Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-03T13:20:01.805Z Has data issue: false hasContentIssue false

A Review of Blastozoan Echinoderm Respiratory Structures

Published online by Cambridge University Press:  16 December 2022

Sarah L. Sheffield
Affiliation:
University of South Florida
Maggie R. Limbeck
Affiliation:
University of Tennessee, Knoxville
Jennifer E. Bauer
Affiliation:
Museum of Paleontologu, University of Michigan
Stephen A. Hill
Affiliation:
University of South Florida
Martina Nohejlová
Affiliation:
Czech Geological Survey

Summary

Echinoderms have evolved diverse and disparate morphologies throughout the Phanerozoic. Among them, blastozoans, an extinct group of echinoderms that were an important component of Paleozoic marine ecosystems, are primarily subdivided into groups based on the morphology of respiratory structures. However, systematic and phylogenetic research from the past few decades have shown that respiratory structures in blastozoans are not group-defining and they have re-evolved throughout echinoderm evolution. This Element provides a review of the research involving blastozoan respiratory structures, along with research concerning the morphology, paleoecology, and ontogeny of each of the major groupings of blastozoans as it relates to their corresponding respiratory structures. Areas of future research in these groups are also highlighted.
Get access
Type
Element
Information
Online ISBN: 9781108881821
Publisher: Cambridge University Press
Print publication: 26 January 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aceñolaza, G. F. (1986). El género Macrocystella (Cystoidea) en el Tremadoc de Salta y Jujuy. IV Congreso Argentino de Paleontología y Bioestratigrafía, 1, 133135.Google Scholar
Aceñolaza, G. F. (1999). Macrocystella? durandi sp. nov. (Echinodermata, Rhombifera) y el registro del género Macrocystella en la cuenca cambro-ordovícica del norte argentino. Acta geológica hispánica, 34, 89101.Google Scholar
Atwood, J. W., & Sumrall, C. D. (2012). Morphometric investigation of the Pentremites fauna from the Glen Dean Formation, Kentucky. Journal of Paleontology, 86, 813828.CrossRefGoogle Scholar
Ausich, W. I., Kammer, T. K., Rhenberg, E. C., & Wright, D. F. (2015). Early phylogeny of crinoids within the pelmatozoan clade. Palaeontology, 58, 937952.CrossRefGoogle Scholar
Barrande, J. (1846). Nouveaux trilobites supplément à la notice préliminaire sur le systême silurien et les trilobites de Bohême. Prague: Calve.CrossRefGoogle Scholar
Barrande, J. (1887). Classe des échinodermes, ordre des Cystidées. In J. Barrande, F. Počta, J. Perner, W. H. Waagen, & J. Jahn, eds., Système silurien du Centre de la Bohème. Part I: Recherches paléontologiques, ouvrage posthume de feu Joachim Barrande publié par le Docteur W. Waagen. Prague: Éditions Gerhard, 7, pp. 1233.Google Scholar
Bassler, R. S. (1950). New genera of Middle Ordovician “Cystoidea.Journal of the Washington Academy of Sciences, 40, 273277.Google Scholar
Bather, F. A. (1899). The Genera and Species of Blastoidea, with a List of the Specimens in the British Museum (Natural History). London: Taylor Francis Printers.Google Scholar
Bather, F. A. (1900). The Pelmatozoa-Cystoidea. In Lankester, E. R., ed., A Treatise on Zoology, Pt. 3, The Echinodermata. London: Adam and Charles Black, pp. 3877.Google Scholar
Bather, F. A. (1919). Notes on Yunnan Cystidea. 3. Sinocystis compared with similar genera. Geological Magazine, 56, 7177. DOI: https://doi.org/10.1017/S001675680019541X.CrossRefGoogle Scholar
Bauer, J. E. (2018). Respiratory Structure Morphology, Group Origins, and Phylogeny of Eublastoidea (Echinodermata). PhD diss., University of Tennessee, 2018. https://trace.tennessee.edu/utk_graddiss/4949.Google Scholar
Bauer, J. E., & Rahman, I. A. (2020). Virtual paleontology: Tomographic techniques for studying fossil echinoderms. Elements of Paleontology, this volume.Google Scholar
Bauer, J. E., Sumrall, C. D., Waters, J. A., Zamora, S., & Rahman, I. A. (2017). Hydrospire morphology and implications for blastoid phylogeny. Journal of Paleontology, 91, 847857.CrossRefGoogle Scholar
Bauer, J. E., Waters, J. A., & Sumrall, C. D. (2019). Redescription of Macurdablastus and redefinition of Eublastoidea as a clade of Blastoidea (Echinodermata). Palaeontology, 62, 10031013.CrossRefGoogle Scholar
Beaver, H. H. (1968). Morphology. In Moore, R. C., ed., Treatise on Invertebrate Paleontology, Part S, Echinodermata 1 (2): Lawrence, Kansas, and Boulder, Colorado: University of Kansas Press and Geological Society of America, pp. S392S398.Google Scholar
Beaver, H. H. (1996). Hydrospire meshwork of the Carboniferous blastoid Pentremites Say. Journal of Paleontology, 70, 333335.Google Scholar
Beaver, H. H., Fay, R. O., Macurda, D. B. Jr, Moore, R. C., & Wanner, J. (1968). Blastoids. In Moore, R. C., ed., Treatise on Invertebrate Paleontology, Part S, Echinodermata 1. Lawrence, Kansas, and Boulder, Colorado: University of Kansas Press and Geological Society of America, pp. S289S455.Google Scholar
Bell, B. M. (1977). Respiratory schemes in the class Edrioasteroidea. Journal of Paleontology, 51, 619632.Google Scholar
Bernard, F. (1895). Eléments de paleontology. Paris: J. B. Bailliére & Fils.Google Scholar
Billings, E. (1854). On some new genera and species of Cystidea from the Trenton Limestone. Canadian Journal, 2, 215219, 250253, 268274.Google Scholar
Billings, E. (1857). New species of fossils from Silurian rocks of Canada. In Report for the Year 1856: Canada Geological Survey, Report of Progress 1853–1856, pp. 245345.Google Scholar
Billings, E. (1859). On the Crinoidea of the Lower Silurian Rocks of Canada. Geological Survey of Canada, Figures and Descriptions of Canadian Organic Remains, 4, 172.Google Scholar
Bockelie, J. F. (1978). Variability of ambulacral structures in some diploporite cystoids. Thalassia Jugoslavica, 12, 3139.Google Scholar
Bockelie, J. F. (1979a). Celticystis n. gen., a gomphocystitid cystoid from the Silurian of Sweden. Geologiska Föreningen i Stockholm Förhandlingar, 101, 157166.CrossRefGoogle Scholar
Bockelie, J. F. (1979b). Taxonomy, functional morphology and palaeoecology of the Ordovician cystoid family Hemicosmitidae. Palaeontology 22, 363406.Google Scholar
Bockelie, J. F. (1981a). Functional morphology and evolution of the cystoid Echinosphaerites. Lethaia, 14, 189202.CrossRefGoogle Scholar
Bockelie, J. F. (1981b). A re-evaluation of the Ordovician cystoid Stichocystis Jaekel and the taxonomic implications. Geologiska Föreningens i Stockholm Förhandlingar, 103, 5159.CrossRefGoogle Scholar
Bockelie, J. F. (1984). The Diploporita of the Olso region, Norway. Palaeontology, 27, 168.Google Scholar
Bodenbender, B. E., & Fisher, D. C. (2001). Stratocladistic analysis of blastoid phylogeny. Journal of Paleontology, 75, 351369.2.0.CO;2>CrossRefGoogle Scholar
