Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T23:13:14.483Z Has data issue: false hasContentIssue false

Climate Science

Published online by Cambridge University Press:  27 November 2024

Wendy S. Parker
Affiliation:
Virginia Tech

Summary

This Element examines how climate scientists have arrived at answers to three key questions about climate change: How much is earth's climate warming? What is causing this warming? What will climate be like in the future? Resources from philosophy of science are employed to analyse the methods that climate scientists use to address these questions and the inferences that they make from the evidence collected. Along the way, the analysis contributes to broader philosophical discussions of data modelling and measurement, robustness analysis, explanation, and model evaluation.
Get access
Type
Element
Information
Online ISBN: 9781009619301
Publisher: Cambridge University Press
Print publication: 31 December 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, P., Eitland, E., Hewitson, B., et al. (2015). Toward an ethical framework for climate services: A white paper of the Climate Services Partnership Working Group on Climate Services Ethics. Climate Services Partnership Paper, p. 12, www.climate-services.org/wp-content/uploads/2015/09/CS-Ethics-White-Paper-Oct-2015.pdf.Google Scholar
Adler, C., & Hirsch Hadorn, G. (2014). The IPCC and Treatment of Uncertainties: Topics and Sources of Dissensus. Wiley Interdisciplinary Reviews Climate Change, 5(5), 663676.CrossRefGoogle Scholar
Arias, P. A., Bellouin, N., Coppola, E., et al. (2021). Technical Summary. In Masson-Delmotte, V., Zhai, P., Pirani, A., et al., eds., Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, pp. 553672.Google Scholar
Baumberger, C., Knutti, R. & Hirsch-Hadorn, G. (2017). Building Confidence in Climate Model Projections: An Analysis of Inferences from Fit. Wiley Interdisciplinary Reviews: Climate Change, 8, e454.Google Scholar
Betz, G. (2013). In Defence of the Value Free Ideal. European Journal for Philosophy of Science, 3(2), 207220.CrossRefGoogle Scholar
Betz, G. (2015). Are Climate Models Credible Worlds? Prospects and Limitations of Possibilistic Climate Prediction. European Journal for Philosophy of Science, 5(2), 191215.CrossRefGoogle Scholar
Biddle, J. B., & Winsberg, E. (2010). Value Judgments and the Estimation of Uncertainty in Climate Modeling. In Magnus, P. D. & Busch, J., eds., New Waves in the Philosophy of Science, New York: Palgrave MacMillan, pp. 172197.CrossRefGoogle Scholar
Bindoff, N. L., Stott, P. A., AchutaRao, K. M., et al. (2013). Chapter 10 – Detection and Attribution of Climate Change: From Global to Regional. In Stocker, T. F., Qin, D., Plattner, G.-K., et al., eds., Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, pp. 867952.Google Scholar
Bokulich, A. (2017). Models and Explanation. In Magnani, L. and Bertolotti, T., eds., Handbook of Model-based Science. Dordrecht: Springer, pp. 103118.CrossRefGoogle Scholar
Bokulich, A. (2018). Using Models to Correct Data: Paleodiversity and the Fossil Record. Synthese, 198, 59195940.CrossRefGoogle Scholar
Bokulich, A. & Parker, W. S. (2021). Data Models, Representation and Adequacy-for-Purpose. European Journal for Philosophy of Science, 11, 31.CrossRefGoogle ScholarPubMed
Bovens, L., & Hartmann, S. (2004). Bayesian Epistemology. Oxford: Oxford University Press.CrossRefGoogle Scholar
Bradley, R., Frigg, R., Steele, K., Thompson, E., & Werndl, C. (2020). The Philosophy of Climate Science. Internet Encyclopedia of Philosophy. https://iep.utm.edu/. Accessed November 26, 2023.Google Scholar
Carrier, M. & Lenhard, J. (2019). Climate Models: How to Assess their Reliability. International Studies in Philosophy of Science, 32(2): 81100.CrossRefGoogle Scholar
