Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-22T15:55:03.027Z Has data issue: false hasContentIssue false

1D Semiconducting Nanostructures for Flexible and Large-Area Electronics

Growth Mechanisms and Suitability

Published online by Cambridge University Press:  21 October 2019

Dhayalan Shakthivel
Affiliation:
University of Glasgow
Muhammad Ahmad
Affiliation:
University of Surrey
Mohammad R. Alenezi
Affiliation:
University of Surrey
Ravinder Dahiya
Affiliation:
University of Glasgow
S. Ravi P. Silva
Affiliation:
University of Surrey

Summary

Semiconducting nanostructures such as nanowires (NWs) have been used as building blocks for various types of sensors, energy storage and generation devices, electronic devices and for new manufacturing methods involving printed NWs. The response of these sensing/energy/electronic components and the new fabrication methods depends very much on the quality of NWs and for this reason it is important to understand the growth mechanism of 1D semiconducting nanostructures. This is also important to understand the compatibility of NW growth steps and tools used in the process with these unconventional substrates such as plastic that are used in flexible and large area electronics. Therefore, this Element presents at length discussion about the growth mechanisms, growth conditions and the tools used for the synthesis of NWs. Although NWs from Si, ZnO and carbon nanotubes (CNTs) are included, the discussion is generic and relevant to several other types of NWs as well as heterostructures.
Get access
Type
Element
Information
Online ISBN: 9781108642002
Publisher: Cambridge University Press
Print publication: 31 October 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hodes, G., “When small is different: some recent advances in concepts and applications of nanoscale phenomena,” Adv. Mater., vol. 19, no. 5, pp. 639655, 2007.Google Scholar
Liveri, V. T., Controlled synthesis of nanoparticles in microheterogeneous systems. Springer Science & Business Media, 2006.Google Scholar
Guozhong, C., Nanostructures and nanomaterials: synthesis, properties and applications. World Scientific, 2004.Google Scholar
Xia, Y., et al., “One‐dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater., vol. 15, no. 5, pp. 353389, 2003.Google Scholar
Lieber, C. M., “One-dimensional nanostructures: chemistry, physics & applications,” Solid State Commun., vol. 107, no. 11, pp. 607616, 1998.CrossRefGoogle Scholar
Yang, P., “The chemistry and physics of semiconductor nanowires,” MRS Bull., vol. 30, no. 2, pp. 8591, 2005.CrossRefGoogle Scholar
Hayden, O., Agarwal, R., and Lu, W., “Semiconductor nanowire devices,” Nano Today, vol. 3, no. 56, pp. 1222, 2008.Google Scholar
Li, Y., Qian, F., Xiang, J., and Lieber, C. M., “Nanowire electronic and optoelectronic devices,” Mater. Today., vol. 9, no. 10, pp. 1827, 2006.Google Scholar
Patolsky, F., Zheng, G., and Lieber, C. M., “Nanowire-based biosensors,” ed: ACS Publications, Anal. Chem, Vol. 78, no. 13, pp. 42604269, 2006.Google Scholar
Chen, X., Wong, C. K., Yuan, C. A., and Zhang, G., “Nanowire-based gas sensors,” Sens. Actuator B-Chem., vol. 177, pp. 178195, 2013.CrossRefGoogle Scholar
Qi, Y. and McAlpine, M. C., “Nanotechnology-enabled flexible and biocompatible energy harvesting,” Energ. Environ. Sci., vol. 3, no. 9, pp. 12751285, 2010.CrossRefGoogle Scholar
Fan, F.-R., Tian, Z.-Q., and Wang, Z. L., “Flexible triboelectric generator,” Nano Energy, vol. 1, no. 2, pp. 328334, 2012.Google Scholar
Garnett, E. C., Brongersma, M. L., Cui, Y., and McGehee, M. D., “Nanowire solar cells,” Ann. Rev. Mater. Res., vol. 41, pp. 269295, 2011.Google Scholar
Chan, C. K., Zhang, X. F., and Cui, Y., “High capacity Li ion battery anodes using Ge nanowires,” Nano Lett., vol. 8, no. 1, pp. 307309, 2008.CrossRefGoogle ScholarPubMed
Saito, R., Dresselhaus, G., and Dresselhaus, M. S., Physical properties of carbon nanotubes. World Scientific, 1998.Google Scholar
Shulaker, M. M., et al., “Carbon nanotube computer,” Nature, vol. 501, no. 7468, p. 526, 2013.CrossRefGoogle ScholarPubMed
Rao, C. and Govindaraj, A., “Synthesis of inorganic nanotubes,” Adv. Mater., vol. 21, no. 42, pp. 42084233, 2009.Google Scholar
Goldberger, J., Fan, R., and Yang, P., “Inorganic nanotubes: a novel platform for nanofluidics,” Accounts Chem. Res., vol. 39, no. 4, pp. 239248, 2006.CrossRefGoogle ScholarPubMed
Lauhon, L. J., Gudiksen, M. S., Wang, D., and Lieber, C. M., “Epitaxial core–shell and core–multishell nanowire heterostructures,” Nature, vol. 420, no. 6911, pp. 5761, 2002.Google Scholar
Takei, K., et al., “Nanowire active-matrix circuitry for low-voltage macroscale artificial skin,” Nat. Mater., vol. 9, no. 10, pp. 821826, 2010.Google Scholar
Paladugu, M., et al., “Novel growth phenomena observed in axial InAs/GaAs nanowire heterostructures,” Small, vol. 3, no. 11, pp. 18731877, 2007.Google Scholar
Dasgupta, N. P., et al., “25th anniversary article: semiconductor nanowires–synthesis, characterization, and applications,” Adv. Mater., vol. 26, no. 14, pp. 21372184, 2014.Google Scholar
Sun, Y. and Rogers, J. A., “Inorganic semiconductors for flexible electronics,” Adv. Mater., vol. 19, no. 15, pp. 18971916, 2007.Google Scholar
Lieber, C. M. and Wang, Z. L., “Functional nanowires,” MRS Bull., vol. 32, no. 2, pp. 99108, 2007.Google Scholar
Liu, Z., Xu, J., Chen, D., and Shen, G., “Flexible electronics based on inorganic nanowires,” Chem. Soc. Rev., vol. 44, no. 1, pp. 161192, 2015.Google Scholar
Sun, Y. and Rogers, J. A., Semiconductor nanomaterials for flexible technologies: From photovoltaics and electronics to sensors and energy storage. William Andrew, 2010.Google Scholar
Alenezi, M. R., Henley, S. J., Emerson, N. G., and Silva, S. R. P., “From 1D and 2D ZnO nanostructures to 3D hierarchical structures with enhanced gas sensing properties,” Nanoscale, vol. 6, no. 1, pp. 235247, 2014.Google Scholar
Boskovic, B. O., Stolojan, V., Khan, R. U., Haq, S., and Silva, S. R. P., “Large-area synthesis of carbon nanofibres at room temperature,” Nat. Mater., vol. 1, no. 3, pp. 165168, 2002.Google Scholar
Garcia Nunez, C., Navaraj, W. T., Liu, F., Shakthivel, D., and Dahiya, R., “Large-area self-assembly of silica microspheres/nanospheres by temperature-assisted dip-coating,” ACS Appl. Mater. Inter, vol. 10, no. 3, pp. 30583068, 2018.CrossRefGoogle ScholarPubMed
Nunez, F. L. C. G., Navaraj, W. T., Christou, A.,Shakthivel, D., and Dahiya, R., “Heterogeneous integration of contact-printed semiconductor nanowires for high performance devices on large areas,” Microsyst Nanoeng, 2018.Google Scholar
Núñez, F. L. C. G., Xu, S. and Dahiya, R., “Large-area electronics based on micro/nanostructures and the manufacturing technologies,” Cambridge Elements (2018), In press.Google Scholar
Núñez, C. G., Liu, F., Navaraj, W. T., Christou, A., Shakthivel, D., and Dahiya, R., “Heterogeneous integration of contact-printed semiconductor nanowires for high-performance devices on large areas,” Microsyst Nanoeng, vol. 4, no. 1, p. 22, 2018.CrossRefGoogle Scholar