Bodenbender, B. E., & Hiemstra, E. J. (2004). A reconnaissance of skeletal crystallography in rhombiferans, diploporans, and paracrinoids. Journal of Paleontology, 78, 11541162.2.0.CO;2>CrossRefGoogle Scholar
Bottjer, D. J., Davidson, E. H., Peterson, K. J., & Cameron, R. A. (2006). Paleogenomics of echinoderms. Science, 314, 956960.CrossRefGoogle ScholarPubMed
Branson, E. R., & Peck, R. E. (1940). A new cystoid from the Ordovician of Oklahoma. Journal of Paleontology, 14, 8992.Google Scholar
Breimer, A. (1970). Two new species of Spanish Devonian blastoids. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series B, 73, 97108.Google Scholar
Breimer, A., & Dop, A. J. (1975). An anatomic and taxonomic study of some Lower and Middle Devonian blastoids from Europe and North America. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series B, 78, 3961.Google Scholar
Breimer, A., & Joysey, K. A. (1968). Anatomical studies of Orbitremites and Ellipticoblastus (Blastoidea) I. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series B, 71, 124136.Google Scholar
Breimer, A., & Macurda, D. B. Jr. (1965). On the systematic position of some blastoid genera from the Permian of Timor. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series B, 68, 209217.Google Scholar
Breimer, A., & Macurda, D. B. Jr. (1972). The phylogeny of Fissiculate blastoids. Verhangelingen der Koninklijke Nederlandsche Akademie van Wetenschappen, Afdeling Natuurkunde, Eerste Reeks, 26, 1390.Google Scholar
Breimer, A., & Ubaghs, G. (1974). A critical comment on the classification of pelmatozoan echinoderms I and II. Proceedings of the Koninklijke Nederlandsch Akademie van Wetenschappen Amsterdam, Series B, 77, 398417.Google Scholar
Breimer, A., Macurda, D. B. Jr., & Prokop, R. J. (1968). New Lower Devonian blastoids from Bohemia. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series B, 71, 191202.Google Scholar
Brett, C. E. (1985). Tremichnus: A new ichnogenus of circular-parabolic pits in fossil echinoderms. Journal of Paleontology, 59, 625635.Google Scholar
Brett, C. E., Frest, T. J., Sprinkle, J., & Clement, C. R. (1983). Coronoidea: A new class of blastozoan echinoderms based on taxonomic reevaluation of Stephanocrinus. Journal of Paleontology, 57, 627651.Google Scholar
Brett, C. E., Moffat, H. A., & Taylor, W. L. (1997). Echinoderm taphonomy, taphofacies, and Lagerstätten. The Paleontological Society Papers, 3, 147190.CrossRefGoogle Scholar
Briggs, D. E., Siveter, D. J., Sutton, M. D., & Rahman, I. A. (2017). An edrioasteroid from the Silurian Herefordshire Lagerstätte of England reveals the nature of the water vascular system in an extinct echinoderm. Proceedings of the Royal Society B: Biological Sciences, 284, 20171189.CrossRefGoogle Scholar
Broadhead, T. W. (1980). Blastozoa. Studies in Geology, Notes for a Short Course, 3, 118132.CrossRefGoogle Scholar
Broadhead, T. W. (1982). Reappraisal of class Eocrinoidea (Echinodermata). In Laurence, J. M., ed., Echinoderms: Proceedings of the 4th International Echinoderm Conference. Rotterdam: A. A. Balkema, pp. 125131.Google Scholar
Broadhead, T. W. (1984). Macurdablastus a Middle Ordovician blastoid from the Southern Appalachians. University of Kansas Paleontological Contributions, 110, 19.Google Scholar
Broadhead, T. W., & Strimple, H. L. (1975). Respiration in a vagrant Ordovician cystoid, Amecystis. Paleobiology, 1, 312319.CrossRefGoogle Scholar
Broadhead, T. W., & Sumrall, C. D. (2003). Heterochrony and paedomorphic morphology of Sprinkleocystis ektopios, new genus and species (Rhombifera, Glyptocystida) from the Middle Ordovician (Caradoc) of Tennessee. Journal of Paleontology, 77, 113120.2.0.CO;2>CrossRefGoogle Scholar
Bromley, R. G. (1981). Concepts in ichnotaxonomy illustrated by small round holes in shells. Acta Geologica Hispánica, 16, 5564.Google Scholar
Buch, L. v. (1840). Beiträge zur Bestimmung der Gerbirgsformationen in Russland. Archiv für Mineralogie, Geognosie, Bergbau und Hüttenkunde, 15, 1128.Google Scholar
Buch, L. v. (1844). Uber Cystideen eingeleitet durch die Entwicklung der Eigenthum lichkeiten von Caryocrinus ornatus Say. Physikalische Abhandlungen Der Königlichen Akademie Der Wissenschaften Zu, 29, 89116.Google Scholar
Callaway, C. (1877). On a new area of upper Cambrian rocks in south Shropshire, with a description of a new fauna. Quarterly Journal of the Geological Society, 33, 652672.CrossRefGoogle Scholar
Carpenter, P. H. (1884). Report on the Crinoidea – the stalked crinoids. Report on the scientific results of the voyage of the H.M.S. Challenger. Zoology, 11, 1440.Google Scholar
Chauvel, J. (1941). Recherches sur les Cystoïdes et les Carpoïdes armoricaines. Mémoires de la Société Géologique et Minéralogique de Bretagne, 5, 1286.Google Scholar
Chauvel, J. (1966). Echinodermes de l’Ordovician du Maroc. Paris: Cahiers de Paléontologie, Editions du Centre National de la Recherche Scientifique.Google Scholar
Chauvel, J. (1980). Données nouvelles sur quelques cystoïdes diploporites (Echinodermes) du Paléozoique armoricain. Bulletin de la Société géologique et minéralogique de Bretagne, (C), 12, 128.Google Scholar
Chauvel, J., & Melendez, B. (1978). Les Echinodermes (Cystoïdes, Asterozoaires, Homalozoaires) de l’Ordovician moyen des Monts de Tolède (Espange). Estudies Geologicas, 34, 7587.Google Scholar
Chauvel, J., & Nion, J. (1977). Echinodermes (Homalozoa: Cornuta et Mitrata) nouveaux pour l’Ordovicien du Massif armoricain et conséquences paléogéographiques. Geobios, 10, 3549.CrossRefGoogle Scholar
Ciampaglio, C. N. (2002). Determining the role that ecological land developmental constraints play in controlling disparity: Examples from the crinoid and blastozoan fossil record. Evolution & Development, 4, 170188.Google Scholar
Clausen, S. (2004). New early Cambrian eocrinoids from the Iberian Chains (NE Spain) and their role in nonreefal benthic communities. Eclogae Geologicae Helvetiae, 97, 371379.CrossRefGoogle Scholar
Clausen, S., & Smith, A. B. (2005). Palaeoanatomy and biological affinities of a Cambrian deuterostome. Nature, 438, 351354.CrossRefGoogle ScholarPubMed
Clausen, S., & Smith, A. B. (2008). Stem structure and evolution in the earliest pelmatozoan echinoderms. Journal of Paleontology, 82, 737748.CrossRefGoogle Scholar
Cline, L. M. (1936). Blastoids of the Osage group, Mississippian: Part I. The genus Schizoblastus. Journal of Paleontology, 10, 260281.Google Scholar
Cole, S. R. (2017). Phylogeny and morphologic evolution of the Ordovician Camerata (Class Crinoidea, Phylum Echinodermata). Journal of Paleontology, 91, 815828.CrossRefGoogle Scholar
Conrad, T. A. (1842). Observations on the Silurian and Devonian systems of the United States. Journal of the Academy of Natural Sciences of Philadelphia, 8, 228280.Google Scholar
David, B., Lefebvre, B., Mooi, R., & Parsley, R. (2000). Are homalozoans echinoderms? An answer from the extraxial-axial theory. Paleobiology, 26, 529555.2.0.CO;2>CrossRefGoogle Scholar
