, A. & Simoncelli, E. (2006). Noise characteristics and prior expectations in human visual speed perception. Nature Neuroscience, 4, 578585.CrossRefGoogle Scholar
Stone, J. (2011). Footprints sticking out of the sand, part 2: Children’s Bayesian priors for shape and lighting direction. Perception, 40, 175190.CrossRefGoogle ScholarPubMed
Stone, J. (2013). Bayes’s Rule: A Tutorial Introduction to Bayesian Analysis. Sebtel Press.Google Scholar
Temperley, D. (2007). Music and Probability. Cambridge, MA: MIT Press.Google Scholar
Thrun, S., Burgard, W. & Fox, D. (2005). Probabilistic Robotics. Cambridge, MA: MIT Press.Google Scholar
Todorov, E. & Jordan, M. (2002). Optimal feedback control as a theory of motor coordination. Nature Neuroscience, 5, 12261235.CrossRefGoogle ScholarPubMed
Todorov, E. (2004). Optimality principles in sensorimotor control. Nature Neuroscience, 7, 907915.CrossRefGoogle ScholarPubMed
Trommershäuser, J., Kording, K. & Landy, M, eds. (2011). Sensory Cue Combination. Oxford: Oxford University Press.Google Scholar
Trotta, R. (2008). Bayes in the sky: Bayesian inference and model selection in cosmology. Contemporary Physics, 49, 71104.CrossRefGoogle Scholar
Tversky, A., and Kahneman, D. (1974). Judgment under uncertainty: heuristics and biases. Science, 185, 11241131.CrossRefGoogle ScholarPubMed
Tversky, A., and Kahneman, D. (1983). Extension versus intuitive reasoning: the conjunction fallacy in probability judgment. Psychological Review, 90, 293315.CrossRefGoogle Scholar
van Fraassen, B. (1980). The Scientific Image. Oxford: Oxford University Press.CrossRefGoogle Scholar
van Gelder, T. (1992). What might cognition be, if not computation? Journal of Philosophy, 92, 345381.CrossRefGoogle Scholar
van Rooij, I., Blokpoel, M., Kwisthout, J. & Wareham, T. (2019). Cognition and Intractability. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Vilares, I. & Kording, K. (2011). Bayesian models: the structure of the world, uncertainty, behavior, and the brain. Annals of the New York Academy of Sciences, 1224, 2239.CrossRefGoogle ScholarPubMed
Weisberg, J. (2009). Varieties of Bayesianism. In Gabbay, D., Hartman, S. & Woods, J., eds., Handbook of the History of Logic, vol. 10. New York: Elsevier, pp. 477551.Google Scholar
Weiss, Y., Simoncelli, E. & Adelson, E. (2002). Motion illusions as optimal percepts. Nature Neuroscience, 5, 598604.CrossRefGoogle ScholarPubMed
Weisswange, T., Rothkopf, C., Rodemann, T. & Triesch, J. (2011). Bayesian cue integration as a developmental outcome of reward mediated learning. PLOS One, 6, e21575.CrossRefGoogle ScholarPubMed
Wolpert, D. & Flanagan, J. R. (2009). Forward models. In Bayne, T., Cleeremans, A. & Wilken, P., eds., The Oxford Companion to Consciousness. Oxford: Oxford University Press, pp. 294296.Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Bayesian Models of the Mind
  • Michael Rescorla, University of California, Los Angeles
  • Online ISBN: 9781108955973
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Bayesian Models of the Mind
  • Michael Rescorla, University of California, Los Angeles
  • Online ISBN: 9781108955973
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Bayesian Models of the Mind
  • Michael Rescorla, University of California, Los Angeles
  • Online ISBN: 9781108955973
Available formats
×