Skip to main content Accessibility help
×
  • Cited by 384
Publisher:
Cambridge University Press
Online publication date:
January 2012
Print publication year:
2012
Online ISBN:
9781139025683

Book description

Reflectance and emittance spectroscopy are increasingly important tools in remote sensing and have been employed in most recent planetary spacecraft missions. They are primarily used to measure properties of disordered materials, especially in the interpretation of remote observations of the surfaces of the Earth and other terrestrial planets. This book gives a quantitative treatment of the physics of the interaction of electromagnetic radiation with particulate media, such as powders and soils. Subjects covered include electromagnetic wave propagation, single particle scattering, diffuse reflectance, thermal emittance and polarisation. This new edition has been updated to include a quantitative treatment of the effects of porosity, a detailed discussion of the coherent backscatter opposition effect, a quantitative treatment of simultaneous transport of energy within the medium by conduction and radiation, and lists of relevant databases and software. This is an essential reference for research scientists, engineers and advanced students of planetary remote sensing.

Reviews

'… packed with information … a stimulating and enjoyable read. I encourage any students who read this early in their careers to work through the equations even if they look intimidating, as Hapke does a great job of articulating his logic. For those already familiar with the first edition of this text, it is still a worthwhile read. It centralizes Hapke’s pioneering early work with the developments in the almost 20 years since the first edition was published, and the reorganization of chapters and sections results in a more natural, accessible flow.'

Rachel Klima Source: Meteoritics and Planetary Science

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Bibliography
Bibliography
Abeles, F. (1966). Optical Properties and Electronic Structure of Metals and Alloys. Amsterdam: North Holland.
Abramowitz, M., and Stegun, I. (1972). Handbook of Mathematical Functions. Washington, DC: U.S. Government Printing Office.
Adams, C., and Kattawar, G. (1978). Radiative transfer in spherical shell atmospheres. I. Rayleigh scattering. Icarus, 35, 139–51.
Adams, J. (1968). Lunar and Marian surfaces: petrologic significance of absorption bands in the near-infrared, Science, 159, 1453–5.
Adams, J. (1975). Interpretation of visible and near-infrared diffuse reflectance spectra of pyroxenes and other rock-forming minerals. In Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals, ed. C., Karr (pp. 91–116). NewYork: Academic Press.
Adams, J., and Felice, A. (1967). Spectral reflectance 0.4 to 2.0 microns of silicate rock powder. J. Geophys. Res., 72, 5705–15.
Akkermans, E., Wolf, P., and Maynard, R. (1986). Coherent backscattering of light by disordered media: analysis of the peak line shape. Phys. Rev. Lett., 56, 1471–4.
Akkermans, E., Wolf, P., Maynard, R., and Maret, G. (1988). Theoretical study of the coherent backscattering of light by disordered media. J. Phys. France, 49, 77–98.
Allen, C. (1946). The spectrum of the corona at the eclipse of 1940 October 1. Proc. Roy. Astron. Soc. London, 106, 137–50.
Altobelli, N., Spilker, L., Pilorz, S., et al. (2009), Thermal phase curves observed in Saturn's main rings by Cassini-CIRS: detection of an opposition effect? Geophys. Res. Lett., 36, L10105, doi:10.1029/2009GL038163.
Ambartsumian, V. (1958). The theory of radiative transfer in planetary atmospheres. In Theoretical Astrophysics, ed. V., Ambartsumian (pp. 550–64). New York: Pergamon.
Arfken, G., and Weber, H. (2005). Mathematical Methods for Physicists. Boston, MA: Elsevier.
Arnold, G., and Wagner, C. (1988). Grain size influence on the mid-infrared spectra of the minerals. Earth, Moon and Plan., 41, 163–72.
Aronson, J., and Emslie, A. (1973). Spectral reflectance and emittance of particulate materials. II. Application and results. Appl. Opt., 12, 2573–84.
Aronson, J., and Emslie, A. (1975). Applications of infrared spectroscopy and radiative transfer to earth sciences. In Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals, ed. C., Karr (pp. 143–64). New York: Academic Press.
Aronson, J., Emslie, A., Ruccia, F., et al. (1979). Infrared emittance of fibrous materials. Appl. Opt., 18, 2622–33.
Asano, S., and Yamamoto, G. (1975). Light scattering by a spheroidal particle. Appl. Opt., 14, 29–49.
Bandermann, L., Kemp, J., and Wolstencroft, R. (1972). Circular polarization of light scattered from rough surfaces. Mon. Not. Roy. Astron. Soc., 158, 291–304.
Barber, P., and Yeh, C. (1975). Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies. Appl. Opt., 14, 2864–77.
Barkey, B., Bailey, M., Liou, K., and Hallett, J. (2002). Light scattering properties of plate and column ice crystals generated in a laboratory cold chamber. Appl. Opt., 41, 5792–6.
Beckmann, P. (1965). Shadowing of random rough surfaces. IEEE Trans. Antennas Propag., 13, 384–8.
Belskaya, I., and Shevchenko, V. (2000). Oppostion effect of asteroids. Icarus, 147, 94–105.
Berreman, D. (1970). Resonant reflectance anomalies: effect of shapes of surface irregularities. Phys. Rev., B1, 381–9.
Bevington, P. (1969). Data Reduction and Error Analysis for the Physical Sciences. New York: McGraw-Hill.
Blevin, W., and Brown, W. (1967). Effect of particle separation on the reflectance of semi-infinite diffusers. J. Opt. Soc. Amer., 57, 129–34.
Blewett, D., Lucey, P., and Hawke, B. (1997). Clementine images of the lunar samplereturn stations: refinement of FeO and TiO2 mapping techniques. J. Geophys. Res., 102, 16 319–25.
Bloss, F. (1961). An Introduction to the Methods of Optical Crystallography. Philadelphia, PA: Holt, Rinehart, & Winston.
Bobrov, M. (1962). Generalization of the theory of the shadow effect on Saturn's rings to the case of particles of unequal size. Sov. Astron. Astrophys. J., 5, 508–16.
Bohren, C. (1986). Applicability of effective-medium theories to problems of scattering and absorption by nonhomogeneous atmospheric particles. J. Atmos. Sci., 43, 468–75.
Bohren, C., and Huffman, D. (1983). Absorption and Scattering of Light by Small Particles. New York: John Wiley.
Borel, C., Gerstl, S., and Powers, B. (1991). The radiosity method in optical remote sensing of structured 3-D surfaces. Rem. Sens. Environ., 36, 13–44.
Born, M., and Wolf, E. (1980). Principles of Optics, 6th edn. New York: Pergamon.
Bottcher, C. (1952). Theory of Electric Polarization. Amsterdam: Elsevier.
Bowell, E., and Lumme, K. (1979). Polarimetry and magnitudes of asteroids. In Asteroids, ed. T., Gehrels (pp. 132–69). Tucson, AZ: University of Arizona Press.
Bowell, E., and Zellner, B. (1974). Polarizations of asteroids and satellites. In Planets, Stars and Nebulae Studied with Photopolarimetry, ed. T., Gehrels (pp. 381–404). Tucson, AZ: University of Arizona Press.
Bowell, E., Dollfus, A., Zellner, B., and Geake, J. (1973). Polarimetric properties of the lunar surface and its interpretation. VI. Albedo determinations from polarimetric measurements. In Proc. 4th Lunar Sci. Conf., ed. W., Gose (pp. 3167–74). New York: Pergamon.
Bowell, E., Hapke, B., Domingue, D., et al. (1989). Applications of photometric models to asteroids. In Asteroids II, ed. R., Binzel, T., Gehrels, and M., Matthews (pp. 524–56). Tucson, AZ: University of Arizona Press.
Bracewell, R. (2000). The Fourier Transform and its Applications. NewYork: McGraw-Hill.
Browell, E., and Anderson, R. (1975). Ultraviolet optical constants of water and ammonia ices. J. Opt. Soc. Amer., 65, 919–26.
Brown, J., and Churchill, R. (1996). Complex Variables and Applications. New York: McGraw-Hill.
Brown, R., and Cruikshank, D. (1983). The Uranian satellites: surface compositions and opposition brightness surges. Icarus, 55, 83–92.
Brown, R., and Matson, D. (1987). Thermal effects of insolation propagation in the regoliths of airless bodies. Icarus, 72, 84–94.
Bruggeman, D. (1935). Berechnung verschiedener physikalischer Konstanten von heterogen Substanzen. I. Dielectrizitätskonstanten und Leifähigkeiten der Mischkorper aus isotropen Substanzen. Ann. Phys. (Leipzig), 24, 636–79.
Bruning, J., and Lo, Y. (1971a). Multiple scattering of EM waves by spheres. I. Multiple expansions and ray optics solutions. IEEE Trans. Antennas Propag., AP-19, 378–90.
Bruning, J., and Lo, Y. (1971b). Multiple scattering of EM waves by spheres. II. Numerical and experimental results. IEEE Trans. Antennas Propag., AP-19, 391–400.
Buratti, B. (1985). Application of a radiative transfer model to bright icy satellites. Icarus, 61, 208–17.