Collins, M., Knutti, R., Arblaster, J., et al. (2013). Long-term Climate Change: Projections, Commitments and Irreversibility. In Stocker, T. F., Qin, D., Plattner, G.-K., et al., eds., Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, pp. 10291136.Google Scholar
Compo, G. P., Sardeshmukh, P. D., Whitaker, , et al. (2013). Independent Confirmation of Global Land Warming without the Use of Station Temperatures. Geophysical Research Letters, 40, 31703174.CrossRefGoogle Scholar
Cowtan, K., & Way, R.G. (2014). Coverage Bias in the HadCRUT4 Temperature Series and Its Impact on Recent Temperature Trends. Quarterly Journal of the Royal Meteorological Society, 140(683), 19351944.CrossRefGoogle Scholar
Currie, A. (2018). From Models-as-Fictions to Models-as-Tools. Ergo, 4(27), 759781.Google Scholar
Dawid, R., Hartmann, S., & Sprenger, J. (2015). The No Alternatives Argument. The British Journal for the Philosophy of Science, 66(1), 213234.CrossRefGoogle Scholar
Dethier, C. (2022). When is an Ensemble like a Sample? “Model-based” Inferences in Climate Modelling. Synthese, 200(52), 122.CrossRefGoogle Scholar
Dethier, C. (2023a). Interpreting the Probabilistic Language in IPCC Reports. Ergo, 10(8), 203225.Google Scholar
Dethier, C. (2023b). Against “Possibilist” Interpretations of Climate Models. Philosophy of Science, 90(5), 14171426. https://doi.org/10.1017/psa.2023.6.CrossRefGoogle Scholar
Dethier, C. (2024). Contrast Classes and Agreement in Climate Modeling. European Journal for the Philosophy of Science, 14(14). https://doi.org/10.1007/s13194-024-00577-6.CrossRefGoogle Scholar
Dietrich, F., & Spiekermann, K. (2021). Jury Theorems. The Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/entries/jury-theorems/. Accessed September 17, 2023.Google Scholar
Edwards, P. N. (2010). A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming. Cambridge, MA: MIT Press.Google Scholar
Elabbar, A. (2023). Varying Evidential Standards as a Matter of Justice. British Journal for the Philosophy of Science. https://doi.org/10.1086/727429.CrossRefGoogle Scholar
Eyring, V., Bony, S., Meehl, G. A., et al. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization. Geoscientific Model Development, 9, 19371958.CrossRefGoogle Scholar
Eyring, V., Gillett, N. P., Achuta Rao, K. M., et al. (2021). Human Influence on the Climate System. In Masson-Delmotte, V., Zhai, P., Pirani, A., et al., eds., Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, pp. 423552, https://doi.org/10.1017/9781009157896.005.Google Scholar
Folland, C. K., Boucher, O., Colman, A., & Parker, D. E. (2018) Causes of Irregularities in Trends of Global Mean Surface Temperature since the late 19th Century. Science Advances, 4, eaao5297.CrossRefGoogle ScholarPubMed
Forster, P., Storelvmo, T., Armour, K., et al. (2021). The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity. In Masson-Delmotte, V., Zhai, P., Pirani, A., et al., eds., Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, pp. 9231054.Google Scholar
Frame, D. J., Faull, N. E., Joshi, M. M., & Allen, M. R. 2007. Probabilistic Climate Forecasts and Inductive Problems. Philosophical Transactions of the Royal Society A, 365, 19711992.CrossRefGoogle ScholarPubMed
Frigg, R., Thompson, E., and Werndl, C. (2015a). Philosophy of Climate Science Part I: Observing Climate Change. Philosophy Compass, 10 (12): 953964.CrossRefGoogle Scholar
Frigg, R., Thompson, E., and Werndl, C. (2015b). Philosophy of Climate Science Part II: Modelling Climate Change. Philosophy Compass, 10 (12): 965977.CrossRefGoogle Scholar
Gillett, N. P., Kirchmeier-Young, M., Ribes, A., et al. (2021). Constraining Human Contributions to Observed Warming since the Pre-industrial Period. Nature Climate Change, 11(3), 207212.CrossRefGoogle Scholar
Gleckler, P. J., Taylor, K. E., & Doutriaux, C. (2008) Performance Metrics for Climate Models. Journal of Geophysical Research, 113, D06104.CrossRefGoogle Scholar
