Crossref Citations
This Book has been
cited by the following publications. This list is generated based on data provided by Crossref.
Calogero, Francesco
2018.
Нули целых функций и ассоциированные с ними системы бесконечно многих нелинейных связанных эволюционных уравнений.
Теоретическая и математическая физика,
Vol. 196,
Issue. 2,
p.
193.
Calogero, F.
2018.
Zeros of Entire Functions and Related Systems of Infinitely Many Nonlinearly Coupled Evolution Equations.
Theoretical and Mathematical Physics,
Vol. 196,
Issue. 2,
p.
1111.
Bihun, Oksana
and
Calogero, Francesco
2019.
Time-Dependent Polynomials with One Double Root, and Related New Solvable Systems of Nonlinear Evolution Equations.
Qualitative Theory of Dynamical Systems,
Vol. 18,
Issue. 1,
p.
153.
Calogero, Francesco
and
Payandeh, Farrin
2019.
Two Peculiar Classes of Solvable Systems Featuring 2 Dependent Variables Evolving in Discrete-Time via 2 Nonlinearly-Coupled First-Order Recursion Relations.
Journal of Nonlinear Mathematical Physics,
Vol. 26,
Issue. 4,
p.
509.
Pogrebkov, Andrei Konstantinovich
2020.
Мультипликативные динамические системы в терминах индуцированной динамики.
Теоретическая и математическая физика,
Vol. 204,
Issue. 3,
p.
436.
Pogrebkov, A. K.
2020.
Multiplicative dynamical systems in terms of the induced dynamics.
Theoretical and Mathematical Physics,
Vol. 204,
Issue. 3,
p.
1201.
Calogero, Francesco
2021.
Solvable nonlinear discrete-time evolutions and Diophantine findings.
Journal of Nonlinear Mathematical Physics,
Vol. 25,
Issue. 4,
p.
515.
Du, Dianlou
and
Wang, Xue
2022.
A new finite-dimensional Hamiltonian systems with a mixed Poisson structure for the KdV equation.
Theoretical and Mathematical Physics,
Vol. 211,
Issue. 3,
p.
745.
Mohanasubha, R.
and
Senthilvelan, M.
2023.
A Class of New Solvable Nonlinear Isochronous Systems and Their Classical Dynamics.
Qualitative Theory of Dynamical Systems,
Vol. 22,
Issue. 1,
Wang, Xue
and
Du, Dianlou
2024.
A nonlocal finite-dimensional integrable system related to the nonlocal nonlinear Schrödinger equation hierarchy.
International Journal of Geometric Methods in Modern Physics,
Vol. 21,
Issue. 02,