Buratti, B., and Veverka, J. (1985). Photometry of rough planetary surfaces: the role of multiple scattering. Icarus, 64, 320–8.
Buratti, B., Hillier, J., and Wang, M. (1996). The lunar opposition surge: observations by clementine. Icarus, 124, 490–9.
Burns, R. (1970). Mineralogical Applications of Crystal Field Theory. Cambridge University Press.
Burns, R. (1993). Origin of electronic spectra of minerals in the visible to near-infrared region. In Remote Geochemical Analysis, ed. C., Pieters and P., Englert (pp. 3–29). New York: Cambridge University Press.
Burns, R., Nolet, D., Parkin, K., McCammon, C., and Schwartz, K. (1980). Mixedvalence minerals of iron and titanium: correlations of structural, Mossbauer and electronic spectral data. In Mixed Valence Compounds, ed. D., Brown (pp. 295–336). Boston, MA: Reidel.
Camillo, P. (1987). A canopy reflectance model based on an analytical solution to the multiple scattering equation. Rem. Sens. Environ., 23, 453–77.
Campbell, M., and Ulrichs, J. (1969). Electrical properties of rocks and their significance for lunar radar absorptions. J. Geophys. Res., 74, 5867–81.
Capaccioni, F., Cerroni, P., Barucci, M., and Fuilchignoni, M. (1990). Phase curves of meteorites and terrestrial rocks: laboratory measurements and applications to asteroids. Icarus, 83, 325–48.
Carrier, W., Mitchell, J., and Mahmood, A. (1973). The relative density of lunar soil. Proc. 4th Lunar Sci. Conf., ed. W., Gose (pp. 2403–11). New York: Pergamon.
Chamberlain, J., and Smith, G. (1970). Interpretation of the Venus CO2 absorption bands. Astrophys. J., 160, 755–65.
Chandrasekhar, S. (1960). Radiative Transfer. New York: Dover.
Chapman, C. (1996). S-type asteroids, ordinary chondrites and space weathering: the evidence from Galileo's fly-bys of Gaspra and Ida. Meteorit. Planet. Sci., 31, 699–725.
Chapman, S. (1931). The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating Earth. II. Grazing incidence. Proc. Phys. Soc., 43, 483–501.
Chiappetta, P. (1980). A new model for scattering by irregular absorbing particles. Astron. Astrophys., 83, 348–53.
Chorlton, F. (1976). Vector and Tensor Methods. New York: John Wiley.
Christensen, P., Bandfield, J., Fergason, R., Hamilton, V., and Rogers, A. (2008a). The compositional diversity and physical properties mapped from the Mars Odyssey Thermal Emission Imaging System (THEMIS). In The Martian Surface: Composition, Mineralogy, and Physical Properties, ed. J., Bell III, (pp. 221–41). Cambridge University Press.
Christensen, P., Bandfield, J., Rogers, A., et al. (2008b). Global mineralogy mapped from the Mars Global Surveyor Thermal Emission Spectrometer. In The Martian Surface: Composition, Mineralogy, and Physical Properties, ed. J., Bell</ne III, (pp. 195–220). Cambridge University Press.
Churchill, R. (1944). Modern Operational Mathematics in Engineering. New York: McGraw-Hill.
Chylek, P., Grams, G., and Pinnick, R. (1976). Light scattering by irregular randomly oriented particles. Science, 193, 480–2.
Clark, R. (1983). Spectral properties of mixtures of montmorillonite and dark carbon grains: implications for remote sensing minerals containing chemically and physically adsorbed water. J. Geophys. Res., 88, 10635–44.
Clark, R., and Lucey, P. (1984). Spectral properties of ice-particulate mixtures and implications for remote sensing. I. Intimate mixtures. J. Geophys. Res., 89, 6341–8.
Clark, R., and Roush, T. (1984). Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications. J. Geophys. Res., 89, 6329–40.
Clark, R., Kierein, K., and Swayze, G. (1993). Experimental verification of the Hapke reflectance theory. I. Computation of reflectance as a function of grain size and wavelength based on optical constants. Preprint.
Cohen, A., and Janezic, G. (1983). Relationships among trapped hole and trapped electron centers in oxidized soda-silica glasses of high purity. Phys. Stat. Sol. (a), 77, 619–24.
Conel, J. (1969). Infrared emissivities of silicates: experimental results and a cloudy atmosphere model of spectral emission from condensed particulate mediums. J. Geophys. Res., 74, 1614–34.
Cord, A., Pinet, P., Daydou, Y., and Chevrel, S. (2003). Planetary regolith surface analogs: optimized determination of Hapke parameters using multi-angular spectro-imaging laboratory data. Icarus, 165, 414–27.
Coulson, K. (1971). The polarization of light in the environment. In Planets, Stars, and Nebulae Studied with Photopolarimetry, ed. T., Gehrels (pp. 444–71). Tucson, AZ: University of Arizona Press.
Cox, C., and Munk, W. (1954). Measurement of the roughness of the sea surface from photographs of the sun's glitter. J. Opt. Soc. Amer., 44, 838–50.
Crank, J. (1975). The Mathematics of Diffusion. Oxford University Press.
Danjon, A. (1949). Photometrie et colorimetrie des planets Mercure et Venus. Bull. Astron., 14, 315–17.
Dexter, D. (1956). Absorption of light by atoms in solids. Phys. Rev., 101, 48–55.
Dickinson, R., Pinty, B., and Verstraete, M. (1990). Relating surface albedos in GCM to remotely sensed data. Agricult. Forest Meteorol., 52, 109–31.
Dollfus, A. (1956). Polarisation de la lumière renvoyèe par les corps solides et les nuages naturels. Ann. Astrophys., 19, 83–113.
Dollfus, A. (1961). Polarization studies of planets. In Planets and Satellites, ed. G., Kuiper and B., Middlehurst (pp. 343–99). Chicago, IL: University of Chicago Press.
Dollfus, A. (1962). The polarization of moonlight. In Physics and Astronomy of the Moon, ed. Z., Kopal (pp. 131–60). New York: Academic Press.
Dollfus, A. (1998). Lunar surface imaging polarimetry. I. Roughness and grain size. Icarus, 136, 69–103.
Dollfus, A., and Bowell, E. (1971). Polarimetric properties of the lunar surface and its interpretation. I. Telescopic observations. Astron. Astrophys., 10, 29–53.
Dollfus, A., Wolff, M., Geake, J., Lupishko, D., and Dougherty, L. (1989). Photopolarimetry of asteroids. In Asteroids II, ed. R., BinzelT., Gehrels, and M., Matthews (pp. 594–615). Tucson, AZ: University of Arizona Press.
Domingue, D., and Hapke, B. (1989). Fitting theoretical photometric functions to asteroid phase curves. Icarus, 74, 330–6.
Domingue, D., and Verbiscer, A. (1997). Reanalysis of the solar phase curves of the icy Galilean satellites. Icarus, 128, 49–74.
Domingue, D., Hapke, B., Lockwood, G., and Thompson, D. (1991). Europa's phase curve: implications for surface structure. Icarus, 90, 30–42.
Draine, B. (1988). The discrete dipole approximation: its application to interstellar graphite grains. Astrophys. J., 333, 848–72.
Draine, B. (2000). The discrete dipole approximation for light scattering by irregular targets. In Light Scattering by Nonspherical Particles, ed. M., MischenkoJ., Hovenier, and L., Travis (pp. 131–45). New York: Academic Press.
Draine, B., and Flatau, P. (1994). Discrete dipole approximation for scattering calculations. J. Opt. Soc. Amer., 411, 1491–9.
Draine, B., and Goodman, J. (1993). Beyond Clausiul–Mossotti: wave propagation on a polorizable point lattice and the discrete polar approximation. Astrophys. J., 405, 685–97.
Drude, P. (1959). Theory of Optics. New York: Dover.
Dwight, H. (1947). Tables of Integrals and Other Mathematical Data. New York: Macmillan.
Egan, W. (1985). Photometry and Polarization in Remote Sensing. NewYork: Elsevier.
Egan, W., and Hilgeman, T. (1976). Retroreflectance measurements of photometric standards and coatings. Appl. Opt., 15, 1845–9.
Egan, W., and Hilgeman, T. (1978). Spectral reflectance of particulate materials: a Monte Carlo model including asperity scattering. Appl.Opt., 17, 245–52.
Egan, W., and Hilgeman, T. (1979). Optical Properties of Inhomogeneous Materials. New York: Academic Press.
Elliott, R. (1966). Electromagnetics. New York: Academic Press.
Emslie, A., and Aronson, J. (1973). Spectral reflectance and emittance of particulate materials. I. Theory. Appl. Opt., 12, 2563–72.
Esposito, L. (1979). Extensions to the classical calculation of the effect of mutual shadowing in diffuse reflection. Icarus, 39, 69–80.
Evans, J. (1962). Radio echo studies of the moon. In Physics and Astronomy of the Moon, ed. Z., Kopal (pp. 429–80). New York: Academic Press.