Gulev, S. K., Thorne, P. W., Ahn, J., et al. (2021). Changing State of the Climate System. In Masson-Delmotte, V., Zhai, P., Pirani, A., et al., eds., Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press, pp. 287422.Google Scholar
Hall, A., & Qu, X. (2006). Using the Current Seasonal Cycle to Constrain Snow Albedo Feedback in Future Climate Change. Geophysical Research Letters, 33, L03502.CrossRefGoogle Scholar
Hansen, J. E., & Lebedeff, S. (1987). Global Trends of Measured Surface Air Temperature. Journal of Geophysical Research, 92, 1334513372.CrossRefGoogle Scholar
Harris, M. (2021) Conceptualizing Uncertainty: The IPCC, Model Robustness and the Weight of Evidence. PhD Thesis, The London School of Economics. https://etheses.lse.ac.uk/4355/1/Harris__Conceptualizing-uncertainty-IPCC-model-robustness.pdf.Google Scholar
Harris, T. (2003). Data Models and the Acquisition and Manipulation of Data. Philosophy of Science, 70(5), 15081517.CrossRefGoogle Scholar
Hartmann, D. L., Klein Tank, A. M. G., Rusticucci, M., et al. (2013). Observations: Atmosphere and Surface. In Stocker, T. F., Qin, D., Plattner, G.-K., et al., eds., Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, pp. 159254.Google Scholar
Hausfather, Z. (2017). Analysis: How well have climate models projected global warming? www.carbonbrief.org/analysis-how-well-have-climate-models-projected-global-warming/. Accessed December 5, 2023.Google Scholar
Haustein, K., Allen, M. R., Forster, P. M., et al. (2017). A Real-Time Global Warming Index. Scientific Reports, 7(1), 15417.CrossRefGoogle ScholarPubMed
Hazeleger, W., van den Hurk, B. J. J. M., Min, E., et al. (2015). Tales of Future Weather. Nature Climate Change, 5, 107113.CrossRefGoogle Scholar
Hegerl, G. C., Zwiers, F. W., Braconnot, P., et al. (2007). Understanding and Attributing Climate Change. In Solomon, S., Qin, D., Manning, M., et al., eds., Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, pp. 663745.Google Scholar
Heinze, C., Eyring, V., Friedlingstein, P., et al. (2019). Climate Feedbacks in the Earth System and Prospects for their Evaluation. Earth System Dynamics, 10, 379452.CrossRefGoogle Scholar
Huber, M., & Knutti, R. (2014). Natural Variability, Radiative Forcing and Climate Response in the Recent Hiatus Reconciled. Nature Geoscience, 7, 651656.CrossRefGoogle Scholar
Intemann, K. (2015). Distinguishing Between Legitimate and Illegitimate Values in Climate Modeling. European Journal for Philosophy of Science, 5(2), 217232.CrossRefGoogle Scholar
IPCC. (2013). Summary for Policymakers. In Stocker, T. F., Qin, D., Plattner, G.-K., et al., eds., Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, pp. 329.Google Scholar
IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Masson-Delmotte, V., Zhai, P., Pirani, A., et al., eds., Cambridge: Cambridge University Press.Google Scholar
IPCC (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team, Lee, H. and Romero, J., eds., Geneva, Switzerland: IPCC.Google Scholar
Jebeile, J., & Crucifix, M. (2020). Multi-Model Ensembles in Climate Science: Mathematical Structures and Expert Judgements. Studies in History and Philosophy of Science Part A, 83, 4452.CrossRefGoogle ScholarPubMed
Jebeile, J., & Crucifix, M. (2021). Value Management and Model Pluralism in Climate Science. Studies in History and Philosophy of Science Part A, 88, 120127.CrossRefGoogle ScholarPubMed
Jebeile, J., & Graham Kennedy, A. (2015). Explaining with Models: The Role of Idealizations. International Studies in the Philosophy of Science, 29(4), 383392.CrossRefGoogle Scholar
John, S. (2015). The Example of the IPCC Does Not Vindicate the Value Free Ideal: A Reply to Gregor Betz. European Journal for Philosophy of Science, 5(1), 113.CrossRefGoogle Scholar