Dean, J. and Smith, A. B. (1998). Palaeobiology of the primitive Ordovician pelmatozoan echinoderm Cardiocystites. Palaeontology, 41, 11831194.Google Scholar
DeFrance, M. J. L. (1819). Encrines. Dictionnaire des Sciences Naturales, 14, EA–EOU, 461468.Google Scholar
Deline, B. (2015). Quantifying morphological diversity in Early Paleozoic Echinoderms. In Zamora, S. & Rábano, I., eds., Progress in Echinoderm Palaeobiology: Cuademos del Museo Geominero. Madrid: Instituto Geológico y Minero de España, 19, pp. 159162.Google Scholar
Deline, B., Greenwood, J. M., Clark, J. W., et al. (2018). Evolution of metazoan morphological disparity. Proceedings of the National Academy of Sciences, 115, E8909E8918. DOI: https://doi.org/10.1073/pnas.1810575115.CrossRefGoogle ScholarPubMed
Deline, B., Thompson, J. R., Smith, N. S., et al. (2020). Evolution and development at the origin of a phylum. Current Biology, 30, 18. DOI: https://doi.org/10.1016/j.cub.2020.02.054.CrossRefGoogle ScholarPubMed
Delpey, G. (1941). Organes speciaux d’echinodermes primitifs: les pectinirhombes. Bulletin de la Société Géologique de France, 5, 207217.CrossRefGoogle Scholar
Dexter, T. A., Sumrall, C. D., & McKinney, M. L. (2009). Allometric strategies for increasing respiratory surface area in the Mississippian blastoid Pentremites. Lethaia, 42, 127137.Google Scholar
Dickson, J. A. D. (2004). Echinoderm skeletal preservation: Calcite-aragonite seas and the Mg/Ca ratio of Phanerozoic oceans. Journal of Sedimentary Research, 74, 355365.CrossRefGoogle Scholar
Donovan, S. K., & Paul, C. R. C. (1985). Coronate echinoderms from the Lower Palaeozoic of Britain. Palaeontology, 28, 527543.Google Scholar
Dreyfus, M. (1939). Les Cystoïdes de l’Ordovicien Supérieur de Languedoc. Bulletin de la Société Géologique de France, 9, 117134.Google Scholar
Eichwald, E. v. (1840). Ueber das silurische Schichtensystem in Esthland. Zeitschrift für Natur- und Heilkunde der medizinischen Akademie zu St. Petersburg, 1, 1222.Google Scholar
Eichwald, E.v. (1862). Asteroblastus stellatus, eine neue Sippe und Art untersilurischer Blastoideen von Pulkowa. Bulletin de la Societe Geologique de France, 19, 6264.Google Scholar
Etheridge, R., & Carpenter, P. H. (1882). On certain points in the morphology of the Blastoidea, with descriptions of some new genera and species. Annals and Magazine of Natural History, 9, 213252.CrossRefGoogle Scholar
Fatka, O., & Kordule, V. (1990). Vyscystis ubaghsi gen. et sp. nov., imbricate eocrinoid from Czechoslovakia (Echinodermata, Middle Cambrian). Věstník Ústředního ústavu geologického, 65, 315323.Google Scholar
Fay, R. O. (1968). Parablastoids. In Moore, R. C., ed., Treatise on Invertebrate Paleontology, Part S, Echinodermata 1: Lawrence, Kansas, and Boulder, Colorado: University of Kansas Press and Geological Society of America, pp. 293296.Google Scholar
Foerste, A. F. (1920). Racine and Cedarville cystids and blastoids with notes on other echinoderms. The Ohio Journal of Science, 21, 3378.Google Scholar
Foerste, A. F. (1938). Lower Cambrian Olenellus Zone of the Appalachians. Bulletin of the Geological Society of America, 49, 212213.Google Scholar
Foote, M. (1992). Rarefaction analysis of morphological and taxonomic disparity. Paleobiology, 18, 116.Google Scholar
Frest, T. J., & Strimple, H. L. (1982). A new comarocystitid (Echinodermata: Paracrinoidea) from the Kimmswick Limestone (Middle Ordovician), Missouri. Journal of Paleontology, 56, 358370.Google Scholar
Frest, T. J., Strimple, H. L., & Coney, C. C. (1979). Paracrinoids (Platycystitidae) from the Benbolt Formation (Blackriverian) of Virginia. Journal of Paleontology, 53, 380398.Google Scholar
Frest, T. J., Strimple, H. L., & Paul, C. R. C. (2011). The North American Holocystites fauna (Echinodermata: Blastozoa: Diploporita): Paleobiology and systematics. Bulletins of American Paleontology, 380, 1141.Google Scholar
Frest, T. J., Strimple, H. L., & Witzke, B. J., B. J. (1980) New Comarocystitida (Echinodermata: Paracrinoidea) from the Silurian of Iowa and Ordovician of Oklahoma. Journal of Paleontology, 54, 217228.Google Scholar
Gale, A. S. (1987). Phylogeny and classification of the Asteroidea (Echinodermata). Zoological Journal of the Linnean Society, 89, 107132.CrossRefGoogle Scholar
Gil Cid, M. D., & Domínguez Alonso, P. (2002). Ubaghsicystis segurae nov. gen. y sp., nuevo Eocrinoide (Echinodermata) del Cámbrico Medio del Norte de España. Coloquios de Paleontología, 53, 2132.Google Scholar
Gil Cid, M. D., Domínguez Alonso, P., Cruz, M. C., & Escribano, M. (1996). Primera cita de un blastoideo Coronado en el Ordovícico Superior de Sierra Morena Oriental. Revista de la Sociedad geológica de España, 9, 253267.Google Scholar
Glass, A. (2006). Pyritized tube feet in a protasterid ophiuroid from the Upper Ordovician of Kentucky, USA. Acta Palaeontologica Polonica, 51, 171184.Google Scholar
Hambach, G. (1903). Revision of the Blastoidea, with a proposed new classification and description of new species. Transactions of the Academy of Science of Saint Louis, 13, 167.Google Scholar
Hisinger, W. (1828). Anteckningar i Physik och Geognosi under resor uti Sverige och Norrige, 4, Stockholm: Elméns och Granbergs tryckeri.Google Scholar
Horowitz, A. S., MacurdaJr., D. B., & Waters, J. A. (1986). Polyphyly in the Pentremitidae (Blastoidea, Echinodermata). Geological Society of America Bulletin, 97, 156161.2.0.CO;2>CrossRefGoogle Scholar
Hudson, G. H. (1907). On some Pelmatozoa from the Chazy Limestone of New York. Bulletin of the New York State Museum, 149, 195258.Google Scholar
Huynh, T. L., Evangelista, D., & Marshall, C. R. (2015). Visualizing the fluid flow through the complex skeletonized respiratory structures of a blastoid echinoderm. Palaeontologia Electronica, 18, 117.Google Scholar
Hyman, L. H. (1955). The Invertebrates: Echinodermata, vol. 4. New York: McGraw-Hill Book Company.Google Scholar
Jaekel, O. (1899). Stammesgeschichte der Pelmatozoen I, Thecoidea und Cystoidea. Berlin: J. Springer.Google Scholar
Jaekel, O. (1900). Ueber Carpoideen, eine neue Classe von Pelmatozoen. Zeitsch. Deutsch Geo/Gesell, 52, 661677.Google Scholar
Jaekel, O. (1918). Phylogenie und System der Pelmatozoen. Paläontologische Zeitschrift, 3, 1128. DOI: https://doi.org/10.1007/BF03190413.CrossRefGoogle Scholar
Jaekel, O. (1926). Über zwei Cystoideen und ihre morphologische Bewertung. Norsk geologisk tidsskrift, 9, 1922.Google Scholar
Janies, D. (2001). Phylogenetic relationships of extant echinoderm classes. Canadian Journal of Zoology, 79, 1232–1250.CrossRefGoogle Scholar
Jefferies, R. P. S., Joysey, K. A., Paul, C. R. C., & Ramsbotttom, W. H. C. (1967). Cyclocystoidea, Eocrinoidea, Rhombifera, Diploporita and Paracrinoidea. In W. B. Harland, ed., The Fossil Record: A Symposium with Documentation. London: Geological Society, pp. 566570.Google Scholar