Nunez, C. G., Taube, W., Liu, F., and Dahiya, R., “ZnO nanowires based flexible UV photodetectors for wearable dosimetry,” in SENSORS, 2017 IEEE, 2017, pp. 13: IEEE.Google Scholar
Striakhilev, D., Nathan, A., Vygranenko, Y., Servati, P., Lee, C.-H., and Sazonov, A., “Amorphous silicon display backplanes on plastic substrates,” J. Disp. Technol., vol. 2, no. 4, pp. 364371, 2006.Google Scholar
Nathan, A., et al., “Flexible electronics: the next ubiquitous platform,” Proc. IEEE., vol. 100, no. Special Centennial Issue, pp. 14861517, 2012.CrossRefGoogle Scholar
Petti, L., et al., “Metal oxide semiconductor thin-film transistors for flexible electronics,” Appl. Phys. Rev., vol. 3, no. 2, p. 021303, 2016.Google Scholar
Sporea, R., Trainor, M., Young, N., Shannon, J., and Silva, S., “Source-gated transistors for order-of-magnitude performance improvements in thin-film digital circuits,” Sci. Rep., vol. 4, 2014.CrossRefGoogle ScholarPubMed
Kim, S. J., Choi, K., Lee, B., Kim, Y., and Hong, B. H., “Materials for flexible, stretchable electronics: graphene and 2D materials,” Ann. Rev. Mater. Res., vol. 45, pp. 6384, 2015.Google Scholar
Akinwande, D., Petrone, N., and Hone, J., “Two-dimensional flexible nanoelectronics,” Nat. Commun., vol. 5, p. 5678, 2014.Google Scholar
García Núñez, C., Navaraj, W. T., Polat, E. O., and Dahiya, R., “Energy autonomous flexible and transparent tactile skin,” Adv. Funct. Mater, vol. 27, no. 18, 2017.Google Scholar
Polat, E. O., Balci, O., Kakenov, N., Uzlu, H. B., Kocabas, C., and Dahiya, R., “Synthesis of large area graphene for high performance in flexible optoelectronic devices,” Sci. Rep., vol. 5, p. 16744, 2015.Google Scholar
Wang, C., et al., “Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications,” Nano Lett., vol. 12, no. 3, pp. 15271533, 2012.Google Scholar
Lau, P. H., et al., “Fully printed, high performance carbon nanotube thin-film transistors on flexible substrates,” Nano Lett., vol. 13, no. 8, pp. 38643869, 2013.Google Scholar
Khan, S., Dahiya, R. S., and Lorenzelli, L., “Flexible thermoelectric generator based on transfer printed Si microwires,” in Solid State Device Research Conference (ESSDERC), 2014 44th European, 2014, pp. 8689: IEEE.CrossRefGoogle Scholar
Khan, S., Yogeswaran, N., Taube, W., Lorenzelli, L., and Dahiya, R., “Flexible FETs using ultrathin Si microwires embedded in solution processed dielectric and metal layers,” J. Micromech. Microeng., vol. 25, no. 12, p. 125019, 2015.Google Scholar
Khan, S., Lorenzelli, L., and Dahiya, R., “Flexible MISFET devices from transfer printed Si microwires and spray coating,” IEEE. J. Electron. Devi., vol. 4, no. 4, pp. 189196, 2016.Google Scholar
Dang, W., Vinciguerra, V., Lorenzelli, L., and Dahiya, R., “Printable stretchable interconnects,” Flex. Print. Electron., vol. 2, no. 1, p. 013003, 2017.CrossRefGoogle Scholar
Dahiya, R. S., Adami, A., Collini, C., and Lorenzelli, L., “Fabrication of single crystal silicon micro-/nanostructures and transferring them to flexible substrates,” Microelectron. Eng., vol. 98, pp. 502507, 2012.Google Scholar
Shakthivel, D., García Núñez, C., and Dahiya, R., “Inorganic semiconducting nanowires for flexible electronics,” United Scholars Publications, USA, 2016.Google Scholar
Choi, M.-C., Kim, Y., and Ha, C.-S., “Polymers for flexible displays: From material selection to device applications,” Prog. Polym. Sci., vol. 33, no. 6, pp. 581630, 2008.Google Scholar
Kwiat, M., Cohen, S., Pevzner, A., and Patolsky, F., “Large-scale ordered 1D-nanomaterials arrays: Assembly or not?,” Nano Today, vol. 8, no. 6, pp. 677694, 2013.Google Scholar
Long, Y.-Z., Yu, M., Sun, B., Gu, C.-Z., and Fan, Z., “Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics,” Chem. Soc. Rev., vol. 41, no. 12, pp. 45604580, 2012.CrossRefGoogle ScholarPubMed
Javey, A., Nam, S., Friedman, R. S., Yan, H., and Lieber, C. M., “Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics,” Nano Lett., vol. 7, no. 3, pp. 773777, 2007.CrossRefGoogle ScholarPubMed
Shakthivel, D., Liu, F., Núñez, C. G., Taube, W., and Dahiya, R., “Nanomaterials processing for flexible electronics,” in Industrial Electronics (ISIE), 2017 IEEE 26th International Symposium on, 2017, pp. 21022106: IEEE.Google Scholar
Su, B., Wu, Y., and Jiang, L., “The art of aligning one-dimensional (1D) nanostructures,” Chem. Soc. Rev., vol. 41, no. 23, pp. 78327856, 2012.CrossRefGoogle ScholarPubMed
Dahiya, R., Gottardi, G., and Laidani, N., “PDMS residues-free micro/macrostructures on flexible substrates,” Microelectron. Eng., vol. 136, pp. 5762, 2015.CrossRefGoogle Scholar
Fan, Z., et al., “Toward the development of printable nanowire electronics and sensors,” Adv. Mater., vol. 21, no. 37, pp. 37303743, 2009.CrossRefGoogle Scholar
Wang, N., Cai, Y., and Zhang, R. Q., “Growth of nanowires,” Mater. Sci. Eng. Rep., vol. 60, no. 16, pp. 151, 3/31/ 2008.Google Scholar
Zhang, A., Zheng, G., and Lieber, C. M., Nanowires: Building blocks for nanoscience and nanotechnology. Springer, 2016.CrossRefGoogle Scholar
Amato, M., Palummo, M., Rurali, R., and Ossicini, S., “Silicon–germanium nanowires: chemistry and physics in play, from basic principles to advanced applications,” Chem. Rev., vol. 114, no. 2, pp. 13711412, 2013.CrossRefGoogle ScholarPubMed
Singh, N., et al., “Si, SiGe nanowire devices by top-down technology and their applications,” IEEE. T. Electron. Dev., vol. 55, no. 11, pp. 31073118, 2008.Google Scholar
Hobbs, R. G., Petkov, N., and Holmes, J. D., “Semiconductor nanowire fabrication by bottom-up and top-down paradigms,” Chem. Mater., vol. 24, no. 11, pp. 19751991, 2012.Google Scholar
Wagner, R. S. and Ellis, W. C., “Vapor‐liquid‐solid mechanism of single crystal growth,” Appl. Phys. Lett, vol. 4, no. 5, pp. 8990, 1964.Google Scholar
Wagner, R. and Doherty, C., “Controlled vapor‐liquid‐solid growth of silicon crystals,” J. Electrochem. Soc., vol. 113, no. 12, pp. 13001305, 1966.CrossRefGoogle Scholar
Wagner, R. and Ooherty, C., “Mechanism of branching and kinking during VLS crystal growth,” J. Electrochem. Soc., vol. 115, no. 1, pp. 9399, 1968.Google Scholar
Liu, X., Long, Y.-Z., Liao, L., Duan, X., and Fan, Z., “Large-scale integration of semiconductor nanowires for high-performance flexible electronics,” ACS Nano, vol. 6, no. 3, pp. 18881900, 2012.Google Scholar
Shakthivel, D., Taube, W., Raghavan, S., and Dahiya, R., “VLS growth mechanism of Si-nanowires for flexible electronics,” in IEEE 11th Conference on Ph. D. Research in Microelectronics and Electronics (PRIME), 2015, pp. 349352.Google Scholar
Fan, H. J., Bertram, F., Dadgar, A., Christen, J., Krost, A., and Zacharias, M., “Self-assembly of ZnO nanowires and the spatial resolved characterization of their luminescence,” Nanotechnology, vol. 15, no. 11, p. 1401, 2004.Google Scholar