Evans, J., and Hagfors, T. (1968). Radar Astronomy. New York: McGraw-Hill.
Evans, J., and Hagfors, T. (1971). Radar studies of the moon. In Advances in Astronomy and Astrophysics, Vol. 8, ed. Z., Kopal (pp. 29–107). New York: Academic Press.
Fairchild, M., and Daoust, D. (1988). Goniospectrophotometric analysis of pressed PTFE powder for use as a primary transfer standard. Appl. Opt., 27, 3392–6.
Fountain, J., and West, E. (1970). Thermal conductivity of particulate basalt as a function of density in simulated lunar and Martian environments. J. Geophys. Res., 75, 4063–70.
Fowler, W. (1968). Physics of Color Centers. New York: Academic Press.
Fredricksson, K., and Keil, K. (1963). The light–dark structures in the Pantar and Kapoeta stone meteorites. Geochim. Cosmochim. Acta, 27, 717–39.
French, R., Verbescer, A., Salo, H., McGhee, C. and Dones, L. (2007). Saturn's rings at true opposition. Pub. Astronom. Soc. Pacific, 119, 623–42.
Frohlich, H. (1958). Theory of Dielectrics, 2nd edn. London: Oxford University Press.
Fuller, K., and Kattawar, G. (1988a). Consumate solutions to the problem of classical electromagnetic scattering by ensembles of spheres. I. Linear chains. Opt. Lett., 13, 90–2.
Fuller, K., and Kattawar, G. (1988b). Consumate solutions to the problem of classical electromagnetic scattering by ensembles of spheres. II. Clusters of arbitrary configurations. Opt. Lett., 13, 1063–5.
Fung, A., and Ulaby, F. (1983). Matter–energy interactions in the microwave region. In Manual of Remote Sensing, ed. D., Simonett (pp. 115–64). Falls Church, VA: American Society of Photogrammetry.
Gaffey, M., Bell, J., and Cruikshank, D. (1989). Reflectance spectroscopy and asteroid surface mineralogy. In Asteroids II, ed. R., Binzel, T., Gehrels, and M., Matthews (pp. 98–127). Tucson, AZ: University of Arizona Press.
Galileo, (1638). Dialogue on the Great World Systems, trans. G., De Santillana (1953). Chicago, IL: University of Chicago Press.
Garbuny, M. (1965). Optical Physics. New York: Academic Press.
Geake, J., and Dollfus, A. (1986). Planetary surface texture and albedo from parameter plots of optical polarization data. Mon. Not. Roy. Astron. Soc., 218, 75–91.
Geake, J., Geake, M., and Zellner, B. (1984). Experiments to test theoretical models of the polarization of light by rough surfaces. Mon. Not. Roy. Astron. Soc., 210, 89–112.
Gehrels, T. (1974). Introduction and overview. In Planets, Stars and Nebulae Studied with Photopolarimetry, ed. T., Gehrels (pp. 3–44). Tucson, AZ: University of Arizona Press.
Gehrels, T., and Teska, T. (1963). The wavelength dependence of polarization. Appl. Opt., 2, 67–77.
Gehrels, T., Coffeen, D., and Owings, D. (1964). Wavelength dependence of polarization. III. The lunar surface. Astron. J., 69, 826–52.
Gerstl, S., and Zardecki, A. (1985a). Discrete-ordinates finite-element method for atmospheric radiative transfer and remote sensing. Appl. Opt., 24, 81–93.
Gerstl, S., and Zardecki, A. (1985b). Coupled atmosphere/canopy model for remote sensing of plant reflectance features. Appl. Opt., 24, 94–103.
Goguen, J. (1981). A theoretical and experimental investigation of the photometric functions of particulate surfaces. Ph.D. thesis, Cornell University, Ithaca, NY.
Goody, R. (1964). Atmospheric Radiation, Vol. 1, Theoretical Basis. Oxford University Press.
Gradie, J., and Veverka, J. (1982). When are spectral reflectance curves comparable?Icarus, 49, 109–19.
Greenberg, J. (1974). Some examples of exact and approximate solutions in small particle scattering: a progress report. In Planets, Stars and Nebulae Studied with Photopolarimetry, ed. T., Gehrels (pp. 107–34). Tucson, AZ: University of Arizona Press.
Grum, F., and Luckey, G. (1968). Optical sphere paint and a working standard of reflectance. Appl. Opt., 7, 2289–94.
Gustafson, B. (2000). Microwave analog to light scattering measurements. In Light Scattering by Nonspherical Particles, ed. M., Mishchenko, J., Hovenier, and L., Travis (pp. 367–92). New York: Academic Press.
Hagfors, T. (1964). Backscatter from an undulating surface with applications to radar returns from the moon. J. Geophys. Res., 69, 3779–84.
Hagfors, T. (1968). Relations between rough surfaces and their scattering properties as applied to radar astronomy. In Radar Astronomy, ed. J., Evans and T., Gehrels (pp. 187–218). New York: McGraw-Hill.
Hale, A., and Hapke, B. (2002). A time-dependent model of radiative and conductive thermal energy transport in planetary regoliths with applications to the moon and Mercury. Icarus, 156, 318–34.
Hameen-Anttila, K. (1967). Surface photometry of the planet Mercury. Ann. Acad. Sci. Fenn., Ser. A6, 252, 1–19.
Hansen, J., and Arking, A. (1971). Clouds of Venus: evidence for their nature. Science, 171, 669–72.
Hansen, J., and Travis, L. (1974). Light scattering in planetary atmospheres. Space Sci. Rev., 16, 527–610.
Hapke, B. (1963). A theoretical photometric function for the lunar surface. J. Geophys. Res., 68, 4571–86.
Hapke, B. (1968). On the particle size distribution of lunar soil. Planet. Space Sci., 16, 101–10.
Hapke, B. (1971). Optical properties of the lunar surface. In Physics and Astronomy of the Moon, ed. Z., Kopal (pp. 155–211). New York: Academic Press.
Hapke, B. (1981). Bidirectional reflectance spectroscopy. I. Theory. J. Geophys. Res., 86, 3039–54.
Hapke, B. (1984). Bidirectional reflectance spectroscopy. III. Correction for macroscopic roughness. Icarus, 59, 41–59.
Hapke, B. (1986). Bidirectional reflectance spectroscopy. IV. Extinction and the opposition effect. Icarus, 67, 264–80.
Hapke, B. (1990). Coherent backscatter and the radar characteristics of outer planet satellites. Icarus, 88, 407–17.
Hapke, B. (1993). Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press.
Hapke, B. (1996a). A model of radiative and conductive energy trasfer in planetary regoliths. J. Geophys. Res., 101, 16 817–31.
Hapke, B. (1996b). Applications of an energy transfer model to three problems in planetary regloliths: the solid-state greenhouse, thermal beaming and emittance spectra. J. Geophys. Res., 101, 16 833–40.
Hapke, B. (1999). Scattering and diffraction of light by particles in planetary regoliths. J. Quant. Spectrosc. Radiat. Transf., 61, 565–81.
Hapke, B. (2001). Space weathering from Mercury to the asteroid belt. J. Geophys. Res, 106, 10 039–073.
Hapke, B. (2008). Bidirectional reflectance spectroscopy. VI. Effects of porosity. Icarus, 195, 918–26.
Hapke, B., and Blewett, D. (1991). Coherent backscatter model for the unusual radar reflectivity of icy satellites. Nature, 352, 46–7.
Hapke, B., and Nelson, R. (1975). Evidence for an elemental sulfur component of the clouds from Venus spectrophotometry. J. Atmos. Res., 32, 1211–18.
Hapke, B., and Van Horn, H. (1963). Photometric studies of complex surfaces with applications to the moon. J. Geophys. Res., 68, 4545–70.
Hapke, B., and Wells, E. (1981). Bidirectional reflectance spectroscopy. II. Experiments and observations. J. Geophys. Res., 86, 3055–60.
Hapke, B., and Williams, A. (1988). Search for anomalous opposition spike in crystalline powders. Bull. Amer. Astron. Soc., 20, 808.
Hapke, B., Cassidy, W., and Wells, E. (1975). Effects of vapor phase deposition processes on the optical, chemical and magnetic properties of the lunar regolith. The Moon, 13, 339–53.
Hapke, B., DiMucci, D., Nelson, R., and Smythe, W. (1996). The cause of the hot spot in vegetation canopies and soils. Rem. Sens. Environ., 58, 63–8.
Hapke, B., Nelson, R., and Smythe, W. (1993). The opposition effect of the moon: the contribution of coherent backscattering. Science, 260, 509–11.
Hapke, B., Shepard, M., Nelson, R., Smythe, W., and Piatek, J. (2009). A quantitative test of the ability of models based on the equation of radiative transfer to predict the bidirectional reflectance of a well-characterized medium. Icarus, 199, 210–18.
Hapke, B., Wells, E., and Wagner, J. (1981). Far-UV, visible and near-IR reflectance spectra of frosts of H2O, CO2, NH3 and SO2. Icarus, 47, 361–7.