Jell, P. A. (1983). Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea). Memoir of the Association of Australasian Palaeontologists, 1, 209235.Google Scholar
Jell, P. A. (2010). Late Silurian echinoderms from the Yass Basin, New South Wales – the earliest holothurian body fossil and two diploporitan cystoids (Sphaeronitidae and Holocystitidae). American Association of Petroleum Geologists Memoir, 39, 2741.Google Scholar
Kammer, T. W., Sumrall, C. D., Zamora, S., Ausich, W. I., & Deline, B. (2013). Oral region homologies in Paleozoic crinoids and other plesiomorphic pentaradial echinoderms. PLoS One, 8. DOI: https://doi.org/10.1371/journal.pone.0077989Google Scholar
Katz, S. G., & Sprinkle, J. (1976). Fossilized eggs in a Pennsylvanian blastoid. Science, 192, 11371139.CrossRefGoogle Scholar
Kesling, R. V. (1963). Key for the classification of cystoids. Contri-butions from the Museum of Paleontology, University of Michigan, 18, 101116.Google Scholar
Kesling, R. V. (1968a). Cystoids. In Moore, R. C., (ed.), Treatise on Invertebrate Paleontology, part S Echinodermata 1 (1). Lawrence, Kansas, and Boulder, Colorado: University of Kansas Press and Geological Society of America, pp. S85–S267.Google Scholar
Kesling, R. V. (1968b). Paracrinoids. In Moore, R. C., (ed.), Treatise on Invertebrate Paleontology, part S Echinodermata 1 (1). Lawrence, Kansas, and Boulder, Colorado: University of Kansas Press and Geological Society of America, pp. S268–S288.Google Scholar
Kroh, A. (2020). Phylogeny and classification of echinoids. Developments in Aquaculture and Fisheries Science, 43, 117, Elsevier.CrossRefGoogle Scholar
Lam, A. R., Sheffield, S. L., & Matzke, N. J. (2021). Estimating dispersal and evolutionary dynamics in diploporan blastozoans (Echinodermata) across the Great Ordovician Biodiversification Event. Paleobiology, 47, 198220. DOI: https://doi.org/10.1017/pab.2020.24CrossRefGoogle Scholar
Lam, A. R., Stigall, A. L., & Matzke, N. J. (2018). Dispersal in the Ordovician: Speciation patterns and paleobiogeographic analyses of brachiopods and trilobites. Palaeogeography, Palaeoclimatology, Palaeoecology, 489, 147165.CrossRefGoogle Scholar
Lanc, F. A., McDermott, P. D., & Paul, C. R. (2015). The identity of the British Ordovician cystoid ‘Hemicosmites rugatus Forbes’. Geological Journal, 50, 116.CrossRefGoogle Scholar
Lefebvre, B. (2007). Early Palaeozoic palaeobiogeography and palaeoecology of stylophoran echinoderms. Palaeogeography, Palaeoclimatology, Palaeoecology, 245, 156199.Google Scholar
Lefebvre, B., Guensburg, T. E., Martin, E. L., et al. (2019). Exceptionally preserved soft parts in fossils from the Lower Ordovician of Morocco clarify stylophoran affinities within basal deuterostomes. Geobios, 52, 2736.CrossRefGoogle Scholar
Lefebvre, B., Sumrall, C. D., Shroat-Lewis, R. A., et al. (2013). Palaeobiogeography of Ordovician echinoderms. Geological Society, London, Memoirs, 38, 173198.CrossRefGoogle Scholar
Lenton, T. M., Stuart, J. D., & Mills, B. J. W. (2018). COPSE reloaded: An improved model of biogeochemical cycling over Phanerozoic time. Earth-Science Reviews, 178, 128.CrossRefGoogle Scholar
Lewis, R.D. (1980). Taphonomy. In Broadhead, T. W. & Waters, J. A., eds., Echinoderms, notes for a short course: Studies in Geology, 3, 2739.CrossRefGoogle Scholar
Limbeck, M. R., & Sumrall, C. D. (2018). Exploring the distribution of Paracrinoidea (Echinodermata). Geological Society of America Meeting, Abstracts with Programs, 50. DOI: https://doi.org/10.1130/abs/2018AM-322302.CrossRefGoogle Scholar
Macurda, D. B. Jr. (1965). The hydrodynamics of the Mississippian blastoid genus Globoblastus. Journal of Paleontology, 39, 12091217.Google Scholar
Macurda, D. B. Jr. (1968). Development and hydrodynamics. In Moore, R. C. ed., Treatise on Invertebrate Paleontology: Part S, Echinodermata 1 (2), Blastoids. Lawrence, Kansas, and Boulder, Colorado: University of Kansas Press and Geological Society of America, pp. 356381.Google Scholar
Macurda, D. B. Jr. (1969). Blastoids. In E. D. McKee, & R. C. Gutschick, eds., The history of the Redwall Limestone of northern Arizona. Geological Society of America Memoir, 114, pp. 457473.Google Scholar
Macurda, D. B. Jr. (1973). The stereomic microstructure of the blastoid endoskeleton. University of Michigan Museum of Paleontology Contributions, 24, 6983.Google Scholar
Macurda, D. B. Jr. (1975). The Pentremites (Blastoidea) of the Burlington Limestone (Mississippian). Journal of Paleontology, 49, 346373.Google Scholar
Macurda, D. B. Jr., & Breimer, A. (1977). Strongyloblastus, a Mississippian blastoid from Western Canada. Journal of Paleontology, 51, 693700.Google Scholar
Makhlouf, Y., Lefebvre, B., Nardin, E., Nedjari, A., & Paul, C. R. C. (2017). The diploporite blastozoan Lepidocalix pulcher from the Middle Ordovician of northern Algeria: Taxonomic revision and palaeoecological implications. Acta Palaeontologica Polonica, 62, 299310.CrossRefGoogle Scholar
McDermott, P. D., & Paul, C. R. C. (2015). Coronate echinoderms from the Ordovician of the Llanddowror area, South Wales. Geological Journal, 50, 173188.Google Scholar
Meek, F. B., & Worthen, A. H. (1869). Descriptions of new Crinoidea and Echinoidea, from the carboniferous rocks of the western states, with a note on the Genns Onychaster. Proceedings of the Academy of Natural Sciences of Philadelphia, 21, 6783.Google Scholar
Mergl, M., & Prokop, R. J. (2006). Lower Ordovician cystoids (Rhombifera, Diploporita) from the Prague Basin (Czech Republic). Bulletin of Geosciences, 81, 115.CrossRefGoogle Scholar
Miller, A. I. (2000). Conversations about Phanerozoic global diversity. Paleobiology, 26, 5373.CrossRefGoogle Scholar
Miller, S. A. (1879). Description of twelve new fossil species and remarks upon others. Journal of the Cincinnati Society of Natural History, 2, 104118.Google Scholar
Miller, S. A. (1889). North American Geology and Paleontology, Ohio. Western Methodist Books.Google Scholar
Mironov, A. N., Dilman, A. B., Vladychenskaya, I. P., & Petrov, N. B. (2016). Adaptive strategy of the Porcellanasterid sea stars. Biology Bulletin, 43, 503516.CrossRefGoogle Scholar
Mooi, R., & David, B. (1997). Skeletal homologies of echinoderms. In J. A. Waters & C. G. Maples, eds., Geobiology of echinoderms. Paleontological Society Papers, 3, pp. 305335.CrossRefGoogle Scholar
Mooi, R., & David, B. (1998). Evolution within a bizarre phylum: Homologies of the first echinoderms. American Zoologist, 38, 965974.CrossRefGoogle Scholar
Mooi, R., & David, B. (2008). Radial symmetry, the anterior/posterior axis, and echinoderm Hox genes. Annual Review of Ecology, Evolution, & Systematics, 39, 4362.Google Scholar
Mooi, R., David, B., & Marchand, D. (1994). Echinoderm skeletal homologies: Classical morphology meets modern phylogenetics. In David, B., Guille, A., Feral, J., & Roux, M., eds., Echinoderms through Time. A. A. Balkema, pp. 8795.Google Scholar