Dai, Z. R., Pan, Z. W., and Wang, Z. L., “Novel nanostructures of functional oxides synthesized by thermal evaporation,” Adv. Funct. Mater, vol. 13, no. 1, pp. 924, 2003.Google Scholar
Scott, C. D., Arepalli, S., Nikolaev, P., and Smalley, R. E., “Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process,” Appl. Phys. A-Mater., vol. 72, no. 5, pp. 573580, May 2001.Google Scholar
Jung, S. H., et al., “High-yield synthesis of multi-walled carbon nanotubes by arc discharge in liquid nitrogen,” Appl. Phys. A-Mater., vol. 76, no. 2, pp.285286, Feb 2003.CrossRefGoogle Scholar
Shang, N. G., Tan, Y. Y., Stolojan, V., Papakonstantinou, P., and Silva, S. R. P., “High-rate low-temperature growth of vertically aligned carbon nanotubes,” Nanotechnology, vol. 21, no. 50, p. 6, Dec 2010.Google Scholar
Tan, Y. Y., et al., “Photo-thermal chemical vapor deposition growth of graphene,” Carbon, vol. 50, no. 2, pp.668673, Feb 2012.Google Scholar
Ahn, J.-H., et al., “Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials,” Science, vol. 314, no. 5806, pp.17541757, 2006.Google Scholar
Yerushalmi, R., Jacobson, Z. A., Ho, J. C., Fan, Z., and Javey, A., “Large scale, highly ordered assembly of nanowire parallel arrays by differential roll printing,” Appl. Phys. Lett, vol. 91, no. 20, p. 203104, 2007.Google Scholar
Schmidt, V., Wittemann, J. V., and Gösele, U., “Growth, thermodynamics, and electrical properties of silicon nanowires,” Chem. Rev., vol. 110, no. 1, pp. 361388, 2010.Google Scholar
Schmidt, V., Wittemann, J. V., Senz, S., and Gösele, U., “Silicon nanowires: a review on aspects of their growth and their electrical properties,” Adv. Mater., vol. 21, no. 25–26, pp. 26812702, 2009.Google Scholar
Boskovic, B. O., Stolojan, V., Khan, R. U. A., Haq, S., and Silva, S. R. P., “Large-area synthesis of carbon nanofibres at room temperature,” Nat. Mater., vol. 1, no. 3, pp.165168, Nov 2002.CrossRefGoogle ScholarPubMed
Wang, Y., Schmidt, V., Senz, S., and Gösele, U., “Epitaxial growth of silicon nanowires using an aluminium catalyst,” Nat. Nanotechnol., vol. 1, no. 3, pp.186189, 2006.Google Scholar
Schmid, H., et al., “Patterned epitaxial vapor-liquid-solid growth of silicon nanowires on Si (111) using silane,” J. Appl. Phys., vol. 103, no. 2, p. 024304, 2008.Google Scholar
Lew, K.-K. and Redwing, J. M., “Growth characteristics of silicon nanowires synthesized by vapor–liquid–solid growth in nanoporous alumina templates,” J. Cryst. Growth., vol. 254, no. 1, pp.1422, 2003.CrossRefGoogle Scholar
Fan, H. J., Werner, P., and Zacharias, M., “Semiconductor nanowires: from self‐organization to patterned growth,” Small, vol. 2, no. 6, pp.700717, 2006.Google Scholar
Ross, F. M., “Controlling nanowire structures through real time growth studies,” Rep. Prog. Phys., vol. 73, no. 11, p.114501, 2010.CrossRefGoogle Scholar
Hannon, J., Kodambaka, S., Ross, F., and Tromp, R., “The influence of the surface migration of gold on the growth of silicon nanowires,” Nature, vol. 440, no. 7080, pp.6971, 2006.Google Scholar
Wen, C.-Y., et al., “Periodically changing morphology of the growth interface in Si, Ge, and GaP nanowires,” Phys. Rev. Lett., vol. 107, no. 2, p. 025503, 2011.Google Scholar
Moutanabbir, O., Isheim, D., Blumtritt, H., Senz, S., Pippel, E., and Seidman, D. N., “Colossal injection of catalyst atoms into silicon nanowires,” Nature, vol. 496, no. 7443, pp.7882, 2013.CrossRefGoogle ScholarPubMed
Allen, J. E., et al., “High-resolution detection of Au catalyst atoms in Si nanowires,” Nat. Nanotechnol., vol. 3, no. 3, pp.168173, 2008.CrossRefGoogle ScholarPubMed
Lensch-Falk, J. L., Hemesath, E. R., Perea, D. E., and Lauhon, L. J., “Alternative catalysts for VSS growth of silicon and germanium nanowires,” J. Mater. Chem., 10.1039/B817391E vol. 19, no. 7, pp.849857, 2009.CrossRefGoogle Scholar
Baron, T., Gordon, M., Dhalluin, F., Ternon, C., Ferret, P., and Gentile, P., “Si nanowire growth and characterization using a microelectronics-compatible catalyst: PtSi,” Appl. Phys. Lett., vol. 89, no. 23, p.233111, 2006.CrossRefGoogle Scholar
Cao, L., Garipcan, B., Atchison, J. S., Ni, C., Nabet, B., and Spanier, J. E., “Instability and transport of metal catalyst in the growth of tapered silicon nanowires,” Nano Lett., vol. 6, no. 9, pp. 18521857, 2006.Google Scholar
Schmidt, V., Senz, S., and Gösele, U., “Diameter dependence of the growth velocity of silicon nanowires synthesized via the vapor-liquid-solid mechanism,” Phys. Rev. B, vol. 75, no. 4, p.045335, 2007.Google Scholar
Pinion, C. W., Nenon, D. P., Christesen, J. D., and Cahoon, J. F., “Identifying crystallization- and incorporation-limited regimes during vapor–liquid–solid growth of Si nanowires,” ACS Nano, vol. 8, no. 6, pp. 60816088, 2014.Google Scholar
Dubrovskii, V. G., Nucleation theory and growth of nanostructures. Springer, 2014.CrossRefGoogle Scholar
Handbook, A., “Vol. 3: Alloy phase diagrams,” ASM International, vol. 9, p. 2, 1992.Google Scholar
Sunkara, M. K., Sharma, S., Miranda, R., Lian, G., and Dickey, E., “Bulk synthesis of silicon nanowires using a low-temperature vapor–liquid–solid method,” Appl. Phys. Lett, vol. 79, no. 10, pp. 15461548, 2001.Google Scholar
Sharma, S. and Sunkara, M., “Direct synthesis of single-crystalline silicon nanowires using molten gallium and silane plasma,” Nanotechnology, vol. 15, no. 1, p. 130, 2003.Google Scholar
Choi, S.-Y., Fung, W. Y., and Lu, W., “Growth and electrical properties of Al-catalyzed Si nanowires,” Appl. Phys. Lett., vol. 98, no. 3, p. 033108, 2011.Google Scholar
Arbiol, J., Kalache, B., Cabarrocas, P. R. i, Morante, J. R, and Morral, A. F. i, “Influence of Cu as a catalyst on the properties of silicon nanowires synthesized by the vapour–solid–solid mechanism,” Nanotechnology, vol. 18, no. 30, p. 305606, 2007.Google Scholar
Khan, S., Lorenzelli, L., and Dahiya, R. S., “Technologies for printing sensors and electronics over large flexible substrates: a review,” IEEE. Sens. J., vol. 15, no. 6, pp. 31643185, 2015.Google Scholar
Kim, D.-H., et al., “Stretchable and foldable silicon integrated circuits,” Science, vol. 320, no. 5875, pp. 507511, 2008.Google Scholar
Kang, S. J., et al., “High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes,” Nat. Nanotechnol., vol. 2, no. 4, p. 230, 2007.Google Scholar
Han, H., Huang, Z., and Lee, W., “Metal-assisted chemical etching of silicon and nanotechnology applications,” Nano Today, vol. 9, no. 3, pp. 271304, 2014.Google Scholar
Lu, W. and Lieber, C. M., “Nanoelectronics from the bottom up,” Nat. Mater., vol. 6, no. 11, pp. 841850, 2007.Google Scholar
Cui, Y. and Lieber, C. M., “Functional nanoscale electronic devices assembled using silicon nanowire building blocks,” Science, vol. 291, no. 5505, pp. 851853, 2001.Google Scholar
Fuhrmann, B., Leipner, H. S., Höche, H.-R., Schubert, L., Werner, P., and Gösele, U., “Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy,” Nano Lett., vol. 5, no. 12, pp. 25242527, 2005.Google Scholar
Morales, A. M. and Lieber, C. M., “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science, vol. 279, no. 5348, pp. 208211, 1998.Google Scholar