Harris, D. (1957). Diffuse reflection from planetary atmospheres. Astrophys. J., 126, 408–12.
Hartman, B., and Domingue, D. (1998). Scattering of light by individual particles and the implications for models of planetary surfaces. Icarus, 131, 421–48.
Helfenstein, P. (1986). Derivation and analysis of geological constraints on the emplacement and evolution of terrains on Ganymede from applied differential photometry. Ph.D. thesis, Brown University, Providence, R.I.
Helfenstein, P. (1988). The geological interpretation of photometric surface roughness. Icarus, 73, 462–81.
Helfenstein, P., and Shepard, M. (1999). Submillimeter-scale topography of the lunar regolith. Icarus, 141, 107–31.
Helfenstein, P., and Veverka, J. (1987). Photometric properties of lunar terrains derived from Hapke's equation. Icarus, 72, 343–57.
Helfenstein, P., and Veverka, J. (1989). Physical characterization of asteroid surfaces from photometric analysis. In Asteroids II, ed. R., Binzel, T., Gehrels, and M., Matthews (pp. 557–93). Tucson, AZ: University of Arizona Press.
Helfenstein, P., Veverka, J., and Thomas, P. (1988). Uranus satellites: Hapke parameters from Voyager disk-integrated photometry. Icarus, 78, 231–9.
Henyey, C., and Greenstein, J. (1941). Diffuse radiation in the galaxy. Astrophys. J., 93, 70–83.
Herbst, T., Skrutskie, M., and Nicholson, P. (1987). The phase curve of the Uranian rings. Icarus, 71, 103–14.
Hillier, J., Buratti, B., and Hill, K. (1999). Multispectral photometry of the moon and absolute calibration of the Clementine UV/Vis camera. Icarus, 141, 205–25.
Hisdal, B. (1965). Reflectance of perfect diffuse and specular samples in the integrating sphere. J. Opt. Soc. Amer., 55, 1122–8.
Hodkinson, J. (1963). Light scattering and extinction by irregular particles larger than the wavelength. In Electromagnetic Scattering, ed. M., Kerker (pp. 87–100). New York: Macmillan.
Hodkinson, J., and Greenleaves, I. (1963). Computations of light scattering and extinction by spheres according to diffraction and geometrical optics, and some comparisons with the Mie theory. J. Opt. Soc. Amer., 53, 577–88.
Holland, A., and Gagne, G. (1970). The scattering of polarized light by polydisperse systems of irregular particles. Appl. Opt., 9, 1113–21.
Hopfield, J. (1966). Mechanism of lunar polarization. Science, 151, 1380–1.
Hovenier, J. (2000). Measuring scattering metrices of small particles at optical wave-lengths. In Light Scattering by Nonspherical Particles, ed. M., Mishchenko, J., Hovenier, and L., Travis (pp. 355–66). New York: Academic Press.
Huguenin, R., and Jones, J. (1986). Intelligent information extraction from reflectance spectra: absorption band positions. J. Geophys. Res., 91, 9585–98.
Hunt, G. (1980). Electromagnetic radiation: the communication link in remote sensing. In Remote Sensing in Geology, ed. B., Siegal and A., Gillespie (pp. 5–46). New York: John Wiley.
Hunt, G., and Vincent, R. (1968). The behavior of spectral features in the infrared emission from particulate surfaces of various grain sizes. J. Geophys. Res., 73, 6039–46.
Irvine, W. (1965). Multiple scattering by large particles. Astrophys. J., 142, 1563–75.
Irvine, W. (1966). The shadowing effect in diffuse reflectance. J. Geophys. Res., 71, 2931–7.
Irvine, W., and Pollack, J. (1968). Infrared properties of water and ice spheres. Icarus, 8, 324–60.
Ishimaru, A. (1978). Wave Propagation and Scattering in Random Media. New York: Academic Press.
Ishimaru, A., and Kuga, Y. (1982). Attenuation of a coherent field in a dense distribution of particles. J. Opt. Soc. Amer., 72, 1317–20.
Jackson, J. (1999). Classical Electromagnetics. New York: John Wiley.
Jahnke, E., and Emde, E. (1945). Tables of Functions. New York: Dover.
Jakowsky, B., Finiol, G., and Henderson, B. (1990). Directional variations in thermal emission from geologic surfaces. Geophys. Res. Lett., 17, 985–8.
Jenkins, F., and White, H. (1950). Fundamentals of Optics, 2nd edn. New York: McGraw-Hill.
Jenkins, P., Smith, M., and Adams, J. (1985). Quantitative analysis of planetary reflectance spectra with principal components analysis. In Proc. 15th Lunar Planet. Sci. Conf., ed. G., Ryder and G., Schubert (pp. C805–10). Washington, DC: American Geophysical Union.
Johnson, J., Grundy, W., and Shepard, M. (2004). Visible/near-infrared spectrogonio-metric observations and modeling of dust-coated rocks. Icarus, 171, 546–56.
Johnson, P., Smith, M., Taylor-George, S., and Adams, J. (1983). A semiempirical method for analysis of the reflectance spectra of binary mineral mixtures. J. Geophys. Res., 88, 3557–61.
Johnson, R., Nelson, M., McCord, T., and Gradie, J. (1988). Analysis of Voyager images of Europa: plasma bombardment. Icarus, 75, 423–36.
Joseph, J., Wiscombe, W., and Weinman, J. (1976). The delta-Eddington approximation for radiative flux transfer. J. Atmos. Sci., 33, 2452–9.
Kaasalainan, S. (2003). Laboratory photometry of planetary regolith analogs. I. Effects of grain and packing properties on opposition effect. Astron. Astrophys. 409, 765–9.
Kaasalainen, S., Peltoniemi, J., Naranen, J., et al. (2005). Small angle goniometry for backscattering measurements in the broadband spectrum. Appl. Opt., 44, 1485–90.
Kattawar, G. (1975). A three parameter analytic phase function for multiple scattering calculations. J. Quant. Spectrosc. Radiat. Transf., 15, 839–49.
Kattawar, G. (1979). Radiative transfer in spherical shell atmospheres. III. Application to Venus. Icarus, 40, 60–6.
Kattawar, G., and Eisner, M. (1970). Radiation from a homogeneous isothermal sphere. Appl. Opt., 9, 2685–90.
Kattawar, G., and Humphreys, T. (1980). Electromagnetic scattering from two identical pseudospheres. In Light Scattering by Irregularly Shaped Particles, ed. D., Schuerman (pp. 177–90). New York: Plenum.
Kemp, J. (1974). Circular polarization of planets. In Planets, Stars and Nebulae Studied with Photopolarimetry, ed. T., Gehrels (pp. 607–16). Tucson, AZ: University of Arizona Press.
KenKnight, C., Rosenberg, D., and Wehner, G. (1967). Parameters of the optical properties of the lunar surface powder in relation to solar wind bombardment. J. Geophys. Res., 72, 3105–29.
Kerker, M. (1969). The Scattering of Light. New York: Academic Press.
Kimes, D., and Kerchner, J. (1982). Irradiance measurement errors due to the assumption of a Lambertian reference panel. Rem. Sens. Environ., 12, 141–9.
Kittel, C. (1976). Introduction to Solid State Physics, 5th edn. New York: John Wiley.
Kocinski, J., and Wojtczak, L. (1978). Critical Scattering Theory: An Introduction. New York: Elsevier.
Kolokolova, L. (1985). On the influence of the structure of atmosphereless bodies' surfaces to the polarimetric characteristics of reflected light. Solar Syst. Res., 19, 165–73.
Kolokolova, L. (1990). Dependence of polarization on optical and structural properties of the surfaces of atmosphereless bodies. Icarus, 84, 305–14.
Kolokolova, L., Kimura, H., Ziegler, K., and Mann, I. (2006). Light scattering properties of random oriented aggregates: do they represent the properties of an ensemble of aggreagates?J. Quant. Spectrosc. Radiat. Transf., 100, 199–206.
Kortum, G. (1969). Reflectance Spectroscopy. New York: Springer.
Kourganoff, V. (1963). Basic Methods in Transfer Problems: Radiative Equilibrium and Neutron Diffusion. New York: Dover.
Kubelka, P. (1948). New contributions to the optics of intensely light-scattering materials. I. J. Opt. Soc. Amer., 38, 448–57.
Kubelka, P. (1954). New contributions to the optics of intensely light-scattering materials. II. Nonhomogeneous layers. J. Opt. Soc. Amer., 44, 330–5.
Kubelka, P., and Munk, F. (1931). Ein Beitrag zur Optik der Farberntricke. Z. Techn. Physik, 12, 593–601.
Kuga, Y., and Ishimaru, A. (1984). Retroreflection from a dense distribution of spherical particles. J. Opt. Soc. Amer., 8, 831–5.
Landau, L., and Lifschitz, E. (1975). The Classical Theory of Fields, 4th edn. New York: Pergamon.
Lass, H. (1950). Vector and Tensor Analysis. New York: McGraw-Hill.
Lax, M. (1954). The influence of lattice vibrations on electronic transitions in solids. In Photoconductivity Conference, ed. R., Breckenridge, B., Russell, and E., Hahn (pp. 111–45). New York: John Wiley.