John, S. (2016). From Social Values to P-Values: The Social Epistemology of the Intergovernmental Panel on Climate Change. Journal of Applied Philosophy, 34(2), 157171.CrossRefGoogle Scholar
Kawamleh, S. (2022). Confirming (Climate) Change: A Dynamical Account of Model Evaluation. Synthese, 200(2), 126.CrossRefGoogle Scholar
Katzav, J. (2013). Severe Testing of Climate Change Hypotheses. Studies in History and Philosophy of Modern Physics, 44(4), 433441.CrossRefGoogle Scholar
Katzav, J. (2014). The Epistemology of Climate Models and Some of Its Implications for Climate Science and the Philosophy of Science. Studies in History and Philosophy of Modern Physics, 46(2), 228238.CrossRefGoogle Scholar
Katzav, J., & Parker, W. S. (2018). Issues in the Theoretical Foundations of Climate Science. Studies in History and Philosophy of Modern Physics, 63, 141149.CrossRefGoogle Scholar
Katzav, J., Thompson, E. L., Risbey, J., et al. (2021). On the Appropriate and Inappropriate Uses of Probability Distributions in Climate Projections and Some Alternatives. Climatic Change, 169(15).CrossRefGoogle Scholar
Kennedy, J. J., Rayner, N. A., Atkinson, C. P., & Killick, R. E. (2019). An Ensemble Data Set of Sea Surface Temperature Change from 1850: The Met Office Hadley Centre HadSST.4.0.0.0 Data Set. Journal of Geophysical Research – Atmospheres, 124(14), 77197763.CrossRefGoogle Scholar
Knutti, R. (2010). The End of Model Democracy? Climatic Change, 102, 395404.CrossRefGoogle Scholar
Knutti, R. (2018). Climate Model Confirmation: From Philosophy to Predicting Climate in the Real World. In Lloyd, E. A. and Winsberg, E., eds., Climate Modelling. Cham: Palgrave Macmillan.Google Scholar
Knutti, R., & Sedláček, J. (2013). Robustness and Uncertainties in the New CMIP5 Climate Model Projections. Nature Climate Change, 3, 369373.CrossRefGoogle Scholar
Knutti, R., Sedláček, J., Sanderson, B. M., et al. (2017). A Climate Model Projection Weighting Scheme Accounting for Performance and Interdependence. Geophysical Research Letters, 44(4), 19091918.CrossRefGoogle Scholar
Knutson, T., Camargo, S. J., Chan, J. C. L., et al. (2019). Tropical Cyclones and Climate Change Assessment: Part I: Detection and Attribution. Bulletin of the American Meteorological Society, 100(10), 19872007.CrossRefGoogle Scholar
Knuuttila, T. (2011). Modeling and Representing: An Artifactual Approach. Studies in History and Philosophy of Science A, 42(2), 262–71.CrossRefGoogle Scholar
Kosaka, Y., & Xie, S. P. (2013). Recent Global-Warming Hiatus Tied to Equatorial Pacific Surface Cooling. Nature, 501, 403407.CrossRefGoogle ScholarPubMed
Lam, V., & Majszak, M. (2022). Climate Tipping Points and Expert Judgment. WIREs Climate Change, 13(6), e805.CrossRefGoogle Scholar
Lee, J. (2021). On non-epistemic values in climate science for decision support. PhD Thesis, University of Cape Town. http://hdl.handle.net/11427/35896.Google Scholar
Lee, J.-Y., Marotzke, J., Bala, G., et al. (2021). Future Global Climate: Scenario-Based Projections and Near-Term Information. In Masson-Delmotte, V., Zhai, P., Pirani, A., et al., eds., Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, pp. 553672, https://doi.org/10.1017/9781009157896.006.Google Scholar
Lenhard, J., & Winsberg, E. (2010). Holism, Entrenchment, and the Future of Climate Model Pluralism. Studies in History and Philosophy of Modern Physics, 41(3), 253262.CrossRefGoogle Scholar
Lenssen, N., Schmidt, G. A., Hansen, J. E., et al. (2019). Improvements in the GISTEMP Uncertainty Model. Journal of Geophysical Research: Atmospheres, 124(12), 63076326.CrossRefGoogle Scholar
Leonelli, S. (2019). What Distinguishes Data from Models? European Journal for Philosophy of Science, 9, 22.CrossRefGoogle ScholarPubMed
Leuschner, A. (2015). Uncertainties, Plurality, and Robustness in Climate Research and Modeling: On the Reliability of Climate Prognoses. Journal for General Philosophy of Science, 46, 367381.CrossRefGoogle Scholar