Zhang, Y., et al., “Silicon nanowires prepared by laser ablation at high temperature,” Appl. Phys. Lett., vol. 72, no. 15, pp. 18351837, 1998.Google Scholar
Lee, J.-S., Kang, M.-I., Kim, S., Lee, M.-S., and Lee, Y.-K., “Growth of zinc oxide nanowires by thermal evaporation on vicinal Si (100) substrate,” J. Cryst. Growth., vol. 249, no. 1, pp. 201207, 2003.CrossRefGoogle Scholar
Bierman, M. J., Lau, Y. A., Kvit, A. V., Schmitt, A. L., and Jin, S., “Dislocation-driven nanowire growth and Eshelby twist,” Science, vol. 320, no. 5879, pp. 10601063, 2008.CrossRefGoogle ScholarPubMed
Khalaf, M. M., Ibrahimov, H. G., and Ismailov, E. H., “Nanostructured materials: importance, synthesis and characterization—a review,” Chemistry Journal vol. 2, no. 3, pp. 118125, 2012.Google Scholar
Hitchman, M. L. and Jensen, K. F., Chemical vapor deposition: principles and applications. Elsevier, 1993.Google Scholar
Pierson, H. O., Handbook of chemical vapor deposition: principles, technology and applications. William Andrew, 1999.Google Scholar
Kim, B., Tersoff, J., Kodambaka, S., Reuter, M., Stach, E., and Ross, F., “Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth,” Science, vol. 322, no. 5904, pp. 10701073, 2008.Google Scholar
Hofmann, S., et al., “In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation,” Nano Lett., vol. 7, no. 3, pp. 602608, 2007.Google Scholar
Gamalski, A., Ducati, C., and Hofmann, S., “Cyclic supersaturation and triple phase boundary dynamics in germanium nanowire growth,” J. Phys. Chem. B, vol. 115, no. 11, pp. 44134417, 2011.Google Scholar
Xiang, J., Lu, W., Hu, Y., Wu, Y., Yan, H., and Lieber, C. M., “Ge/Si nanowire heterostructures as high-performance field-effect transistors,” Nature, vol. 441, no. 7092, pp. 489493, 2006.Google Scholar
Qian, F., Li, Y., Gradecak, S., Wang, D., Barrelet, C. J., and Lieber, C. M., “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett., vol. 4, no. 10, pp. 19751979, 2004.Google Scholar
Schmid, H., Björk, M. T., Knoch, J., Karg, S., Riel, H., and Riess, W., “Doping limits of grown in situ doped silicon nanowires using phosphine,” Nano Lett., vol. 9, no. 1, pp. 173177, 2008.Google Scholar
Wallentin, J. and Borgström, M. T., “Doping of semiconductor nanowires,” J. Mater. Res., vol. 26, no. 17, pp. 21422156, 2011.Google Scholar
Yang, C., Zhong, Z., and Lieber, C. M., “Encoding electronic properties by synthesis of axial modulation-doped silicon nanowires,” Science, vol. 310, no. 5752, pp. 13041307, 2005.CrossRefGoogle ScholarPubMed
Givargizov, E., “Fundamental aspects of VLS growth,” J. Cryst. Growth., vol. 31, pp. 2030, 1975.Google Scholar
Givargizov, E. I. and Sheftal, N. N., “Morphology of silicon whiskers grown by the VLS-technique,” J. Cryst. Growth, vol. 9, no. 0, pp. 326329, 5, 1971.Google Scholar
Bootsma, G. and Gassen, H., “A quantitative study on the growth of silicon whiskers from silane and germanium whiskers from germane,” J. Cryst. Growth, vol. 10, no. 3, pp. 223234, 1971.Google Scholar
Kodambaka, S., Tersoff, J., Reuter, M., and Ross, F., “Diameter-independent kinetics in the vapor-liquid-solid growth of Si nanowires,” Phys. Rev. Lett., vol. 96, no. 9, p. 096105, 2006.Google Scholar
Laidler, K. J., Chemical Kinetics. Delhi: Pearson Education, 2008.Google Scholar
Fröberg, L., Seifert, W., and Johansson, J., “Diameter-dependent growth rate of InAs nanowires,” Phys. Rev. B, vol. 76, no. 15, p. 153401, 2007.Google Scholar
Kashchiev, D., “Dependence of the growth rate of nanowires on the nanowire diameter,” Cryst. Growth. Des., vol. 6, no. 5, pp. 11541156, 2006.Google Scholar
Shakthivel, D. and Raghavan, S., “Vapor-liquid-solid growth of Si nanowires: A kinetic analysis,” J. Appl. Phys., vol. 112, no. 2, p. 024317, 2012.Google Scholar
Mårtensson, T., et al., “Epitaxial III−V Nanowires on Silicon,” Nano Lett., vol. 4, no. 10, pp. 19871990, 2004.Google Scholar
Zhang, R. Q., Lifshitz, Y., and Lee, S. T., “Oxide‐assisted growth of semiconducting nanowires,” Adv. Mater., vol. 15, no. 7–8, pp. 635640, 2003.CrossRefGoogle Scholar
Kolb, F., et al., “Analysis of silicon nanowires grown by combining SiO evaporation with the VLS mechanism,” J. Electrochem. Soc., vol. 151, no. 7, pp. G472G475, 2004.Google Scholar
Huang, M. H., Wu, Y., Feick, H., Tran, N., Weber, E., and Yang, P., “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater., vol. 13, no. 2, pp. 113116, 2001.Google Scholar
Persson, A. I., Larsson, M. W., Stenström, S., Ohlsson, B. J., Samuelson, L., and Wallenberg, L. R., “Solid-phase diffusion mechanism for GaAs nanowire growth,” Nat. Mater., vol. 3, no. 10, pp. 677681, 2004.Google Scholar
Kamins, T., Li, X., Williams, R. S., and Liu, X., “Growth and structure of chemically vapor deposited Ge nanowires on Si substrates,” Nano Lett., vol. 4, no. 3, pp. 503506, 2004.Google Scholar
Dubrovskii, V., Sibirev, N., and Cirlin, G., “Kinetic model of the growth of nanodimensional whiskers by the vapor-liquid-crystal mechanism,” Tech. Phys. Lett., vol. 30, no. 8, pp. 682686, 2004.Google Scholar
Hofmann, S., et al., “Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth,” Nat. Mater., vol. 7, no. 5, p. 372, 2008.Google Scholar
Zhao, H., Zhou, S., Hasanali, Z., and Wang, D., “Influence of pressure on silicon nanowire growth kinetics,” J. Phys. Chem. B, vol. 112, no. 15, pp. 56955698, 2008.Google Scholar
Pal, D., Kowar, M., Daw, A., and Roy, P., “Modelling of silicon epitaxy using silicon tetrachloride as the source,” Microelectr. J., vol. 26, no. 6, pp. 507514, 1995.Google Scholar
Zambov, L., “Kinetics of homogeneous decomposition of silane,” J. Cryst. Growth, vol. 125, no. 1, pp. 164174, 1992.Google Scholar
Dubrovskii, V., Sibirev, N., Cirlin, G., Harmand, J., and Ustinov, V., “Theoretical analysis of the vapor-liquid-solid mechanism of nanowire growth during molecular beam epitaxy,” Phys. Rev. E, vol. 73, no. 2, p. 021603, 2006.Google Scholar
Johansson, J., Wacaser, B. A., Dick, K. A., and Seifert, W., “Growth related aspects of epitaxial nanowires,” Nanotechnology, vol. 17, no. 11, p. S355, 2006.Google Scholar
Hirth, J. P. and Pound, G. M., Condensation and evaporation; nucleation and growth kinetics. Macmillan, 1963.Google Scholar
Markov, I., “Crystal growth for beginners: fundamentals of nucleation,” Crystal Growth and Epitaxy, p. 69, 1995.Google Scholar
Wacaser, B. A., Dick, K. A., Johansson, J., Borgström, M. T., Deppert, K., and Samuelson, L., “Preferential interface nucleation: an expansion of the VLS growth mechanism for nanowires,” Adv. Mater., vol. 21, no. 2, pp. 153165, 2009.Google Scholar
Shakthivel, D., Rathkanthiwar, S., and Raghavan, S., “Si nanowire growth on sapphire: Classical incubation, reverse reaction, and steady state supersaturation,” J. Appl. Phys., vol. 117, no. 16, p. 164302, 2015.Google Scholar
Kalache, B., i Cabarrocas, P. R., and i Morral, A. F., “Observation of incubation times in the nucleation of silicon nanowires obtained by the vapor–liquid–solid method,” Jpn. J. Appl. Phys., vol. 45, no. 2L, p. L190, 2006.Google Scholar