Lebofsky, L., Sykes, M., Tedesco, E., et al. (1986). A refined “standard” thermal model for asteroids based on observations of 1 Ceres and 2 Pallas. Icarus, 68, 239–51.
Leinert, C., Link, H., Pitz, E., and Giese, R. (1976). Interpretation of a rocket photometry of the inner zodiacal light. Astron. Astrophys., 47, 221–30.
Lenoble, J. (1985). Radiative Transfer in Scattering and Absorbing Atmospheres. Hampton, VA: Deepak Publishing.
Liang, C., and Lo, Y. (1967). Scattering by two spheres. Radio Sci., 2, 1481–95.
Liou, K., and Coleman, R. (1980). Light scattering by hexagonal columns and plates. In Light Scattering by Irregularly Shaped Particles, ed. D., Schuerman (pp. 207–18). New York: Plenum.
Liou, K., and Hansen, J. (1971). Intensity and polarization for single scattering by polydisperse spheres: a comparison of ray optics and Mie theory. J. Atmos. Sci., 28, 995–1004.
Liou, K., and Schotland, R. (1971). Multiple backscattering and depolarization from water clouds for a pulsed lidar system. J. Atmos. Sci., 28, 772–84.
Liou, K., Cai, Q., and Pollack, J. (1983). Light scattering by randomly oriented cubes and parallelepipeds. Appl. Opt., 22, 3001–8.
Logan, L., Hunt, G., Salisbury, J., and Balsamo, S. (1973). Compositional implications of Christiansen frequency maximums for infrared remote sensing applications. J. Geophys. Res., 78, 4983–5003.
Lorentz, H. (1952). The Theory of Electrons. New York: Dover.
Lucey, P., Blewett, D., and Hawke, B. (1998). Mapping the FeO and TiO2 content of the lunar surface with multispectral imagery. J. Geophys. Res., 103 (E2), 3679–99.
Lucey, P., Taylor, G., and Malaret, E. (1995). Abundance and distribution of iron on the Moon. Science, 268, 1150–3.
Lucey, P., Blewett, D., Taylor, G., and Hawke, B. (2000). Imaging of lunar surface maturity. J. Geophys. Res., 105 (E8), 20 377–86.
Lumme, K., and Bowell, E. (1981a). Radiative transfer in the surfaces of atmosphereless bodies. I. Theory. Astron. J., 86, 1694–704.
Lumme, K., and Bowell, E. (1981b). Radiative transfer in the surfaces of atmosphereless bodies. II. Interpretation of phase curves. Astron. J., 86, 1705–12.
Lumme, K., Rahola, J., and Hovenier, J. (1997). Light scattering by dense clusters of spheres. Icarus, 126, 455–69.
Lyot, B. (1929). Recherches sur la polarisation de la lumière des planètes et de quelques substances terrestres. Ann. Obs. Paris, Vol. 8, Book 1 (translated as NASA Tech. Transl. TT-F-187, 1964).
McEwan, A. (1991). Photometric functions for photoclinometry and other applications. Icarus, 92, 298–311.
McGuire, A., and Hapke, B. (1995). An experimental study of light scattering by large irregular particles. Icarus, 113, 134–55.
McKay, D., Fruland, R., and Heiken, G. (1974). Grain size and the evolution of lunar soils. In Proc. 5th Lunar Sci. Conf., ed. W., Gose (pp. 887–906). New York: Pergamon.
Macke, A. (2000). Monte Carlo calculations of light scattering by large particles with multiple internal inclusions. In Light Scattering by Nonspherical Particles, ed. M., Mishchenko, J., Hovenier, and L., Travis (pp. 300–22). New York: Academic Press.
MacKintosh, F., and John, S. (1988). Coherent backscattering of light in the presence of time-reversal, non-invariant and parity-violating media. Phys. Rev., B37, 1884–97.
MacKintosh, F., Zhu, J., Pine, D., and Weitz, D. (1989). Polarization memory of multiply scattered light. Phys. Revo, B40, 9342–45.
Mackowski, D., and Mishchenko, M. (1996). Calculation of the T-matrix and the scattering matrix for ensembles of particles. J. Opt. Soc. Amer., 13, 2266–78.
Margenau, H., and Murphy, G. (1956). The Mathematics of Physics and Chemistry. New York: Van Nostrand.
Marion, J. (1965). Classical Electromagnetic Radiation. New York: Macmillan.
Matson, D., and Brown, R. (1989). Solid state greenhouses and their implications for icy satellites. Icarus, 77, 67–81.
Maxwell-Garnett, J. (1904). Colours in metal glasses and in metallic films. Phil. Trans. Roy. Soc. London, A203, 385–420.
Melamed, N. (1963). Optical properties of powders. I. Optical absorption coefficients and the absolute value of the diffuse reflectance. II. Properties of luminescent powders. J. Appl. Phys., 34, 560–70.
Middleton, W., and Sanders, C. (1951). The absolute spectral diffuse reflectance of magnesium oxide. J. Opt. Soc. Amer., 41, 419–24.
Minnaert, M. (1941). The reciprocity principle in lunar photometry. Astrophys. J., 93, 403–10.
Minnaert, M. (1961). Photometry of the moon. In Planets and Satellites, ed. G., Kuiper and B., Middlehurst (pp. 213–45). Chicago, IL: University of Chicago Press.
Mishchenko, M. (1995). Coherent backscattering by a two-sphere cluster. Opt. Lett. 21, 623–5.
Mishchenko, M. (2002). Vector radiative transfer equation for arbitraritly shaped and arbitrarily oriented particles: a microphysical derivation from statistical electromagnetics. Appl. Opt., 41, 7114–34.
Mishchenko, M. (2008). Multiple scattering, radiative transfer and weak localization in discrete random media: unified microphysical approach. Rev. Geophys., 46, RG2003, doi.10.1029/2007RG200230.
Mishchenko, M., and Liu, L. (2007). Weak localization of electromagnetic waves by densely packed many-particle groups: exact 3D results. J. Quant. Spectrosc. Radiat. Transf., 106, 616–21.
Mishchenko, M., and Macke, A. (1997). Asymmetry parameters for the phase function for isolated and densely packed spherical particles with multiple internal inclusions in the geometric optics limit. J. Quant. Spectrosc. Radiat. Transf., 57, 767–94.
Mishchenko, M., and Mackowski, D. (1996). Electromagnetic scattering by randomly oriented bispheres: comparison of theory and experiment and benchmark calculations. J. Quant. Spectrosc. Radiat. Transf., 55, 683–694.
Mishchenko, M., Dlugach, J., Yanovitskij, E., and Zakharova, N. (1999). Bidirectional reflectance of flat, optically thick particulate layers: an efficient radiatve transfer solution and applications to snow and soil surfaces. J. Quant. Spectrosc. Radiat. Transf., 63, 409–32.
Mishchenko, M., Hovenier, J., and Travis, L. (2000a). Concepts, terms and notation. In Light Scattering by Nonspherical Particles, ed. M., Mishchenko, J., Hovenier, and L., Travis (pp. 3–27). San Diego, CA: Academic Press.
Mishchenko, M., Liu, L., Mackowski, D., Cairns, B., and Videen, G. (2007). Multiple scattering by random particulate media: exact 3D results. Opt. Expr., 15, 2822–36.
Mishchenko, M., Luck, J., and Nieuwenhuizen, T. (2000b). Full angular profile of the coherent polarization opposition effect. J. Opt. Soc Amer., A17, 888–91.
Mishchenko, M., Mackowski, D., and Travis, L. (1995). Scattering of light by bispheres with touching and separated components. Appl. Opt., 34, 4589–99.
Montgomery, W., and Kohl, R. (1980). Opposition effect experimentation. Opt. Lett., 5, 546–8.
Morris, R., Lauer, H., Lawson, C., et al. (1985). Spectral and other physicochemical properties of submicron powders of hematite, maghemite, magnetite, goethite and lepidocrocite. J. Geophys. Res., 90, 3126–44.
Morrison, D., and Lebofsky, L. (1979). Radiometry of asteroids. In Asteroids, ed T., Gehrels (pp. 184–205), Tucson, AZ: University of Arizona Press.
Morse, P., and Feshbach, H. (1953). Methods of Theoretical Physics. New York: McGraw-Hill.
Muhleman, D. (1964). Radar scattering from Venus and the moon. Astron. J., 69, 34–41.
Muinonen, K. (1990). Light scattering by inhomogeneous media: backward enhancement and reversal of linear polarization. Ph.D. thesis, University of Helsinki, Finland.
Muinonen, K. (2000). Light scattering by stochastically shaped particles. In Light Scattering by Nonspherical Particles, ed. M., Mishchenko, J., Hovenier, and L., Travis (pp. 323–54). New York: Academic Press.
Muinonen, K. (2004). Coherent backscattering of light by complex random media of spherical scatterers: numerical solution. Waves Random Media, 14, 365–88.