Morris, J. (1843). A catalogue of British fossils comprising all the genera and species hitherto described; with references to their geological distribution and to the localities in which they have been found. London: Van Voorst.CrossRefGoogle Scholar
Müller, J. (1854). Über den Bau der Echinodermen. Königlich Preussische Akademie der Wissenschaften, Abhandlungen, 1853, 125220.Google Scholar
Nardin, E. (2007). New occurrence of the Ordovician eocrinoid Cardiocystites: Palaeogeographical and palaeoecological implications. Acta Palaeontologica Polonica, 52, 1726.Google Scholar
Nardin, E., & Bohatý, J. (2012). A new pleurocystitid blastozoan from the Middle Devonian of the Eifel (Germany) and its phylogenetic importance. Acta Palaeontologica Polonica, 58, 533544.Google Scholar
Nardin, E., & Lefebvre, B. (2010). Unravelling extrinsic and intrinsic factors of the early Palaeozoic diversification of blastozoan echinoderms. Palaeogeography, Palaeoclimatology, Palaeoecology, 294, 142160.CrossRefGoogle Scholar
Nardin, E., Lefebvre, B., Fatka, O., et al. (2017). Evolutionary implications of a new transitional blastozoan echinoderm from the middle Cambrian of the Czech Republic. Journal of Paleontology, 91, 672684. DOI: https://doi.org/10.1017/jpa.2016.157CrossRefGoogle Scholar
Neumayr, M. (1889). Die Stämme des Thierreiches: Wirbellose Thiere, Vienna: Verlag von F. Tempsky.Google Scholar
Nohejlová, M., & Fatka, O. (2015). Blastozoan echinoderms from the Cambrian of the Barrandian area (Czech Republic). In Zamora, S. & Rábano, I., eds., Progress in Echinoderm Palaeobiology: Cuademos del Museo Geominero. Madrid: Instituto Geológico y Minero de España, 19, pp. 159162.Google Scholar
Nohejlová, M., & Fatka, O. (2016). Ontogeny and morphology of Cambrian eocrinoid Akadocrinus (Barrandian area, Czech Republic). Bulletin of Geosciences, 91, 141153.CrossRefGoogle Scholar
Nohejlová, M., Nardin, E., Fatka, O., Kašička, L., & Szabad, M. (2019). Morphology, palaeoecology and phylogenetic interpretation of the Cambrian echinoderm Vyscystis (Barrandian area, Czech Republic). Journal of Systematic Palaeontology, 17, 16191634.CrossRefGoogle Scholar
O’Malley, C. E., Ausich, W. I., & Chin, Y. (2016). Deep echinoderm phylogeny preserved in organic molecules from Paleozoic fossils. Geology, 44, 379382.CrossRefGoogle Scholar
O’Neill, P. (1989). Structure and mechanics of starfish body wall. Journal of Experimental Biology, 147, 5389.CrossRefGoogle ScholarPubMed
Parsley, R. L. (1970). Revision of the North American Pleurocystitidae (Rhombifera – Cystoidea). Bulletins of American Paleontology, 58, 132213.Google Scholar
Parsley, R. L. (1978). Thecal morphology of the Ordovician paracrinoid Comarocystites (Echinodermata). Journal of Paleontology, 52, 472479.Google Scholar
Parsley, R. L. (1982). Eumorphocystis. In J. Sprinkle, ed., Echinoderm faunas from the Bromide Formation (middle Ordovician) of Oklahoma. The University of Kansas, Paleontological Contributions, Monograph, 1, pp. 106117.Google Scholar
Parsley, R. L. (1990). Aristocystites, a recumbent diploporid (Echinodermata) from the Middle and Late Ordovician of Bohemia, ČSSR. Journal of Paleontology, 64, 278293.CrossRefGoogle Scholar
Parsley, R. L. (2012). Ontogeny, functional morphology, and comparative morphology of lower (Stage 4) and basal middle (Stage 5) Cambrian gogiids, Guizhou Province, China. Journal of Paleontology, 86, 569583.CrossRefGoogle Scholar
Parsley, R. L. (2013). Development and functional morphology of sutural pores in Early and Mid-Cambrian gogiid eocrinoids from Guizhou Province, China. In Johnson, C. ed., Echinoderms in a Changing World. Proceedings of the 13th International Echinoderm Conference, January 5–9 2009, University of Tasmania, Hobart, Tasmania, Australia. Boca Raton, FL: CRC Press, pp. 7986.Google Scholar
Parsley, R. L., & Mintz, L. W. (1975). North American Paracrinoidea: (Ordovician: Paracrinozoa, new, Echinodermata). Bulletins of American Paleontology, 68, 1113.Google Scholar
Parsley, R. L., & Zhao, Y. (2006). Long stalked eocrinoids in the basal Middle Cambrian Kaili Biota, Taijiang County, Guizhou Province, China. Journal of Paleontology, 80, 10581071.CrossRefGoogle Scholar
Patterson, C. (1982). Morphological characters and homology. In Joysey, K. A. & Friday, A. E., eds., Systematics Association Special Volume 21: Problems of Phylogeny Reconstruction. Academic Press, New York, pp. 2174.Google Scholar
Paul, C. R. C. (1965). On the occurrence of Comarocystites or Sinclairocystis (Paracrinoidea: Comarocystitidae) in the starfish bed, Threave Glen, Girvan. Geological Magazine, 102, 474477.CrossRefGoogle Scholar
Paul, C. R. C. (1967). The functional morphology and mode of life of the cystoid Pleurocystites, E. Billings, 1854. In N. Millott, ed., Echinoderm Biology: Symposia of the Zoological Society of London, 20, 105123.Google Scholar
Paul, C. R. C. (1968a). Macrocystella Callaway, the earliest glyptocystitid cystoid. Palaeontology, 11, 580600.Google Scholar
Paul, C. R. C. (1968b). Morphology and function of the dichoporite pore-structures in cystoids. Palaeontology, 11, 697730.Google Scholar
Paul, C. R. C. (1969). Thomacystis, a unique new hemicosmitid cystoid from Wales. Geological Magazine, 106, 190196.Google Scholar
Paul, C. R. C. (1971). Revision of the Holocystites Fauna (Diploporita) of North America. Fieldiana Geology, 24, 1166.Google Scholar
Paul, C. R. C. (1972). Morphology and function of exothecal pore-structures in cystoids. Palaeontology, 15, 128.Google Scholar
Paul, C. R. C. (1973). British Ordovician Cystoids Part 1. Palaeontographical Society Monographs, 536, 164.CrossRefGoogle Scholar
Paul, C. R. C. (1976a). Paleogeography of primitive echinoderms in the Ordovician. In M. G. Bassett, ed., The Ordovician System. Wales, UK: University of Wales Press and National Museum of Wales, pp. 553574.Google Scholar
Paul, C. R. C. (1976b). Respiration rates in primitive (fossil) echinoderms. Thalassia Jugoslavica, 12, 277286.Google Scholar
Paul, C. R. C. (1977). Feeding and respiration rates in fossil echinoderms. Journal of Paleontology, 51, 20–20.Google Scholar
Paul, C. R. C. (1978). Respiration rates in primitive (fossil) echinoderms. Thalassia Jugoslavia, 12, 277286.Google Scholar
Paul, C. R. C. (1984). British Ordovician Cystoids Part 2. Palaeontographical Society Monographs, 563, 65152.Google Scholar
Paul, C. R. C. (1988). The phylogeny of the cystoids. In Paul, C. R. C. & Smith, A. B., eds., Echinoderm Phylogeny and Evolutionary Biology. Oxford: Clarendon Press, pp. 199213.Google Scholar
Paul, C. R. C. (1997). British Ordovician cystoids Part 3. Palaeontographical Society Monographs, 604, 153213.Google Scholar
Paul, C. R. C. (2017). Testing for homologies in the axial skeleton of primitive echinoderms. Journal of Paleontology, 91, 582603. DOI: https://doi.org/10.1017/jpa.2016.151CrossRefGoogle Scholar