Kreupl, F., et al., “Carbon nanotubes in interconnect applications,” Microelectron. Eng., vol. 64, no. 14, pp. 399408, Oct 2002.Google Scholar
Kroto, H. W., Heath, J. R., Obrien, S. C., Curl, R. F., and Smalley, R. E., “C-60 – Buckminsterfullerene,” (in English), Nature, vol. 318, no. 6042, pp. 162163, 1985.Google Scholar
Iijima, S., “Helical Microtubules of Graphitic Carbon,” Nature, vol. 354, no. 6348, pp. 5658, Nov 1991.Google Scholar
Wei, B. Q., Vajtai, R., and Ajayan, P. M., “Reliability and current carrying capacity of carbon nanotubes,” (in English), Appl. Phys. Lett., vol. 79, no. 8, pp. 11721174, Aug 2001.Google Scholar
Frank, S., Poncharal, P., Wang, Z. L., and de Heer, W. A., “Carbon nanotube quantum resistors” (in English), Science, vol. 280, no. 5370, pp. 17441746, Jun 1998.Google Scholar
Dresselhaus, M. S., Dresselhaus, G., and Avouris, P., Carbon nanotubes: synthesis, structure, properties, and applications, Springer Books 2001.Google Scholar
Hata, K., Futaba, D. N., Mizuno, K., Namai, T., Yumura, M., and Iijima, S., “Water-assisted highly efficient synthesis of impurity-free single-waited carbon nanotubes,” Science, vol. 306, no. 5700, pp. 13621364, Nov 19 2004.Google Scholar
Thostenson, E. T., Ren, Z. F., and Chou, T. W., “Advances in the science and technology of carbon nanotubes and their composites: a review,” Compos. Sci. Technol., vol. 61, no. 13, pp. 18991912, 2001.Google Scholar
Dresselhaus, M. S., Dresselhaus, G., Saito, R., and Jorio, A., “Raman spectroscopy of carbon nanotubes,” Phys. Rep., vol. 409, no. 2, pp. 4799, Mar 2005.Google Scholar
Saito, R., Dresselhaus, G., and Dresselhaus, M. S., Physical properties of carbon nanotubes, London: Imperial College Press, 1998.Google Scholar
Popov, V. N., “Carbon nanotubes: properties and application,” Mater. Sci. Eng. Rep., vol. 43, no. 3, pp. 61102, Jan 15 2004.Google Scholar
Dresselhaus, M. S., Jorio, A., and Saito, R., “Characterizing graphene, graphite, and carbon nanotubes by raman spectroscopy,” in Annu. Rev. Conden. Ma. P, vol. 1, 2010, pp. 89108.Google Scholar
Park, S., Vosguerichian, M., and Bao, Z., “A review of fabrication and applications of carbon nanotube film-based flexible electronics,” Nanoscale, vol. 5, no. 5, pp. 17271752, 2013.Google Scholar
Tans, S. J., et al., “Individual single-wall carbon nanotubes as quantum wires,” Nature, vol. 386, no. 6624, pp. 474477, Apr 1997.Google Scholar
Bachtold, A., et al., “Aharonov-Bohm oscillations in carbon nanotubes,” Nature, vol. 397, no. 6721, pp. 673675, 1999.Google Scholar
Roth, S., Krstic, V., and Rikken, G., “Quantum transport in carbon nanotubes,” Curr. Appl. Phys., vol. 2, no. 2, pp. 155161, 2002.Google Scholar
Maruyama, R., Nam, Y. W., Han, J. H., and Strano, M. S., “Well-defined single-walled carbon nanotube fibers as quantum wires: Ballistic conduction over micrometer-length scales,” Curr. Appl. Phys., vol. 11, no. 6, pp. 14141418, Nov 2011.Google Scholar
Kong, J., et al., “Quantum interference and ballistic transmission in nanotube electron waveguides,” Phys. Rev. Lett., vol. 87, no. 10, p. 4, Sep 2001, Art. no. 106801.Google Scholar
Javey, A., Guo, J., Wang, Q., Lundstrom, M., and Dai, H. J., “Ballistic carbon nanotube field-effect transistors,” Nature, vol. 424, no. 6949, pp. 654657, Aug 2003.Google Scholar
Rutherglen, C. and Burke, P., “Nanoelectromagnetics: circuit and electromagnetic properties of carbon nanotubes,” Small, vol. 5, no. 8, pp. 884906, Apr 2009.CrossRefGoogle ScholarPubMed
Fan, Y. W., Goldsmith, B. R., and Collins, P. G., “Identifying and counting point defects in carbon nanotubes,” Nat. Mater., vol. 4, no. 12, pp. 906911, Dec 2005.Google Scholar
Ando, Y., Zhao, X., Sugai, T., and Kumar, M., “Growing carbon nanotubes,” Mater. Today., vol. 7, no. 10, pp. 2229, 2004.Google Scholar
Ando, Y., “Carbon nanotube: the inside story,” J. Nanosci. Nanotechno., vol. 10, no. 6, pp. 37263738, Jun 2010.Google Scholar
Colbert, D. T., et al., “Growth and sintering of fullerene nanotubes,” Science, vol. 266, no. 5188, pp. 12181222, Nov 1994.Google Scholar
Ebbesen, T. W. and Ajayan, P. M., “Large-scale synthesis of carbon nanotubes,” Nature vol. 358, pp. 220222, 1992.Google Scholar
Ebbesen, T. W., Ajayan, P. M., Hiura, H., and Tanigaki, K., “Purification of nanotubes,” Nature, Letter vol. 367, no. 6463, pp. 519–519, Feb 1994.Google Scholar
Tessonnier, J.-P. and Su, D. S., “Recent progress on the growth mechanism of carbon nanotubes: a review,” Chemsuschem, vol. 4, no. 7, pp. 824847, 2011.Google Scholar
Anazawa, K., Shimotani, K., Manabe, C., Watanabe, H., and Shimizu, M., “High-purity carbon nanotubes synthesis method by an arc discharging in magnetic field,” Appl. Phys. Lett., vol. 81, no. 4, pp. 739741, Jul 2002.Google Scholar
McAlpine, M. C., Ahmad, H., Wang, D., and Heath, J. R., “Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors,” Nat. Mater., vol. 6, no. 5, p. 379, 2007.Google Scholar
Farhat, S., et al., “Diameter control of single-walled carbon nanotubes using argon-helium mixture gases,” J. Chem. Phys., vol. 115, no. 14, pp. 67526759, Oct 2001.CrossRefGoogle Scholar
Guo, T., et al., “Uranium stabilization of C28 – a tetravalent fullerene,” Science, vol. 257, no. 5077, pp. 16611664, Sep 1992.Google Scholar
Thess, A., et al., “Crystalline ropes of metallic carbon nanotubes,” Science, vol. 273, no. 5274, pp. 483487, Jul 1996.Google Scholar
Bandow, S., Rao, A. M., Williams, K. A., Thess, A., Smalley, R. E., and Eklund, P. C., “Purification of single-wall carbon nanotubes by microfiltration,” J. Phys. Chem. B, Letter vol. 101, no. 44, pp. 88398842, Oct 1997.Google Scholar
Ishii, H., et al., “Direct observation of Tomonaga-Luttinger-liquid state in carbon nanotubes at low temperatures,” Nature, vol. 426, no. 6966, pp. 540544, Dec 2003.Google Scholar
Eklund, P. C., et al., “Large-scale production of single-walled carbon nanotubes using ultrafast pulses from a free electron laser,” Nano Lett., vol. 2, no. 6, pp. 561566, Jun 2002.Google Scholar
Bolshakov, A. P., et al., “A novel CW laser-powder method of carbon single-wall nanotubes production,” Diam. Relat. Mater., vol. 11, no. 3–6, pp. 927930, Mar–Jun 2002.Google Scholar
Endo, M., Takeuchi, K., Igarashi, S., Kobori, K., Shiraishi, M., and Kroto, H. W., “The production and structure of pyrolytic carbon nanotubes (PNTs),” J. Phys. Chem. Solids., vol. 54, no. 12, pp. 18411848, Dec 1993.Google Scholar
Kumar, M. and Ando, Y., “Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production,” J. Nanosci. Nanotechno., vol. 10, no. 6, pp. 37393758, Jun 2010.Google Scholar
Ren, Z. F., et al., “Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot,” Appl. Phys. Lett., vol. 75, no. 8, pp. 10861088, Aug 1999.Google Scholar
Ren, Z. F., et al., “Synthesis of large arrays of well-aligned carbon nanotubes on glass,” Science, vol. 282, no. 5391, pp. 11051107, Nov 1998.Google Scholar