Muinonen, K., Lumme, K., Peltoniemi, J., and Irvine, W. (1989). Light scattering by randomly oriented crystals. Appl. Opt., 28, 3051–60.
Muinonen, K., Zubko, E., Tyynela, J., Shkuratov, Y., and Videen, G. (2007). Light scattering by Gaussian random particles with discrete-dipole approximation. J. Quant. Spectrosc. Radiat. Transf., 106, 360–77.
Mukai, S., Mukai, T., Giese, R., Weiss, K., and Zerull, R. (1982). Scattering of radiation by a large particle with a random rough surface. Moon and Planets, 26, 197–208.
Munoz, O., Volten, H., deHan, J., Vassen, W., and Hovenier, J. (2000). Experimental determination of scattering matrices of olivine and Allende meteorite particles. Astron. Astrophys., 360, 777–88.
Munoz, O., Volten, H., Hovenier, J., et al. (2006). Experimental and computation study of light scattering by irregular particles with extreme refractive indices: hematite and rutile. Astron. Astrophys., 446, 525–35.
Mustard, J., and Pieters, C. (1987). Quantitative abundance estimates from bidirectional reflectance measurements. In Proc. 17th Lunar Planet. Sci. Conf., ed. G., Ryder and G., Schubert (pp. E617–26). Washington, DC: American Geophysical Union.
Mustard, J., and Pieters, C. (1989). Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra. J. Geophys. Res., 94, 13 619–34.
Naranen, J., Kaasalainen, S., Peltoniemi, J., et al. (2004), Laboratory photometry of planetary regolith analogs. II. Surface roughness and extremes of packing density. Astron. Astrophys., 426, 1103–9.
Nash, D. (1983). Io's 4-μm band and the role of adsorbed SO2. Icarus, 54, 511–23.
Nash, D. (1986). Mid-infrared reflectance spectra (2.3–22μm) of sulfur, gold, KBr, MgO and halon. Appl. Opt., 25, 2427–33.
Nash, D., and Conel, J. (1974). Spectral reflectance systematics for mixtures of powdered hypersthene, labradorite and ilmenite. J. Geophys. Res., 79, 1615–21.
Nelson, R., Hapke, B., Smythe, W., and Horn, L. (1998). Phase curves of selected particulate materials: the contribution of coherent backscattering to the opposition surge. Icarus, 131, 223–30.
Nelson, R., Hapke, B., Smythe, W., and Spilker, L. (2000). The opposition effect in simulated planetary regolths: reflectance and circular polarization ratio changes at small phase angle. Icarus, 147, 545–58.
Nelson, R., Hapke, B., Smythe, W., Hale, A., and Piatek, J. (2004). Planetary regolith microsctucture: an unexpected opposition effect result. Lunar Planet. Sci. XXXV, Lunar and Planetary Institute, Houston, TX, abstract 1089.
Nelson, R., Smythe, W., Hapke, B., and Hale, A. (2002) Low phase angle laboratory studies of the opposition effect: search for wavelength dependence. Planet. Space Sci., 50, 849–56.
Nicodemus, F. (1970). Reflectance nomenclature and directional reflectance and emissivity. Appl Opt., 9, 1474–5.
Nicodemus, F., Richmond, J., Hsia, J., Ginsberg, I., and Limperis, T. (1977). Geometrical Considerations and Nomenclature for Reflectance. National Bureau of Standards Monograph 160. Gaithersburg, MD: National Bureau of Standards.
Niklasson, G., Granqvist, C., and Hunderi, O. (1981). Effective medium models for the optical properties of inhomogeneous materials. Appl. Opt., 20, 26–30.
Nitsan, U., and Shankland, T. (1976). Optical properties and electronic structure of mantle silicates. Geophys. J. Roy. Astron. Soc., 45, 59–87.
O'Donnell, K., and Mendez, E. (1987). Experimental study of scattering from characterized random surfaces. J. Opt. Soc. Amer., A4, 1194–205.
Oetking, P. (1966). Photometric studies of diffusely reflecting surfaces with applications to the brightness of the moon. J. Geophys. Res., 71, 2505–13.
Ohman, Y. (1955). A tentative explanation of the negative polarization in diffuse reflection. Ann. Obs. Stockholm, 18(8), 1–10.
Ostro, S. (1982). Radar properties of Europa, Ganymede and Callisto. In Satellites of Jupiter, ed. D., Morrison (pp. 213–36). Tucson, AZ: University of Arizona Press.
Ostro, S., and Shoemaker, E. (1990). The extraordinary radar echoes from Europa, Ganymede and Callisto: a geological perspective. Icarus, 85, 335–45.
Otterman, J. (1983). Absorption of insolation by land surfaces with sparse vertical protrusions. Tellus, B35, 309–18.
Ozrin, V. (1992). Exact solution for coherent backscattering of polarized light from a random medium of Rayleigh scatterers. Waves Random Media, 2, 141–64.
Palik, E. (ed.) (1991). Handbook of Optical Constants of Solids. New York: Academic Press.
Paliouras, J. (1975). Complex Variables for Scientists and Engineers. New York: Macmillan.
Panofsky, W., and Phillips, M. (1962). Classical Electricity and Magnetism. Cambridge, MA: Addison-Wesley.
Pasrev, V., Ovcharenko, A., Shkuratov, Y., Belshaya, I., and Videen, G. (2007). Photometry of particulate surfaces at extremely small phase angles. J. Quant. Spectrosc. Radiat. Transf., 106, 455–63.
Peltoniemi, J., Lumme, K., Muinonen, K., and Irvine, E. (1989). Scattering of light by stochastically rough particles. Appl. Opt., 28, 4088–95.
Perrin, J., and Lamy, P. (1983). Light scattering by large rough particles. Optica Acta, 30, 1223–44.
Perry, R., Hunt, A., and Huffman, D. (1978). Experimental determinations of Mueller scattering matrices for non-spherical particles. Appl. Opt., 17, 2700–10.
Petrova, E., Tishkovets, V., and Jockers, K. (2007). Modeling of opposition effects with ensembles of clusters: interplay of various scattering mechanisms. Icarus, 186, 233–45.
Piatek, J., Hapke, B., Nelson, R., Smythe, W., and Hale, A. (2004). Scattering properties of planetary regolith analogs. Icarus, 171, 531–45.
Pinnick, R., Carroll, D., and Hofmann, D. (1976). Polarized light from monodisperse randomly oriented nonspherical aerosol particles: measurements. Appl. Opt., 15, 384–93.
Pinty, B., and Verstraete, M. (1991). Extracting information on surface properties from bidirectional reflectance measurements. J. Geophys. Res., 96, 2865–74.
Pinty, B., Verstraete, M., and Dickinson, R. (1989). A physical model for predicting bidirectional reflectances over bare soil. Rem. Sens. Environ., 27, 273–88.
Pinty, B.,Verstraete, M., and Dickinson, R. (1990). A physical model of the bidirectional reflectance of vegetation canopies. II. Inversion and validation. J. Geophys. Res., 95, 11 767–75.
Pollack, J., and Cuzzi, J. (1980). Scattering by nonspherical particles of size comparable to a wavelength: a new semi-empirical theory and its application to tropospheric aerosols. J. Atmos. Sci., 37, 868–81.
Pollack, J., and Whitehill, L. (1972). A multiple scattering model of the diffuse component of the lunar radar echoes. J. Geophys. Res., 77, 4289–303.
Purcell, E. M., and Pennypacker, C. R. (1973). Scattering and absorption of light by nonspherical dielectic grains. Astrophys. J., 186, 705–14.
Ramsey, M., and Christensen, P. (1998). Mineral abundance determination: quantitative deconvolution of thermal emission spectra. J. Geophys. Res. 103, 577–96.
Rayleigh, Lord (1871). On the light from the sky, its polarization and colour. Philos. Mag., 41, 107–20, 274–9.
Reichman, J. (1973). Determination of absorption and scattering coefficients for nonhomogeneous media. I. Theory. Appl. Opt., 12, 1811–23.
Richter, N. (1962). The photometric properties of interplanetary matter. Quart. J. Roy. Astron. Soc., 3, 179–86.
Ross, J., and Marshak, A. (1984). Calculation of the canopy bidirectional reflectance using the Monte-Carlo method. Rem. Sens. Environ., 24, 213–25.
Rosenbush, V., and Kiselev, A. (2005). Polarization opposition effect for the Galilean satellites of Jupiter. Icarus, 179, 490–6.
Rosenbush, V., Avramchuk, V., Rosenbush, A., and Mishchenko, M. (1997). Polarization properties of the Galilean satellites of Jupiter: observations and preliminary analysis. Astrophys. J., 487, 402–14.
Rozenberg, G. (1966). Twilight. New York: Plenum.
Russell, H. (1916). On the albedo of planets and their satellites. Astrophys. J., 43, 173–87.
Salisbury, J. (1993). Mid-infrared spectroscopy: laboratory data. In Remote Geochemical Analysis, ed. C., Pieters and P., Englert (pp. 79–98). Cambridge University Press.