Liang, Y., Gillett, N. P., & Monahan, A. H. (2020). Climate Model Projections of 21st Century Global Warming Constrained Using the Observed Warming Trend. Geophysical Research Letters, 47(12), e2019GL086757.CrossRefGoogle Scholar
Lloyd, E. A. (2015). Model Robustness as a Confirmatory Virtue: The Case of Climate Science. Studies in History and Philosophy of Science Part A, 49, 5868.CrossRefGoogle ScholarPubMed
Lloyd, E. A. & Oreskes, N. (2018). Climate Change Attribution: When Is It Appropriate to Accept New Methods? Earth’s Future, 6(3), 311325.CrossRefGoogle Scholar
Lloyd, E. A. & Winsberg, E., eds., (2018). Climate Modelling. Cham: Palgrave Macmillan.CrossRefGoogle Scholar
Lloyd, E. A., Oreskes, N., Seneviratne, S. I., & Larson, E. J. (2021). Climate Scientists Set the Bar of Proof Too High. Climatic Change, 165, 55. https://doi.org/10.1007/s10584-021-03061-9.CrossRefGoogle ScholarPubMed
Lorenz, E. N. (1970). Climatic Change as a Mathematical Problem. Journal of Applied Meteorology, 9(3), 325329.2.0.CO;2>CrossRefGoogle Scholar
Masson, D., & Knutti, R. (2011). Climate Model Genealogy. Geophysical Research Letters, 38, L08703.CrossRefGoogle Scholar
Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., et al. (2011). The IPCC AR5 Guidance Note on Consistent Treatment of Uncertainties: A Common Approach across the Working Groups. Climatic Change, 108, 675.CrossRefGoogle Scholar
Mayo, D. (1996). Error and the Growth of Experimental Knowledge. Chicago: Chicago University Press.CrossRefGoogle Scholar
Mayo, D. (2018). Statistical Inference as Severe Testing. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Meehl, G. A., Arblaster, J. M., Fasullo, J. T., Hu, A., & Trenberth, K. E. (2011). Model-Based Evidence of Deep-Ocean Heat Uptake during Surface- Temperature Hiatus Periods. Nature Climate Change, 1, 360364.CrossRefGoogle Scholar
Morice, C. P., Kennedy, J. J., Rayner, N. A., et al. (2021). An Updated Assessment of Near-Surface Temperature Change from 1850: The HadCRUT5 Dataset. Journal of Geophysical Research: Atmospheres, 126(3), e2019JD032361.CrossRefGoogle Scholar
Muller, R. A., Wurtele, J., Rohde, R., et al. (2013). Earth Atmospheric Land Surface Temperature and Station Quality in the Contiguous United States. Geoinformatics and Geostatistics: An Overview, 1(3).Google Scholar
Odenbaugh, J. (2018). Building Trust, Removing Doubt? Robustness Analysis and Climate Modeling. In Lloyd, E. A. & Winsberg, E., eds., Climate Modelling: Philosophical and Conceptual Issues. Cham: Springer Verlag. pp. 297321.CrossRefGoogle Scholar
O’Loughlin, R. (2021). Robustness Reasoning in Climate Model Comparisons. Studies in History and Philosophy of Science Part A, 85(C), 3443.CrossRefGoogle ScholarPubMed
Parker, W. S. (2006). Understanding Pluralism in Climate Modeling. Foundations of Science, 11(4), 349368.CrossRefGoogle Scholar
Parker, W. S. (2009). Confirmation and Adequacy-for-Purpose in Climate Modeling. Aristotelian Society Supplementary Volume, 83, 233249.CrossRefGoogle Scholar
Parker, W. S. (2010). Whose Probabilities? Predicting Climate Change with Ensembles of Models. Philosophy of Science, 77(5), 985997.CrossRefGoogle Scholar
Parker, W. S. (2011). When Climate Models Agree: The Significance of Robust Model Predictions. Philosophy of Science, 78(4), 579600.CrossRefGoogle Scholar
Parker, W. S. (2017). Computer Simulation, Measurement and Data Assimilation. The British Journal for the Philosophy of Science, 68(1), 273304.CrossRefGoogle Scholar
Parker, W. S. (2018). Climate Science. In Zalta, E. N. & Nodelman, U., eds., Stanford Encyclopedia of Philosophy (Fall 2023 Edition). https://plato.stanford.edu/archives/fall2023/entries/climate-science/.Google Scholar
Parker, W. S. (2020). Model Evaluation: An Adequacy-for-Purpose View. Philosophy of Science, 87(3), 457477.CrossRefGoogle Scholar