Yudasaka, M., Kikuchi, R., Matsui, T., Ohki, Y., Yoshimura, S., and Ota, E., “Specific conditions for Ni catalyzed carbon nanotube growth by chemical-vapor-deposition,” Appl. Phys. Lett., vol. 67, no. 17, pp. 24772479, Oct 1995.Google Scholar
Yudasaka, M., Kikuchi, R., Ohki, Y., Ota, E., and Yoshimura, S., “Behavior of Ni in carbon nanotube nucleation,” Appl. Phys. Lett., vol. 70, no. 14, pp. 18171818, Apr 1997.Google Scholar
Seah, C.-M., Chai, S.-P., and Mohamed, A. R., “Synthesis of aligned carbon nanotubes,” Carbon, vol. 49, no. 14, pp. 46134635, Nov 2011.Google Scholar
Azam, M. A., Manaf, N. S. A., Talib, E., and Bistamam, M. S. A., “Aligned carbon nanotube from catalytic chemical vapor deposition technique for energy storage device: a review,” Ionics, vol. 19, no. 11, pp. 14551476, 2013.Google Scholar
Sinnott, S. B., et al., “Model of carbon nanotube growth through chemical vapor deposition,” Chem. Phys. Lett., vol. 315, no. 1–2, pp. 2530, Dec 1999.Google Scholar
Li, Q., et al., “Sustained growth of ultralong carbon nanotube arrays for fiber spinning,” Adv. Mater., vol. 18, no. 23, pp. 31603163, Dec 4 2006.Google Scholar
Amama, P. B., et al., “Role of water in super growth of single-walled carbon nanotube carpets,” Nano Lett., vol. 9, no. 1, pp. 4449, 2009.Google Scholar
Wen, Q., et al., “Growing 20 cm long DWNTs/TWNTs at a rapid growth rate of 80–90 um/s,” Chem. Mater., vol. 22, no. 4, pp. 12941296, 2010.Google Scholar
Cassell, A. M., Raymakers, J. A., Kong, J., and Dai, H. J., “Large scale CVD synthesis of single-walled carbon nanotubes,” J. Phys. Chem. B, vol. 103, no. 31, pp. 64846492, Aug 1999.Google Scholar
Dai, H. J., et al., “Controlled chemical routes to nanotube architectures, physics, and devices,” (in English), J. Phys. Chem. B, vol. 103, no. 51, pp. 1124611255, Dec 1999.Google Scholar
Kong, J., Cassell, A. M., and Dai, H. J., “Chemical vapor deposition of methane for single-walled carbon nanotubes,” Chem. Phys. Lett., vol. 292, no. 46, pp. 567574, Aug 1998.Google Scholar
Kong, J., Soh, H. T., Cassell, A. M., Quate, C. F., and Dai, H. J., “Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers,” Nature, vol. 395, no. 6705, pp. 878881, Oct 1998.Google Scholar
Ahmad, M., Anguita, J. V., Stolojan, V., Carey, J. D., and Silva, S. R. P., “Efficient coupling of optical energy for rapid catalyzed nanomaterial growth: high-quality carbon nanotube synthesis at low substrate temperatures,” ACS Appl. Mater. Inter, vol. 5, no. 9, pp. 38613866, May 8 2013.Google Scholar
Ahmad, M., et al., “High quality carbon nanotubes on conductive substrates grown at low temperatures,” Adv. Funct. Mater, vol. 25, no. 28, pp. 44194429, 2015.Google Scholar
Ahmad, M., “Carbon nanotube based integrated circuit interconnects,” University of Surrey, Faculty of Engineering and Physical Sciences, Department of Electronic Engineering Thesis (Ph.D.) – University of Surrey, 2013.Google Scholar
Chen, G. Y., Jensen, B., Stolojan, V., and Silva, S. R. P., “Growth of carbon nanotubes at temperatures compatible with integrated circuit technologies,” Carbon, vol. 49, no. 1, pp. 280285, Jan 2011.Google Scholar
Su, M., Zheng, B., and Liu, J., “A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity,” Chem. Phys. Lett., vol. 322, no. 5, pp. 321326, May 2000.Google Scholar
Alexandrescu, R., et al., “Synthesis of carbon nanotubes by CO2-laser-assisted chemical vapour deposition,” Infrared. Phys. Techn., vol. 44, no. 1, pp. 4350, Feb 2003.Google Scholar
Maruyama, S., Miyauchi, Y., Murakami, Y., and Chiashi, S., “Optical characterization of single-walled carbon nanotubes synthesized by catalytic decomposition of alcohol,” New. J. Phys., vol. 5, p. 12, Oct 2003.Google Scholar
Bower, C., Zhu, W., Jin, S. H., and Zhou, O., “Plasma-induced alignment of carbon nanotubes,” Appl. Phys. Lett., vol. 77, no. 6, pp. 830832, Aug 2000.Google Scholar
Merkulov, V. I., Lowndes, D. H., Wei, Y. Y., Eres, G., and Voelkl, E., “Patterned growth of individual and multiple vertically aligned carbon nanofibers,” Appl. Phys. Lett., vol. 76, no. 24, pp. 35553557, Jun 2000.Google Scholar
Teo, K. B. K., et al., “Uniform patterned growth of carbon nanotubes without surface carbon,” Appl. Phys. Lett, vol. 79, no. 10, pp. 15341536, Sep 2001.Google Scholar
Anguita, J. V., Cox, D. C., Ahmad, M., Tan, Y. Y., Allam, J., and Silva, S. R. P., “Highly transmissive carbon nanotube forests grown at low substrate temperature,” Adv. Funct. Mater., 2013.Google Scholar
Chhowalla, M., et al., “Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition,” J. Appl. Phys., vol. 90, no. 10, pp. 53085317, Nov 15 2001.Google Scholar
Maruyama, S., Kojima, R., Miyauchi, Y., Chiashi, S., and Kohno, M., “Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol,” Chem. Phys. Lett., vol. 360, no. 3–4, pp. 229234, Jul 10 2002.Google Scholar
Sen, R., Govindaraj, A., and Rao, C. N. R., “Carbon nanotubes by the metallocene route,” Chem. Phys. Lett., vol. 267, no. 3–4, pp. 276280, Mar 21 1997.Google Scholar
Kumar, M. and Ando, Y., “A simple method of producing aligned carbon nanotubes from an unconventional precursor – Camphor,” Chem. Phys. Lett., vol. 374, no. 5–6, pp. 521526, Jun 18 2003.Google Scholar
Li, Q. W., Yan, H., Zhang, J., and Liu, Z. F., “Effect of hydrocarbons precursors on the formation of carbon nanotubes in chemical vapor deposition,” Carbon, vol. 42, no. 4, pp. 829835, 2004.Google Scholar
Yuan, D., Ding, L., Chu, H., Feng, Y., McNicholas, T. P., and Liu, J., “Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts,” Nano Lett., vol. 8, no. 8, pp. 25762579, Aug 2008.Google Scholar
Seidel, R., Duesberg, G. S., Unger, E., Graham, A. P., Liebau, M., and Kreupl, F., “Chemical vapor deposition growth of single-walled carbon nanotubes at 600 degrees C and a simple growth model,” J. Phys. Chem. B, vol. 108, no. 6, pp. 18881893, Feb 12 2004.Google Scholar
Meshot, E. R., Plata, D. L., Tawfick, S., Zhang, Y., Verploegen, E. A., and Hart, A. J., “Engineering vertically aligned carbon nanotube growth by decoupled thermal treatment of precursor and catalyst,” ACS Nano, vol. 3, no. 9, pp. 24772486, Sep 2009.Google Scholar
Lee, K. Y., et al., “Vertically aligned growth of carbon nanotubes with long length and high density,” J. Vac. Sci. Technol. B., vol. 23, no. 4, pp. 14501453, Jul–Aug 2005.Google Scholar
Nessim, G. D., et al., “Tuning of vertically-aligned carbon nanotube diameter and areal density through catalyst pre-treatment,” Nano Lett., vol. 8, no. 11, pp. 35873593, Nov 2008.Google Scholar
Carey, J. D., Ong, L. L., and Silva, S. R. P., “Formation of low-temperature self-organized nanoscale nickel metal islands,” Nanotechnology, vol. 14, no. 11, pp. 12231227, Nov 2003.Google Scholar
Bayer, B. C., et al., “Co-catalytic solid-state reduction applied to carbon nanotube growth,” J. Phys. Chem. B, vol. 116, no. 1, pp. 11071113, Jan 12 2012.Google Scholar