Paul, C. R. C. (2018). Prokopius, a new name for “Hippocystis sculptus” Prokop, 1965, and the status of the genus Hippocystis Bather, 1919 (Echinodermata; Diploporita). Bulletin of Geosciences, 93, 337346.Google Scholar
Paul, C. R. C., & Bockelie, J. F. (1983). Evolution and functional morphology of the cystoid Sphaeronites in Britain and Scandinavia. Palaeontology, 26, 687734.Google Scholar
Paul, C. R. C., & Cope, J. C. W. (1982). A parablastoid from the Arenig of South Wales. Palaeontology, 25, 499507.Google Scholar
Paul, C. R. C., & Donovan, S. K. (2011). A review of the British Silurian cystoids. Geological Journal, 46, 434450.Google Scholar
Paul, C. R. C., & Rozhnov, S. V. (2016). Revision of Scoliocystis (Rhombifera: Echinoencrinitidae) and related Cystoid genera. Paleontological Journal, 50, 255275.CrossRefGoogle Scholar
Paul, C. R. C., & Smith, A. B. (1984). The early radiation and phylogeny of echinoderms. Biological Reviews, 59, 443481.CrossRefGoogle Scholar
Paul, C. R. C., Boucot, A. J., Donovan, S. K., Zhan, R. B., & Tansathien, W. (2019). Primitive stalked echinoderms from the Middle Ordovician (Darriwilian) of Bang Song Tho, Kanchanaburi, western Thailand. Geological Magazine, 156, 147171.CrossRefGoogle Scholar
Paul, C. R. C., Donovan, S. K., Muir, L. A., et al. (2016). Primitive Ordovician (Floian) echinoderms from Sandu, Guizhou Province, South China, and their significance. Geological Journal, 51, 143156.CrossRefGoogle Scholar
Peters, S. E., & Ausich, W. I. (2008). A sampling-adjusted macroevolutionary history for Ordovician–Early Silurian crinoids. Paleobiology, 34, 104116. DOI: https://doi.org/10.1666/07035.1.Google Scholar
Prokop, R. (1962). Akadocrinus nov. gen., nova lilijice z jineckého kambria (Eocrinoidea). Vestnik Ustredniho ustavu geologického, 27, 3139.Google Scholar
Qualls, L. M., Bauer, J. E., & Sumrall, C. D. (2016). Reassessment of blastoid (Echinodermata) phylogeny with internal character data. Geological Society of America, Abstract with Program.Google Scholar
Rahman, I. A. (2020). Computational fluid dynamics and its applications in echinoderm palaeobiology. Elements of Paleontology, this volume.Google Scholar
Rahman, I. A., & Zamora, S. (2009). The oldest cinctan carpoid (stem-group Echinodermata), and the evolution of the water vascular system. Zoological Journal of the Linnean Society, 157, 420432.CrossRefGoogle Scholar
Rahman, I. A., O’Shea, J., Lautenschlager, S., & Zamora, S. (2020). Potential evolutionary trade‐off between feeding and stability in Cambrian cinctan echinoderms. Palaeontology, 63, 689701. DOI: https://doi.org/10.1111/pala.12495CrossRefGoogle Scholar
Rahman, I. A., Zamora, S., Falkingham, P. L., & Phillips, J. C. (2015). Cambrian cinctan echinoderms shed light on feeding in the ancestral deuterostome. Proceedings of the Royal Society B: Biological Sciences, 282, 20151964. DOI: https://doi.org/10.1098/rspb.2015.1964CrossRefGoogle ScholarPubMed
Regnéll, G. (1945). Non-crinoid Pelmatozoa from the Paleozoic of Sweden. Lunds Geologisk-Mineralogiska Institutionen, Meddelanden, 108, 1255.Google Scholar
Rozhnov, S. V. (1987). New data on eocrinoids with flattened theca. Doklady Earth Science Section, Doklady Akademii Nauk SSSR, 295, 965968.Google Scholar
Rozhnov, S. V. (2012). Reinterpretation of Baltic Ordovician Heckerites multistellatus Rozhnov, 1987 as a possible paracrinoid based on new material. Zoosymposia, 7, 307316.CrossRefGoogle Scholar
Rozhnov, S. V. (2013). A new genus of Parablastoidea (Echinodermata) from the Middle Ordovician of Ladoga glint on the Volkhov River (Ladoga region). Paleontological Journal, 47, 154161.Google Scholar
Rozhnov, S. V. (2015). On the paracrinoid-like echinoderms Achradocystites Volborth, 1870 and Heckerites Rozhnov, 1987 from the Ordovician of Baltica. In Zamora, S. & Rábano, I., eds., Progress in Echinoderm Palaeobiology: Cuademos del Museo Geominero. Madrid: Instituto Geológico y Minero de España, 19, pp. 159162.Google Scholar
Rozhnov, S. V., Minjin, C., & Kushlina, V. B. (2009). Discovery of Rhombifera (echinoderms) in the Ordovician of Mongolia. Paleontological Journal, 43, 14251431.CrossRefGoogle Scholar
Say, T. (1825). On two genera and several species of crinoids. Journal of the Academy of Natural Sciences of Philadelphia, 4, 289296.Google Scholar
Seebach, K. V. von (1865). Ueber Orophocrinus, ein neues Crinoideengeschlecht aus der Abtheilung der Blastoideen. Nachrichten von der Königl. Gesellschaft der Wissenschaften und der Georg-Augusts-Universität zu Göttingen, 1864, 110111.Google Scholar
Schmidtling, R. C., & Marshall, C. R. (2010). Three dimensional structure and fluid flow through the hydrospires of the blastoid echinoderm, Pentremites rusticus. Journal of Paleontology, 84, 109117.Google Scholar
Sheffield, S. L., Ausich, W. I., & Sumrall, C. D. (2018). Late Ordovician (Hirnantian) diploporitan fauna of Anticosti Island, Quebec, Canada: Implications for evolutionary and biogeographic patterns. Canadian Journal of Earth Sciences, 55, 17. DOI: https://doi.org/10.1139/cjes-2017-0160.Google Scholar
Sheffield, S. L., Bauer, J. E., Sumrall, C. D., & Rahman, I. A. (2017). Synchrotron-based tomographic evaluation of Eumorphocystis (Diploporita: Echinodermata) and its use in understanding morphology and ontogeny. Geological Society of America, Abstracts with Programs, 49. DOI: https://doi.org/10.1130/abs/2017AM-300713.Google Scholar
Sheffield, S. L., & Sumrall, C. D. (2015). A new interpretation of the oral plating patterns of the Holocystites Fauna. In Zamora, S. & Rábano, I., eds., Progress in Echinoderm Palaeobiology: Cuademos del Museo Geominero. Madrid: Instituto Geológico y Minero de España, 19, pp. 159162.Google Scholar
Sheffield, S. L., Lam, A. R., Phillips, S. F., & Deline, B. (2022). Morphological dynamics and response following the dispersal of Ordovician–Silurian diploporan echinoderms to Laurentia. Contributions from The Museum of Paleontology, University Of Michigan, 9, 123140.Google Scholar
Sheffield, S. L., & Sumrall, C. D. (2017). Generic revision of the Holocystitidae of North America (Diploporita, Echinodermata) based on universal elemental homology. Journal of Paleontology, 91, 755766.CrossRefGoogle Scholar
Sheffield, S. L., & Sumrall, C. D. (2019a) The phylogeny of the Diploporita: a polyphyletic assemblage of blastozoan echinoderms. Journal of Paleontology, 93, 740752.CrossRefGoogle Scholar
Sheffield, S. L., & Sumrall, C. D. (2019b). A re-interpretation of the ambulacral system of Eumorphocystis (Blastozoa: Echinodermata) and its bearing on the evolution of early crinoids. Palaeontology, 62, 163173. DOI: https://doi.org/10.1111/pala.12396.Google Scholar
Shumard, B. F. (1866). A catalogue of the Paleozoic fossils of North America. Transactions of the Academy of Science of St. Louis, 2, 334407.Google Scholar