Salisbury, J., and Eastes, J. (1985). The effect of particle size and porosity on spectral contrast in the mid-infrared. Icarus, 64, 586–8.
Salisbury, J., and Wald, A. (1992). The role of volume scattering in reducing spectral contrast of restrahlen bands in spectra of powdered minerals. Icarus, 96, 121–8.
Salisbury, J., and Walter, L. (1989). Thermal infrared (2.5–13.5μm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces. J. Geophys. Res., 94, 9192–202.
Salisbury, J., Hapke, B., and Eastes, J. (1987). Usefulness of weak bands in midinfrared remote sensing of particulate planetary surfaces. J. Geophys. Res., 92, 702–10.
Saunders, P. (1967). Shadowing on the ocean and the existence of the horizon. J. Geophys. Res., 72, 4643–9.
Schaber, G., Berlin, G., and Brown, W. Jr., (1976). Variations in surface roughness within Death Valley, California: geologic evaluation of 25-cm wavelength radar images. Geol. Soc. Amer. Bull., 87, 29–41.
Schatz, E. (1966). Effect of pressure on the reflectance of compacted powders. J. Opt. Soc. Amer., 56, 389–94.
Schiffer, R., and Thielheim, K. (1982a). Light reflection from randomly oriented convex particles with rough surfaces. J. Appl. Phys., 53, 2825–30.
Schiffer, R., and Thielheim, K. (1982b). A scattering model for the zodiacal light particles. Astron. Astrophys., 116, 1–9.
Schlatter, T. (1972). The local surface energy balance and subsurface temperature regime in Antarctica. J. Appl. Meteor., 11, 1048–62.
Schönberg, E. (1929). Theoretische Photometrie. In Handbuch der Astrophysik, Vol. 2, ed. G., Eberhard, A., Kohlschutter, and H., Ludendorff (pp. 1–280). Berlin: Springer.
Schuerman, D. (1980). Light Scattering by Irregularly Shaped Particles. New York: Plenum.
Schuerman, D., Wang, R., Gustafson, B., and Schaefer, R. (1981). Systematic studies of light scattering. I. Particle shape. Appl. Opt., 20, 4039–50.
Schulman, J., and Compton, W. (1962). Color Centers in Solids. New York: Pergamon.
Schuster, A. (1905). Radiation through a foggy atmosphere. Astrophys. J., 21, 1–22.
Seeliger, H. (1887). Zur Theorie der Beleuchtung der grossen Planeten inbesondere des Saturn. Abhandl. Bayer. Akad. Wiss. Math.-Naturw. Kl. II, 16, 405–516.
Seeliger, H. (1895). Theorie der Beleuchtung staubformiger kosmischen Masses insbesondere des Saturinges. Abhandl. Bayer. Akad. Wiss. Math.-Naturw. Kl. II, 18, 1–72.
Shepard, M., and Arvidson, R. (1999). The opposition surge and photopolarimetry of fresh and coated basalts. Icarus, 141, 172–8.
Shepard, M., and Campbell, R. (1998). Shadows on a planetary surface and implications for photometric roughness. Icarus, 134, 279–91.
Shepard, M., and Helfenstein, P. (2007). A test of the Hapke photometric model. J. Geophys. Res., 112, E03001, doi:10.1029/2005JE0026252007.
Shkuratov, Y. (1982). A model for negative polarization of light by cosmic bodies without atmospheres. Sov. Astron., 26, 493–6.
Shkuratov, Y. (1988). Diffractional model of the brightness surge of complex structure surfaces. Kin., Phys., Cel. Bodies, 4, 33–9.
Shkuratov, Y. (1989). New mechanism of formation of negative polarization of light scattered by the solid surfaces of cosmic bodies. Solar Syst. Res., 23, 111–13.
Shkuratov, Y., and Ovcharenko, A. (1998). Brightness opposition effect: a theoretical model and laboratory measurements. Solar Syst. Res., 32, 276–86.
Shkuratov, Y., Kreslavsky, M., Ovcharendo, A., et al. (1999a). Opposition effect from Clementine data and mechanisms of backscatter. Icarus, 141, 132–51.
Shkuratov, Y., Starukhina, L., Hoffmann, H., and Arnold, G. (1999b). A model of spectral albedo of particulate surfaces: implications for optical properties of the Moon. Icarus, 137, 235–46.
Shkuratov, Y., Kaldash, V., Kreslavsky, M., and Opanasenko, N. (2001). Absolute calibration of the Clementine UVVIS data: comparison with ground-based observation of the moon. Solar Syst. Res., 35, 29–34.
Shkuratov, Y., Opanasenko, N., and Kreslavsky, M. (1992a). Polarimetric and photometric properties of the moon: telescopic observations and laboratory simulations. I. The negative polarization. Icarus, 95, 283–99.
Shkuratov, Y., Opanasenko, N., and Kreslavsky, M. (1992b). Polarimetric and photometric properties of the moon: telescopic observations and laboratory simulations. II. The positive polarization. Icarus, 99, 468–84.
Shkuratov, Y., Opanasenko, N., Zubko, E., et al. (2007). Multispectral polarimetry as a tool to investigate texture and chemistry of lumar regolith particles. Icarus, 187, 406–16.
Shkuratov, Y., Ovcharenko, A., Zubko, E., et al. (2002). The opposition effect and negative polarization of structural analogs for planetary regoliths. Icarus, 159, 396–416.
Shkuratov, Y., Ovcharenko, A., Zubko, E., et al. (2004). The negative polarization of light scattered from particulate surfaces and of independently scattring particles. J. Quant. Spectrosc. Radiat. Transf., 88, 267–84.
Shkuratov, Y., Stankevich, D., Ovcharenko, A., and Korokhin, V. (1997). A study of light backscattering from planetary regolith type surfaces phase angles 0.2°–3.5°. Solar Syst. Res., 31, 56–63.
Shkuratov, Y., Stankevich, D.Petrov, D., et al. (2005). Interpreting photometry of regolith-like surfaces with different topographies: shadowing and multiple scattering. Icarus, 173, 3–15.
Simonelli, D., and Veverka, J. (1987). Phase curves of minerals on Io: interpretation in terms of Hapke's function. Icarus, 68, 503–21.
Simpson, R., and Tyler, G. (1982). Radar scattering laws for the lunar surface. IEEE Trans. Antennas Propag., AP30, 438–49.
Skorobogatov, B., and Usoskin, A. (1982). Optical properties of ground surfaces of nonabsorbing materials. Opt. Spectr., 52, 310–13.
Smith, D. (1985). Dispersion theory, sum rules and their application to the analysis of optical data. In Handbook of Optical Constants of Solids, ed. E., Palik (pp. 35–154). New York: Academic Press.
Smith, J. (1983). Matter–energy interactions in the optical region. In Manual of Remote Sensing, 2nd edn., ed. R., Colwell (pp. 61–113). Falls Church, VA: American Society of Photogrammetry.
Smith, M., Johnson, P., and Adams, J. (1985). Quantitative determination of mineral types and abundances from reflectance spectra using principal components analysis. In Proc. 15th Lunar Planet. Sci. Conf., ed. G., Ryder and G., Schubert (pp. C797–804). Washington, DC: American Geophysical Union.
Smythe, W. (1975). Spectra of hydrate frosts: their application to the outer solar system. Icarus, 24, 421–7.
Sobolev, V. (1975). Light Scattering in Planetary Atmospheres. New York: Pergamon.
Sokolov, A. (1967). Optical Properties of Metals. New York: Elsevier.
Spencer, J. (1990). A rough-surface thermophysical model for airless planets. Icarus, 83, 27–38.
Spitzer, W., and Kleinman, D. (1961). Infrared lattice bands of quartz. Phys. Rev., 121, 1324–35.
Sproull, R., and Phillips, W. (1980). Modern Physics, 3rd edn. New York: John Wiley.
Stamnes, K., Tsay, S., Wiscombe, W., and Jayaweeta, K. (1988). Numerically stable algorithm for discrete-ordinate method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27, 2502–9.
Steigman, G. (1978). A polarimetric model for a dust covered planetary surface. Mon. Not. Roy. Astron. Soc., 185, 877–88.
Stratton, J. (1941). Electromagnetic Theory. New York: McGraw-Hill.
Stroud, D., and Pan, F. (1978). Self-consistent approach to electromagnetic wave propagation in composite media: application to model granular metals. Phys. Rev., B17, 1602–10.
Suits, G. (1972). The calculation of the directional reflectance of a vegetative canopy. Rem. Sens. Environ., 2, 117–25.
Sung, C., Singer, R., Parkin, K., and Burns, R. (1977). Temperature dependence of Fe2+ crystal field spectra: implications to mineralogical mapping of planetary surfaces. In Proc. 8th Lunar Sci. Conf., ed. R., Merrill (pp. 1063–79). New York: Pergamon.
Sunshine, J., and Pieters, C. (1993). Estimating modal abundances from the spectra of natural and laboratory pyroxene mixtures using the modified Gaussian model. J. Geophys. Res., 98, 9075–87.