Ago, H., Nakamura, K., Uehara, N., and Tsuji, M., “Roles of metal-support interaction in growth of single- and double-walled carbon nanotubes studied with diameter-controlled iron particles supported on MgO,” J. Phys. Chem. B, vol. 108, no. 49, pp. 1890818915, Dec 9 2004.Google Scholar
Jung, Y. J., Wei, B. Q., Vajtai, R., and Ajayan, P. M., “Mechanism of selective growth of carbon nanotubes on SiO2/Si patterns,” Nano Lett., vol. 3, no. 4, pp. 561564, Apr 2003.Google Scholar
Esconjauregui, S., et al., “Growth of ultrahigh density vertically aligned carbon nanotube forests for interconnects,” ACS Nano, vol. 4, no. 12, pp. 74317436, Dec 2010.Google Scholar
Yokoyama, D., et al., “Low temperature grown carbon nanotube interconnects using inner shells by chemical mechanical polishing,” Appl. Phys. Lett., vol. 91, no. 26, p. 263101, Dec 24 2007.Google Scholar
Okuno, H., et al., “CNT integration on different materials suitable for VLSI interconnects,” C. R. Phys., vol. 11, no. 5–6, pp. 381388, Jun–Jul 2010.Google Scholar
van der Veen, M. H., et al., “Electrical characterization of CNT contacts with Cu Damascene top contact,” Microelectron. Eng., vol. 106, pp. 106111, Jun 2013.Google Scholar
Li, J., et al., “Bottom-up approach for carbon nanotube interconnects,” Appl. Phys. Lett, vol. 82, no. 15, pp. 24912493, Apr 2003.Google Scholar
Zhang, H., Wu, B., Hu, W., and Liu, Y., “Separation and/or selective enrichment of single-walled carbon nanotubes based on their electronic properties,” Chem. Soc. Rev., vol. 40, no. 3, pp. 13241336, 2011.Google Scholar
Harutyunyan, A. R., et al., “Preferential growth of single-walled carbon nanotubes with metallic conductivity,” Science, vol. 326, no. 5949, p. 116, 2009.Google Scholar
Krupke, R., Hennrich, F., v. Löhneysen, H., and Kappes, M. M., “Separation of metallic from semiconducting single-walled carbon nanotubes,” Science, vol. 301, no. 5631, p. 344, 2003.Google Scholar
Mureau, N., Mendoza, E., Silva, S. R. P., Hoettges, K. F., and Hughes, M. P., “In situ and real time determination of metallic and semiconducting single-walled carbon nanotubes in suspension via dielectrophoresis,” Appl. Phys. Lett, vol. 88, no. 24, p. 243109, 2006.Google Scholar
Collins, P. G., Arnold, M. S., and Avouris, P., “Engineering carbon nanotubes and nanotube circuits using electrical breakdown,” Science, vol. 292, no. 5517, p. 706, 2001.Google Scholar
Yudasaka, M., Zhang, M., and Iijima, S., “Diameter-selective removal of single-wall carbon nanotubes through light-assisted oxidation,” Chem. Phys. Lett., vol. 374, no. 1, pp. 132136, 2003.Google Scholar
Zheng, M., et al., “Structure-based carbon nanotube sorting by sequence-dependent DNA assembly,” Science, vol. 302, no. 5650, p. 1545, 2003.Google Scholar
Tu, X., Manohar, S., Jagota, A., and Zheng, M., “DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes,” Nature, vol. 460, p. 250, 2009.Google Scholar
Takeshi, T., Hehua, J., Yasumitsu, M., and Hiromichi, K., “High-yield separation of metallic and semiconducting single-wall carbon nanotubes by agarose gel electrophoresis,” Appl. Phys. Express, vol. 1, no. 11, p. 114001, 2008.Google Scholar
Tanaka, T., et al., “Simple and scalable gel-based separation of metallic and semiconducting carbon nanotubes,” Nano Lett., vol. 9, no. 4, pp. 14971500, 2009.Google Scholar
Duan, W. H., Wang, Q., and Collins, F., “Dispersion of carbon nanotubes with SDS surfactants: a study from a binding energy perspective,” Chem. Sci., vol. 2, no. 7, pp. 14071413, 2011.Google Scholar
Silvera-Batista, C. A., Scott, D. C., McLeod, S. M., and Ziegler, K. J., “A mechanistic study of the selective retention of SDS-suspended single-wall carbon nanotubes on agarose gels,” J. Phys. Chem. B, vol. 115, no. 19, pp. 93619369, 2011.Google Scholar
Arnold, M. S., Green, A. A., Hulvat, J. F., Stupp, S. I., and Hersam, M. C., “Sorting carbon nanotubes by electronic structure using density differentiation,” Nat. Nanotechnol., vol. 1, p. 60, 2006.Google Scholar
Liu, H., Nishide, D., Tanaka, T., and Kataura, H., “Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography,” Nat. Commun., vol. 2, p. 309, 2011.Google Scholar
Xu, S. and Wang, Z. L., “One-dimensional ZnO nanostructures: solution growth and functional properties,” Nano. Res., vol. 4, no. 11, pp. 10131098, November 01 2011.Google Scholar
Wang, Z. L., “ZnO nanowire and nanobelt platform for nanotechnology,” Mater. Sci. Eng. Rep., vol. 64, no. 3, pp. 3371, 2009.Google Scholar
Das, S. and Ghosh, S., “Fabrication of different morphologies of ZnO superstructures in presence of synthesized ethylammonium nitrate (EAN) ionic liquid: synthesis, characterization and analysis,” Dalton. T., vol. 42, no. 5, pp. 16451656, 2013.Google Scholar
Pan, Z. W., Dai, Z. R., and Wang, Z. L., “Nanobelts of semiconducting oxides,” Science, vol. 291, no. 5510, p. 1947, 2001.Google Scholar
Park, W. I., Yi, G. C., Kim, M. Y., and Pennycook, S. J., “ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy,” Adv. Mater., vol. 14, no. 24, pp. 18411843, Dec 2002.Google Scholar
Heo, Y. W., et al., “Site-specific growth of ZnO nanorods using catalysis-driven molecular-beam epitaxy,” Appl. Phys. Lett., vol. 81, no. 16, pp. 30463048, 2002.Google Scholar
Hong, J. I., Bae, J., Wang, Z. L., and Snyder, R. L., “Room-temperature, texture-controlled growth of ZnO thin films and their application for growing aligned ZnO nanowire arrays,” Nanotechnology, vol. 20, no. 8, p. 5, Feb 2009.Google Scholar
Laudise, R. A. and Ballman, A. A., “Hydrothermal synthesis of zinc oxide and zinc sulfide,” J. Phys. Chem., vol. 64, no. 5, pp. 688691, 1960.Google Scholar
Verges, M. A., Mifsud, A., and Serna, C. J., “Formation of rod-like zinc oxide microcrystals in homogeneous solutions,” J. Chem. Soc. Faraday. T., vol. 86, no. 6, pp. 959963, 1990.Google Scholar
Vayssieres, L., Keis, K., Lindquist, S.-E., and Hagfeldt, A., “Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO,” J. Phys. Chem. B, vol. 105, no. 17, pp. 33503352, 2001.Google Scholar
Nayak, J., Sahu, S. N., Kasuya, J., and Nozaki, S., “Effect of substrate on the structure and optical properties of ZnO nanorods,” J. Phys. D. Appl. Phys., vol. 41, no. 11, p. 6, Jun 2008.Google Scholar
Chang, P. C. and Lu, J. G., “ZnO nanowire field-effect transistors,” IEEE. T. Electron. Dev., vol. 55, no. 11, pp. 29772987, Nov 2008.Google Scholar
Xu, S., et al., “Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst,” J. Am. Chem. Soc., vol. 130, no. 45, pp. 1495814959, 2008.Google Scholar
Govender, K., Boyle, D. S., Kenway, P. B., and O’Brien, P., “Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution,” J. Mater. Chem., vol. 14, no. 16, pp. 25752591, 2004.Google Scholar
Ashfold, M. N. R., Doherty, R. P., Ndifor-Angwafor, N. G., Riley, D. J., and Sun, Y., “The kinetics of the hydrothermal growth of ZnO nanostructures,” Thin Solid Films, vol. 515, no. 24, pp. 86798683, Oct 2007.Google Scholar
Sugunan, A., Warad, H. C., Boman, M., and Dutta, J., “Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine,” J. Sol-Gel. Sci. Techn, vol. 39, no. 1, pp. 4956, July 01 2006.Google Scholar