Smith, A. B. (1984). Classification of the Echinodermata. Palaeontology, 27, 431459.Google Scholar
Smith, A. B. (1988). Fossil evidence for the relationships of extant echinoderm classes and their times of divergence. In Paul, C. R. C. & Smith, A. B., eds., Echinoderm Phylogeny and Evolutionary Biology. Oxford: Clarendon Press, pp. 85106.Google Scholar
Smith, A. B. (1992). Echinoderm phylogeny: Morphology and molecules approach accord. Trends in Ecology & Evolution, 7, 224229.Google Scholar
Smith, A. B. (2005). The pre‐radial history of echinoderms. Geological Journal, 40, 255280.CrossRefGoogle Scholar
Smith, A. B., & Jell, P. A. (1990). Cambrian edrioasteroids from Australia and the origin of starfishes. Memoirs of the Queensland Museum, 28, 715778.Google Scholar
Sowerby, G. B. (1825). Note on the foregoing paper, together with a description of a new species of Pentremites. Zoological Journal, 2, 316318.Google Scholar
Spencer, W. K. (1916). A monograph of the British Palaeozoic Asterozoa. Part II. Monographs of the Palaeontographical Society, 69, 57108.CrossRefGoogle Scholar
Sprinkle, J. (1973). Morphology and evolution of blastozoan echinoderms, Cambridge, MA: Harvard University Museum of Comparative Zoology Special Publication.CrossRefGoogle Scholar
Sprinkle, J. (1974). New rhombiferan cystoids from the Middle Ordovician of Nevada. Journal of Paleontology, 48, 11741201.Google Scholar
Sprinkle, J. (1976). Classification and phylogeny of “pelmatozoan” echinoderms. Systematic Zoology, 25, 8391.Google Scholar
Sprinkle, J. (1980). An overview of the fossil record. In Broadhead, T. W. & Waters, J. A., eds., Echinoderms: Notes for a Short Course. University of Tennessee Studies in Geology, 3, 1526.Google Scholar
Sprinkle, J., & Collins, D. (2006). New eocrinoids from the Burgess Shale, Southern British Columbia, Canada, and the Spence Shale, Northern Utah, USA. Canadian Journal of Earth Sciences, 43, 303322.Google Scholar
Sprinkle, J., & Parsley, R. L. (1982). ‘Golf-ball’ paracrinoid. In Sprinkle, J., ed., Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. University of Kansas Paleontological Contributions, Monographs, 1, pp. 224280.Google Scholar
Sprinkle, J., Parsley, R. L., Zhao, Y., & Peng, J. (2011). Revision of lyracystid eocrinoids from the Mid-Cambrian of South China and Western Laurentia. Journal of Paleontology, 85, 250–55.Google Scholar
Sprinkle, J., & Sumrall, C. D. (2008). New parablastoids from the Western United States. University of Kansas Paleontological Contributions, 16, 114.Google Scholar
Sprinkle, J., & Wahlman, G. P. (1994). New echinoderms from the Early Ordovician of west Texas. Journal of Paleontology, 68, 324338.CrossRefGoogle Scholar
Stigall, A. L., Edwards, C. T., Freeman, R. L., & Rasmussen, C. M. Ø. (2019). Coordinated biotic and abiotic change during the Great Ordovician Biodiversification Event: Darriwilian assembly of early Paleozoic building blocks. Palaeoceanography, Palaeoclimatology, Palaeoecology, 530, 249270.Google Scholar
Stumm, E. C. (1955). Three new species of the cystid genus Lipsanocystis from the Middle Devonian of the Traverse Group of Michigan. Contributions from the Museum of Paleontology, University of Michigan, 12, 97103.Google Scholar
Sumrall, C. D. (1996). A phylogenetic analysis of Echinodermata based on primitive fossil taxa. Unpublished Ph.D. dissertation, University of Texas at Austin, 360 pp.Google Scholar
Sumrall, C. D. (1997). The role of fossils in the phylogenetic reconstruction of Echinodermata. The Paleontological Society Papers, 3, 267288.Google Scholar
Sumrall, C. D. (2000). The biological implications of an edrioasteroid attached to a pleurocystid rhombiferan. Journal of Paleontology, 74, 6771.Google Scholar
Sumrall, C. D. (2010). A model for elemental homology for the peristome and ambulacra in blastozoan echinoderms. In Harris, L. G., Böttger, S. A., Walker, C. W., & Lesser, M. P., eds., Echinoderms. Durham: CRC Press, pp. 269276.Google Scholar
Sumrall, C. D. (2017). New insights concerning homology of the oral region and ambulacral system plating of pentaradial echinoderms. Journal of Paleontology, 91, 604617.Google Scholar
Sumrall, C. D., Brett, C. E., Dexter, T. A., & Bartholomew, A. (2009). An enigmatic blastozoan echinoderm fauna from central Kentucky. Journal of Paleontology, 83, 739749.CrossRefGoogle Scholar
Sumrall, C. D., & Carlson, D. T. (2000). Suture modification by pectinirhomb growth in Lepadocystis decorus, a new species of callocystitid glyptocystitid rhombiferan (Echinodermata) from Illinois. Journal of Paleontology, 74, 487491.Google Scholar
Sumrall, C. D., Deline, B., Colmenar, J., Sheffield, S. L., & Zamora, S. (2015). New data on late Ordovician (Katian) echinoderms from Sardinia, Italy. In Zamora, S. & Rábano, I., eds., Progress in Echinoderm Palaeobiology: Cuademos del Museo Geominero. Madrid: Instituto Geológico y Minero de España, 19, pp. 159162.Google Scholar
Sumrall, C. D., & Gahn, F. J. (2006). Morphological and systematic reinterpretation of two enigmatic edrioasteroids (Echinodermata) from Canada. Canadian Journal of Sciences, 43, 497507.Google Scholar
Sumrall, C. D., Heredia, S., Rodríguez, C. M., & Mestre, A. I. (2013). The first report of South American edrioasteroids and the paleoecology and ontogeny of rhenopyrgid echinoderms. Acta Palaeontologica Polonica, 58, 763776.Google Scholar
Sumrall, C. D., & Schumacher, G. A. (2002). Cheirocystis fultonensis, a new glyptocystitoid rhombiferan from the Upper Ordovician of the Cincinnati Arch – comments on cheirocrinid ontogeny. Journal of Paleontology, 76, 843851.Google Scholar
Sumrall, C. D., & Sprinkle, J. (1995). Plating and pertinirhombs of the Ordovician rhombiferan Plethoschisma. Journal of Paleontology, 69, 772778.Google Scholar
Sumrall, C. D., & Sprinkle, J.. (1999). Early ontogeny of the glyptocystitid rhombiferan Lepadocystis moorei. In Carnevali, M. D. C. & Bonasoro, F., eds., Echinoderm Research 1998. Rotterdam: A. A. Balkema, pp. 409414.Google Scholar
Sumrall, C. D., & Waters, J. A. (2012). Universal elemental homology in glyptocystitoids, hemicosmitoids, coronoids and blastoids: Steps toward echinoderm phylogenetic reconstruction in derived Blastozoa. Journal of Paleontology, 86, 956972.Google Scholar
Sumrall, C. D., & Zamora, S. (2011). Ordovician edrioasteroids from Morocco: Faunal exchanges across the Rheic Ocean. Journal of Systematic Palaeontology, 9, 425454. DOI: https://doi.org/10.1080/14772019.2010.499137.CrossRefGoogle Scholar
Tarver, J. E., Braddy, S. J., & Benton, M. J. (2007). The effects of sampling bias on Palaeozoic faunas and implications for macroevolutionary studies. Palaeontology, 50, 177184.CrossRefGoogle Scholar
Termier, H., & Termier, G. (1950). Contribution à l’étude des faunes paléozoïques de l’Algérie. Bulletin du Service de la Carte Géologique de l’Algérie, 11, 183.Google Scholar
