We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Using a result of Vdovina, we may associate to each complete connected bipartite graph
$\kappa $
a two-dimensional square complex, which we call a tile complex, whose link at each vertex is
$\kappa $
. We regard the tile complex in two different ways, each having a different structure as a
$2$
-rank graph. To each
$2$
-rank graph is associated a universal
$C^{\star }$
-algebra, for which we compute the K-theory, thus providing a new infinite collection of
$2$
-rank graph algebras with explicit K-groups. We determine the homology of the tile complexes and give generalisations of the procedures to complexes and systems consisting of polygons with a higher number of sides.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.