Xu, S., Lao, C., Weintraub, B., and Wang, Z. L., “Density-controlled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces,” J. Mater. Res., vol. 23, no. 8, pp. 20722077, Aug 2008.Google Scholar
Greene, L. E., et al., “Low-temperature wafer-scale production of ZnO nanowire arrays,” Angew. Chem. Int. Edit., vol. 42, no. 26, pp. 30313034, 2003.Google Scholar
Park, H.-H., et al., “Position-controlled hydrothermal growth of ZnO nanorods on arbitrary substrates with a patterned seed layer via ultraviolet-assisted nanoimprint lithography,” Cryst. Eng. Comm., vol. 15, no. 17, pp. 34633469, 2013.Google Scholar
Liu, J., She, J. C., Deng, S. Z., Chen, J., and Xu, N. S., “Ultrathin seed-layer for tuning density of ZnO nanowire arrays and their field emission characteristics,” J. Phys. Chem. B, vol. 112, no. 31, pp. 1168511690, Aug 2008.Google Scholar
Ma, T., Guo, M., Zhang, M., Zhang, Y. J., and Wang, X. D., “Density-controlled hydrothermal growth of well-aligned ZnO nanorod arrays,” Nanotechnology, vol. 18, no. 3, p. 7, Jan 2007.Google Scholar
Le, H. Q., Chua, S. J., Loh, K. P., Fitzgerald, E. A., and Koh, Y. W., “Synthesis and optical properties of well aligned ZnO nanorods on GaN by hydrothermal synthesis,” Nanotechnology, vol. 17, no. 2, pp. 483488, Jan 2006.Google Scholar
Pauporté, T., Lincot, D., Viana, B., and Pellé, F., “Toward laser emission of epitaxial nanorod arrays of ZnO grown by electrodeposition,” Appl. Phys. Lett, vol. 89, no. 23, p. 233112, 2006.Google Scholar
Law, M., Greene, L. E., Johnson, J. C., Saykally, R., and Yang, P., “Nanowire dye-sensitized solar cells,” Nat. Mater., vol. 4, p. 455, 2005.Google Scholar
Xu, C., Shin, P., Cao, L., and Gao, D., “Preferential growth of long ZnO nanowire array and its application in dye-sensitized solar cells,” J. Phys. Chem. B, vol. 114, no. 1, pp. 125129, 2010.Google Scholar
Zhou, Y., Wu, W. B., Hu, G. D., Wu, H. T., and Cui, S. G., “Hydrothermal synthesis of ZnO nanorod arrays with the addition of polyethyleneimine,” Mater. Res. Bull., vol. 43, no. 89, pp. 21132118, 2008.Google Scholar
Tian, Z. R., Voigt, J. A., Liu, J., McKenzie, B., and McDermott, M. J., “Biomimetic arrays of oriented helical ZnO nanorods and columns,” J. Am. Chem. Soc., vol. 124, no. 44, pp. 1295412955, 2002.Google Scholar
Xu, L., Guo, Y., Liao, Q., Zhang, J., and Xu, D., “Morphological control of ZnO nanostructures by electrodeposition,” J. Phys. Chem. B, vol. 109, no. 28, pp. 1351913522, 2005.Google Scholar
Tian, Z. R., et al., “Complex and oriented ZnO nanostructures,” Nat. Mater., vol. 2, p. 821, 2003.Google Scholar
Ni, Y. H., Wei, X. W., Ma, X., and Hong, J. M., “CTAB assisted one-pot hydrothermal synthesis of columnar hexagonal-shaped ZnO crystals,” J. Cryst. Growth, vol. 283, no. 12, pp. 4856, Sep 2005.Google Scholar
Wang, Y. X., Fan, X. Y., and Sun, J., “Hydrothermal synthesis of phosphate-mediated ZnO nanosheets,” Mater. Lett., vol. 63, no. 34, pp. 350352, 2009.Google Scholar
Sun, Y., Wang, L., Yu, X., and Chen, K., “Facile synthesis of flower-like 3D ZnO superstructures via solution route,” Cryst. Eng. Comm., vol. 14, no.9, pp.31993204, 2012.Google Scholar
Ko, S. H., et al., “Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell,” Nano Lett., vol. 11, no.2, pp.666671, 2011.Google Scholar
Wanit, M., et al., “ZnO nano-tree growth study for high efficiency solar cell,” Energy Procedia, vol.14, pp.10931098, 2012.Google Scholar
Zhang, T., Dong, W., Keeter-Brewer, M., Konar, S., Njabon, R. N., and Tian, Z. R., “Site-specific nucleation and growth kinetics in hierarchical nanosyntheses of branched ZnO crystallites,” J. Am. Chem. Soc., vol. 128, no. 33, pp. 1096010968, 2006.Google Scholar
Alenezi, M. R., “Nanostructured zinc oxide sensors,” Thesis (Ph.D.) – University of Surrey, 2014.Google Scholar
Tian, J. H., et al., “Improved seedless hydrothermal synthesis of dense and ultralong ZnO nanowires,” Nanotechnology, vol. 22, no.24, p. 9, May 2011, Art. no. 245601.Google Scholar
Lee, J. H., “Gas sensors using hierarchical and hollow oxide nanostructures: overview,” Sens. Actuator B-Chem., vol. 140, no. 1, pp. 319336, Jun 2009.Google Scholar
Chou, T. P., Zhang, Q. F., Fryxell, G. E., and Cao, G. Z., “Hierarchically structured ZnO film for dye-sensitized solar cells with enhanced energy conversion efficiency,” Adv. Mater., vol. 19, no. 18, Sep 2007.Google Scholar
Cao, A. M., et al., “Hierarchically structured cobalt oxide (Co3O4): the morphology control and its potential in sensors,” J. Phys. Chem. B, vol. 110, no. 32, pp. 1585815863, Aug 2006.Google Scholar
Zhang, L., Wang, W., Chen, Z., Zhou, L., Xu, H., and Zhu, W., “Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts,” J. Mater. Chem., vol. 17, no. 24, pp. 25262532, 2007.Google Scholar
Xu, H., Zheng, Z., Zhang, L. Z., Zhang, H. L., and Deng, F., “Hierarchical chlorine-doped rutile TiO2 spherical clusters of nanorods: large-scale synthesis and high photocatalytic activity,” J. Solid State Chem., vol. 181, no. 9, pp. 25162522, Sep 2008.Google Scholar
Sun, S., Wang, W., Xu, H., Zhou, L., Shang, M., and Zhang, L., “Bi5FeTi3O15 hierarchical microflowers: hydrothermal synthesis, growth mechanism, and associated visible-light-driven photocatalysis,” J. Phys. Chem. B, vol. 112, no. 46, pp. 1783517843, 2008.Google Scholar
Qin, Y., Wang, X., and Wang, Z. L., “Microfibre–nanowire hybrid structure for energy scavenging,” Nature, vol. 451, p. 809, 2008.Google Scholar
Yang, H., Hao, L., Zhao, N., Du, C., and Wang, Y., “Hierarchical porous hydroxyapatite microsphere as drug delivery carrier,” Cryst. Eng. Comm., vol. 15, no. 29, pp. 57605763, 2013.Google Scholar
Zhang, Y., Xu, J., Xiang, Q., Li, H., Pan, Q., and Xu, P., “Brush-like hierarchical ZnO nanostructures: synthesis, photoluminescence and gas sensor properties,” J. Phys. Chem. B, vol. 113, no. 9, pp. 34303435, 2009.Google Scholar
Wen, J. G., Lao, J. Y., Wang, D. Z., Kyaw, T. M., Foo, Y. L., and Ren, Z. F., “Self-assembly of semiconducting oxide nanowires, nanorods, and nanoribbons,” Chem. Phys. Lett., vol. 372, no. 5, pp. 717722, 2003.Google Scholar
Liu, B. and Zeng, H. C., “Hollow ZnO microspheres with complex nanobuilding units,” Chem. Mater., vol. 19, no. 24, pp. 58245826, 2007.Google Scholar
Gao, P. X. and Wang, Z. L., “Nanopropeller arrays of zinc oxide,” Appl. Phys. Lett., vol. 84, no. 15, pp. 28832885, 2004.Google Scholar
Baca, A. J., et al., “Semiconductor wires and ribbons for high‐performance flexible electronics,” Angew. Chem. Int. Edit., vol. 47, no. 30, pp.55245542, 2008.Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

1D Semiconducting Nanostructures for Flexible and Large-Area Electronics
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

1D Semiconducting Nanostructures for Flexible and Large-Area Electronics
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

1D Semiconducting Nanostructures for Flexible and Large-Area Electronics
Available formats
×