Thomka, J. R., & Brett, C. E. (2014). Taphonomy of diploporite (Echinodermata) holdfasts from a Silurian hardground, southeastern Indiana, United States: Palaeoecologic and stratigraphic significance. Geological Magazine, 151, 649665. DOI: https://doi.org/10.1017/S001675681300068X.Google Scholar
Thomka, J. R., Brett, C. E., Bantel, T. E., Young, A. L., & Bissett, D. L. (2016). Taphonomy of ‘cystoids’ (Echinodermata: Diploporita) from the Napoleon quarry of southeastern Indiana, USA: The lower Silurian Massie Formation as an atypical Lagerstätte. Palaeogeography, Palaeoclimatology, Palaeoecology, 443, 263277.Google Scholar
Thompson, J. R., Erkenbrack, E. M., Hinman, V. F., et al. (2017). Paleogenomics of echinoids reveals an ancient origin for the double-negative specification of micromeres in sea urchins. Proceedings of the National Academy of Sciences, 114, 58705877.CrossRefGoogle ScholarPubMed
Tillman, C. (1967). Triamara cutleri, a new cystoid from the Osgood Formation (Silurian) of Indiana. Journal of Paleontology, 41, 222226.Google Scholar
Tyler, A., & Tyler, B. S. (1966). The gametes: Some procedures and properties. In Boolootian, R. A., ed., Physiology of Echinodermata. John Wiley and Sons: New York, pp. 639682.Google Scholar
Ubaghs, G. (1963). Rhopalocystis destombesi n. g., n. sp., éocrinoïde de l’Ordovicien inférieur (Trémadocien supérieur) du Sud marocain. Notes et Mémoires du Service géologique du Maroc, 172, 2545.Google Scholar
Ubaghs, G. (1968a). Development and hydrodynamics. In Moore, R. C., ed., Treatise on Invertebrate Paleontology: Part S, Echinodermata 1, General characters of Echinodermata. Lawrence, Kansas, and Boulder, Colorado: University of Kansas and Geological Society of America, pp. S3S60.Google Scholar
Ubaghs, G. (1968b). Eocrinoidea. In Moore, R. C., ed., Treatise on Invertebrate Paleontology, Echinodermata 1 (2). Lawrence, Kansas, and Boulder, Colorado: University of Kansas and Geological Society of America, pp. S455S495.Google Scholar
Ubaghs, G. (1971). Diversité et spécialisation des plus anciens Échinodermes que l’on connaisse. Biological Reviews, 46, 157200.CrossRefGoogle Scholar
Ubaghs, G., & Vizcaïno, D. (1990). A new eocrinoid from the Lower Cambrian of Spain. Palaeontology, 33, 249256.Google Scholar
Ulrich, E. O., & Kirk, E. (1921). Amecystis, a new genus of Ordovician Cystidea. Proceedings of the Biological Society of Washington, 34 , 147148.Google Scholar
Vennin, E., Álvaro, J. J., & Villas, E. (1998). High-latitude pelmatozoan-bryozoan mud-mounds from the late Ordovician northern Gondwana platform. Geological Journal, 33, 121140.Google Scholar
Volborth, A. von. (1867). O tsistoblastakh, novom rode morskih lilij ili krinoidej. [On Cystoblastus, a new genus of sea lilies or crinoids.] Tipografiya Imperatoskoj Akademii Nauk, St Petersburg, 1–12. [in Russian]Google Scholar
Wahlenberg, G. (1818). Petrifacta telluris Svecanae. Acta Societas Regiae Scientiarum, 8, 1116.Google Scholar
Wanner, J. (1910) Walcott, C. D. (1917). Cambrian geology and paleontology. IV, Fauna of the Mount Whyte Formation. Smithsonian Miscellaneous Collections, 67 , 61114Google Scholar
Wanner, J. (1910). Über eine merkwürdige Echinodermenform aus dem Perm von Timor. Zeitschrift für inductive Abstammungs-und Vererbungslehre, 4, 123142.Google Scholar
Wanner, J. (1924). Die permischen Echinodermen von Timor, II. Paläontologie von Timor, 14, 181.Google Scholar
Waters, J. A., Sumrall, C. D., White, L. E., & Nguyen, B. K. (2015). Advancing phylogenetic inference in the Blastoidea (Echinodermata): Virtual 3D reconstructions of the internal anatomy. In Zamora, S. & Rábano, I., eds., Progress in Echinoderm Palaeobiology: Cuademos del Museo Geominero. Madrid: Instituto Geológico y Minero de España, 19, pp. 159162.Google Scholar
Waters, J. A., White, L. E., Sumrall, C. D., & Nguyen, B. K. (2017). A new model of respiration in blastoid (Echinodermata) hydrospires based on CFD simulations of virtual 3D models. Journal of Paleontology, 91, 662671. DOI: https://doi.org/10.1017/jpa.2017.1.Google Scholar
Wright, D. F., Ausich, W. I., Cole, S. R., Peter, M. E., & Rhenberg, E. C. (2017). Phylogenetic taxonomy and classification of the Crinoidea (Echinodermata). Journal of Paleontology, 91, 829846.CrossRefGoogle Scholar
Zamora, S. (2010). Middle Cambrian echinoderms from North Spain show echinoderms diversified earlier in Gondwana. Geology, 38, 507510.Google Scholar
Zamora, S. (2012). The first Furongian (late Cambrian) echinoderm from the British Isles. Geological Magazine, 149, 940943.CrossRefGoogle Scholar
Zamora, S., Darroch, S., & Rahman, I. A. (2013a). Taphonomy and ontogeny of early pelmatozoan echinoderms: A case study of a mass-mortality assemblage of Gogia from the Cambrian of North America. Palaeogeography, Palaeoclimatology, Palaeoecology, 377, 6272.Google Scholar
Zamora, S., Gozalo, R., & Liñán, E. (2009). Middle Cambrian gogiids (Eocrinoidea, Echinodermata) from Northeast Spain: Taxonomy, palaeoecology and palaeogeographic implications. Acta Palaeontologica Polonica, 54, 253265.Google Scholar
Zamora, S., Lefebvre, B., Álvaro, J. J., et al. (2013b). Cambrian echinoderm diversity and palaeobiogeography. Geological Society, London, Memoirs, 38, 157171.CrossRefGoogle Scholar
Zamora, S., & Smith, A. B. (2008). A new Middle Cambrian stem-group echinoderm from Spain: Paleobiological implications of a highly asymmetric cinctan. Acta Palaeontologica Polonica, 53, 207221.Google Scholar
Zamora, S., Sumrall, C. D., Zhu, X.-J., & Lefebvre, B. (2017). A new stemmed echinoderm from the Furongian of China and the origin of Glyptocystitida (Blastozoa, Echinodermata). Geological Magazine, 154, 465475.Google Scholar
Zamora, S., Zhu, X., & Lefebvre, B. (2013c). A new Furongian (Cambrian) echinoderm Lagerstätte from the Sandu Formation (South China). Cahiers de Biologie Marine, 54, 565569.Google Scholar
Zhao, Y. L., Huang, Y. L., & Gong, X. Y. (1994). Echinoderm fossils of Kaili Fauna from Taijiang, Guizhou. Acta Palaeontogica Sinica, 33, 305334.Google Scholar
Zhao, Y. L., Parsley, R. L., & Peng, J. (2007). Early Cambrian eocrinoids from Guizhou Province, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 254, 317327.CrossRefGoogle Scholar
Zhao, Y. L., Parsley, L. R., & Peng, J. (2008). Basal Mid-Cambrian short-stalked eocrinoids from the Kaili Biota: Guizhou Province, China. Journal of Paleontology, 82, 415422.CrossRefGoogle Scholar
Zittel, K. A. v. (1879). Handbuch der Paläontologie. 1. Band, 1. Protozoa, Coelenterata, Echinodermata und Molluscoidea. Oldenburg: Munich.Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A Review of Blastozoan Echinoderm Respiratory Structures
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

A Review of Blastozoan Echinoderm Respiratory Structures
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

A Review of Blastozoan Echinoderm Respiratory Structures
Available formats
×