Parker, W. S. (2021). Virtually a Measurement. Nature Physics, 17, 146.CrossRefGoogle Scholar
Parker, W. S., & Risbey, J. S. (2015). False Precision, Surprise and Improved Uncertainty Assessment. Philosophical Transactions of the Royal Society, Part A, 373(3055), 20140453.CrossRefGoogle ScholarPubMed
Parker, W. S., & Winsberg, E. (2018). Values and Evidence: How Models Make a Difference. European Journal for Philosophy of Science, 8(1), 125142.CrossRefGoogle Scholar
Pennell, C., & Reichler, T. (2011). On the Effective Number of Climate Models. Journal of Climate, 24(9), 23582367.CrossRefGoogle Scholar
Phillips, N. (1956). The General Circulation of the Atmosphere: A Numerical Experiment. Quarterly Journal of the Royal Meteorological Society, 82(352), 123164.CrossRefGoogle Scholar
Pirtle, Z., Meyer, R., & Hamilton, A. (2010), What Does it Mean When Climate Models Agree? A Case for Assessing Independence among General Circulation Models. Environmental Science & Policy, 13(5), 351361.CrossRefGoogle Scholar
Pulkkinen, K., Undorf, S., Bender, F., et al. (2022). The Value of Values in Climate Science. Nature Climate Change, 12, 46.CrossRefGoogle Scholar
Rehg, W., & Staley, K. (2017). “Agreement” in the IPCC Confidence Measure. Studies in History and Philosophy of Modern Physics, 57, 126134CrossRefGoogle Scholar
Reiss, J. (2015). A Pragmatist Theory of Evidence. Philosophy of Science, 82, 341362.CrossRefGoogle Scholar
Ribes, A., Qasmi, S., & Gillett, N. P. (2021). Making Climate Projections Conditional on Historical Observations. Science Advances, 7(4), eabc0671.CrossRefGoogle ScholarPubMed
Risbey, J. S. 2007. Subjective Elements in Climate Policy Advice. Climatic Change, 85(1), 1117.CrossRefGoogle Scholar
Risbey, J. S., Lewandowsky, S., Langlais, C., et al. (2014). Well-Estimated Global Surface Warming in Climate Projections Selected for ENSO Phase. Nature Climate Change, 4, 835840.CrossRefGoogle Scholar
Rohde, R., Muller, R., Jacobsen, R., et al. (2013). Berkeley Earth Temperature Averaging Process. Geoinformatics and Geostatistics: An Overview, 1(2), https://doi.org/10.4172/gigs.1000103.Google Scholar
Schmidt, G. (2013). The IPCC AR5 Attribution Statement. Realclimate.org. www.realclimate.org/index.php/archives/2013/10/the-ipcc-ar5-attribution-statement/. Accessed 30 November 2023.Google Scholar
Schmidt, G., Shindell, D., & Tsigaridis, K. (2014). Reconciling Warming Trends. Nature Geoscience, 7, 158160.CrossRefGoogle Scholar
Schmidt, G., & Sherwood, S. (2015). A Practical Philosophy of Complex Climate Modelling. European Journal for Philosophy of Science, 5(2), 149169.CrossRefGoogle Scholar
Schupbach, J. N. (2018). Robustness Analysis as Explanatory Reasoning. The British Journal for the Philosophy of Science, 69(1), 275300.CrossRefGoogle Scholar
Shepherd, T. G. (2019). Storyline Approach to the Construction of Regional Climate Change Information. Proceedings of the Royal Society A, 475, 20190013.CrossRefGoogle Scholar
Sherwood, S. C., Webb, M. J., Annan, J. D., et al. (2020). An Assessment of Earth’s Climate Sensitivity Using Multiple Lines of Evidence. Reviews of Geophysics, 58(4), e2019RG000678.CrossRefGoogle ScholarPubMed
Smith, L. A. (2002). What Might We Learn from Climate Forecasts? Proceedings of the National Academies of Science, 99(Supp 1), 24872492.CrossRefGoogle ScholarPubMed
Stainforth, D. A., Allen, M. R., Tredger, E. R., & Smith, L. A. (2007). Confidence, Uncertainty and Decision-Support Relevance in Climate Predictions. Philosophical Transactions of the Royal Society A, 365, 2145–61.Google ScholarPubMed
Steele, K. S. (2012). The Scientist qua Policy Advisor Makes Value Judgments. Philosophy of Science, 79(5), 893904.CrossRefGoogle Scholar
Stolpe, M. B., Medhaug, I., & Knutti, R. (2017). Contribution of Atlantic and Pacific Multidecadal Variability to Twentieth-Century Temperature Changes. Journal of Climate, 30(16), 62796295.CrossRefGoogle Scholar
Suppes, P. (1962). Models of Data. In Nagel, E., Suppes, P., and Tarski, A., eds., Logic, Methodology, and Philosophy of Science: Proceedings of the 1960 International Congress. Stanford, CA: Stanford University Press, pp. 252261.Google Scholar
Susskind, J., Schmidt, G. A., Lee, J. N., & Iredell, L. (2019). Recent Global Warming as Confirmed by AIRS. Environmental Research Letters, 14(4), 044030.CrossRefGoogle Scholar
Tal, E. (2012). The Epistemology of Measurement: A Model-Based Approach. PhD dissertation, University of Toronto.Google Scholar
Tal, E. (2017). A Model-Based Epistemology of Measurement. In Mößner, N. & Nordmann, A., eds., Reasoning in Measurement. London: Routledge, pp. 233253.Google Scholar
Thompson, E., Frigg, R. & Helgeson, C. (2016). Expert Judgment for Climate Change Adaptation. Philosophy of Science, 83(5), 11101121.CrossRefGoogle Scholar
Thorne, P. W., Trewin, B., Allan, R. P., et al. (2021). Cross-Chapter Box 2.3: New Estimates of Global Warming to Date, and Key Implications. In Masson-Delmotte, V., Zhai, P., Pirani, A., et al., eds., Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, pp. 317323, https://doi.org/10.1017/9781009157896.006.Google Scholar
Tokarska, K. B., Stolpe, M. B., Stippel, S., et al. (2020). Past Warming Trend Constrains Future Warming in CMIP6 Models. Science Advances, 6(12), aaz9549.CrossRefGoogle ScholarPubMed
Undorf, S., Pulkkinen, K., Wikman-Svahn, P., & Bender, F., A.-M. (2022). How Do Value-Judgements Enter Model-Based Assessments of Climate Sensitivity? Climatic Change, 174, 19.CrossRefGoogle Scholar
van Fraassen, B. C. (2008). Scientific Representation. Oxford: Oxford University Press.CrossRefGoogle Scholar
Vezér, M. A. (2017). Variety-of-Evidence Reasoning about the Distant Past: A Case Study in Paleoclimate Reconstruction. European Journal for Philosophy of Science, 7(2), 257265.CrossRefGoogle Scholar
Voosen, P. (2021). Climate Panel Confronts Implausibly Hot Models. Science, 373(6554), 474475.CrossRefGoogle ScholarPubMed
Watkins, A. (2024). Using Paleoclimate Analogues to Inform Climate Projections. Perspectives on Science. https://doi.org/10.1162/posc_a_00622.CrossRefGoogle Scholar
Weart, S. (2023). Climatology as a Profession. https://history.aip.org/climate/climogy.htm. Accessed September 17, 2023.Google Scholar
Weigel, A. P., Knutti, R., Liniger, M. A., & Appenzeller, C. (2010). Risks of Model Weighting in Multimodel Climate Projections. Journal of Climate, 23(15), 41754191.CrossRefGoogle Scholar
Werndl, C. (2016). On Defining Climate and Climate Change. British Journal for the Philosophy of Science, 67(2), 337364.CrossRefGoogle Scholar
Wilson, J., & Boudinot, F. G. (2022). Proxy Measurement in Paleoclimatology. European Journal for Philosophy of Science, 12(1), 14.CrossRefGoogle Scholar
Winsberg, E. (2012). Values and Uncertainties in the Predictions of Global Climate Models. Kennedy Institute of Ethics Journal, 22(2), 111137.CrossRefGoogle ScholarPubMed
Winsberg, E. (2018a). Philosophy and Climate Science. Cambridge: Cambridge University Press.Google Scholar
Winsberg, E. (2018b). Communicating Uncertainty to Policymakers: The Ineliminable Role of Values. In Lloyd, E. A. & Winsberg, E., eds., Climate Modelling. Cham: Palgrave Macmillan. https://doi.org/10.1007/978-3-319-65058-6_13.Google Scholar
Zelinka, M., Myers, T. A., McCoy, D. T., et al. (2020). Causes of Higher Climate Sensitivity in CMIP6 Models. Geophysical Research Letters, 47(1), e2019GL085782.CrossRefGoogle Scholar

Save element to Kindle

To save this element to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Climate Science
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Climate Science
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Climate Science
Available formats
×