Sunshine, J., Pieters, C., and Pratt, S. (1990). Deconvolution of mineral absorption bands: an improved approach. J. Geophys. Res., 95, 6955–66.
Tanashchuk, M., and Gilchuk, L. (1978). Experimental scattering matrices of ground glass surfaces. Opt. Spectr., 45, 658–62.
Thompson, T., Pollack, J., Campbell, M., and O'Leary, B. (1970). Radar maps of the moon at 70 cm wavelength and their interpretation. Rad. Sci., 5, 253–62.
Thorpe, T. (1973). Mariner 9 photometric observations of Mars from November 1971 through March 1972. Icarus, 20, 482–9.
Thorpe, T. (1978). Viking orbiter observations of the Mars opposition effect. Icarus, 36, 204–15.
Tishkovets, V., Shkuratov, Y., and Litvinov, P. (1999). Comparison of collective effects of scattering by randomly oriented clusters of spherical particles. J. Quant. Spectrosc. Radiat. Transf., 61, 767–73.
Tishkovets, V., Petrova, E., and Jockers, K. (2004). Optical properties of aggregate particles comparable in size to the wavelength. J. Quant. Spectrosc. Radiat. Transf., 86, 241–65.
Torrance, K., and Sparrow, E. (1967). Theory for off-specular reflection from roughened surfaces. J. Opt. Soc. Amer., 57, 1105–14.
Trowbridge, T. (1978). Retroreflection from rough surfaces. J. Opt. Soc. Amer., 68, 1225–42.
Umov, N. (1905). Chromatische Depolarization durch Lichtzerstreuung. Phys. Z., 6, 674–6.
Ungut, A., Grehan, G., and Gouesbet, G. (1981). Comparisons between geometrical optics and Lorentz–Mie theory. Appl. Opt., 20, 2911–18.
Van Albada, M., Van der Mark, M., and Lagendijk, A. (1988). Polarization effects in weak localization of light. J. Phys., D21, S28–S31.
Van Albada, M., Van der, Mark, and Lagendijk, A. (1990). Experiments on weak localization of light and their interpretation. In Scattering and Localization of Classical Waves in Random Media, ed. P., Sheng (pp. 97–136), Teaneck, NJ: World Scientifc Publications.
Van de Hulst, H. (1957). Light Scattering by Small Particles. New York: John Wiley.
Van de Hulst, H. (1974). The spherical albedo of a planet covered with a homogeneous cloud layer. Astron. Astrophys., 35, 209–14.
Van de Hulst, H. (1980). Multiple Light Scattering. New York: Academic Press.
Van der Mark, M., Van Albada, M., and Lagendijk, A. (1988). Light scattering in strongly scattering media: multiple scattering and weak localization. Phys. Rev., B37, 3575–92.
Van Diggelen, J. (1959). Photometric properties of lunar crater floors. Rech. Obs. Utrecht, 14, 1–114.
Van Diggelen, J. (1965). The radiance of lunar objects near opposition. Planet. Space Sci., 13, 271–9.
Van Ginneken, B., Stavridi, M., and Koenderink, J. (1988). Diffuse and specular reflectance from rough surfaces. Appl. Opt., 3, 130–9.
Vanderbilt, V., Grant, L., Biehl, L., and Robinson, B. (1985). Specular, diffuse and polarized light scattered by two wheat canopies. Appl. Opt., 24, 2408–18.
Vaughan, D. (1990). Some contributions of spectral studies in the visible and near visible light region to mineralogy. In Absorption Spectroscopy in Mineralogy, ed. A., Mottana and T., Burragato (pp. 1–37). New York: Elsevier.
Verstraete, M., Pinty, B., and Dickinson, R. (1990). A physical model of the bidirectional reflectance of vegetation canopies. I. Theory. J. Geophys. Res., 95, 11755–65.
Veverka, J., Goguen, J., Yang, S., and Elliot, J. (1978a). Near-opposition limb darkening of solids of planetary interest. Icarus, 33, 368–79.
Veverka, J., Goguen, J., Yang, S., and Elliot, J. (1978b). How to compare the surface of Io to laboratory samples. Icarus, 34, 63–7.
Veverka, J., Goguen, J., Yang, S., and Elliot, J. (1978c). Scattering of light from particulate surfaces. I. A laboratory assessment of multiple scattering effects. Icarus, 34, 406–14.
Veverka, J., Helfenstein, P., Hapke, B., and Goguen, J. (1988). Photometry and polarimetry of Mercury. In Mercury, ed. F., Vilas and C., Chapman (pp. 37–58). Tucson, AZ: University of Arizona Press.
Videen, G., Muinonen, K., and Lumme, K. (2003). Coherence, power laws and the negative polarization surge. Appl. Opt., 42, 3647–52.
Vilaplana, R., Moreno, F., and Molina, A. (2006). Study of the sensitivity of sizeaveraged scattering matrix elements of nonspherical particles to changes in shape, porosity and refractive index. J. Quant. Spectrosc. Radiat. Transf., 100, 415–28.
Vincent, R., and Hunt, G. (1968). Infrared reflectance from mat surfaces. Appl. Opt., 7, 539.
Volten, O., Munoz, O., Rol, E., et al. (2001). Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm. J. Geophys. Res., 106, 17375–401.
Wagner, J., Hapke, B.W., and Wells, E.N. (1987). Atlas of reflectance spectra of terrestrial, lunar, and meteoritic powders and frosts from 92 to 1800 nm. Icarus, 69, 14–28.
Wagner, R. (1967). Shadowing of randomly rough surfaces. J. Acoust. Soc. Amer., 41, 138–47.
Wallach, D., and Hapke, B. (1985). Light scattering in a spherical exponential atmosphere, with applications to Venus. Icarus, 63, 354–73.
Walter, L., and Salisbury, J. (1989). Spectral characterization of igneous rocks in the 8 to 12μm region. J. Geophys. Res., 94, 9203–13.
Warren, S. (1982). Optical properties of snow. Rev. Geophys. Space Phys., 20, 67–89.
Waterman, T. (1965). Matrix formulation of electromagnetic scattering. Proc. IEEE, 53, 805–12.
Waterman, T. (1979). Matrix methods in potential theory and electromagnetic scattering. J. Appl. Phys., 50, 455–66.
Watson, G. (1958). A Treatise on the Theory of Bessel Functions. Cambridge University Press.
Watson, K. (1969). Multiple scattering of electromagnetic waves in underdense plasma. J. Mathemat. Phys., 16, 688–702.
Weaver, R. (1993). Anomalous diffusivity and localization of classical waves in disordered media: the effect of dissipation. Phys. Rev., B47, 1077–80.
Weidner, V., and Hsia, J. (1981). Reflection properties of pressed polytetrafluoroethylene powder. J. Opt. Soc. Amer., 71, 856–61.
Weidner, V., Hsia, J., and Adams, B. (1985). Laboratory intercomparison study of pressed polytetrafluoroethylene powder reflectance standards. Appl. Opt., 24, 2225–30.
Weiss-Wrana, K. (1983). Optical properties of interplanetary dust: comparison with light scattering by larger meteoritic and terrestrial grains. Astron. Astrophys., 126, 240–50.
Wells, E. (1977). Optical absorption bands in glasses of lunar composition. Ph.D. thesis, University of Pittsburgh, PA.
Wells, E., and Hapke, B. (1977). Lunar soil: iron and titanium bands in the glass fraction. Science, 195, 977–9.
Wells, E., Veverka, J., and Thomas, P. (1984). Mars: experimental study of albedo changes caused by dust fallout. Icarus, 58, 331–8.
Wendtland, W., and Hecht, H. (1966). Reflectance Spectroscopy. New York: Wiley-Interscience.
Wesselink, A. (1948). Heat conductivity and the nature of the lunar surface material. Bull. Astron. Inst. Netherlands, 66, 3033–45.
Whitaker, E. (1969). An investigation of the lunar heiligenschein. In Analysis of Apollo 8 Photography and Visual Observations (pp. 38–9). NASA SP-201. Washington, DC: NASA.
White, W., and Keester, K. (1966). Optical absorption spectra of iron in the rock-forming silicates. Amer. Min., 51, 774–91.
Widorn, T. (1967). Zur photometrischen Bestimmung der Durchmesser derkleinen Planeten. Ann. Univ. Sternw. Wien, 27, 112–19.
Wildey, R. (1978). The moon in heiligenschein. Science, 200, 1265–7.
Woessner, P., and Hapke, B. (1987). Polarization of light scattered by clover. Rem. Sens. Environ., 21, 243–61.
Wolf, P., and Maret, G. (1985). Weak localization and coherent backscattering of photons in disordered media. Phys. Rev. Lett., 55, 2696–9.
Wolf, P., Maret, G., Akkermans, E., and Maynard, R. (1988). Optical coherent backscattering by random media: an experimental study. J. Phys. France, 49, 63–75.
Wolff, M. (1975). Polarization of light reflected from rough planetary surface. Appl. Opt., 14, 1395–405.
Wolff, M. (1980). Theory and application of the polarization-albedo rules. Icarus, 44, 780–92.
Wolff, M. (1981). Computing diffuse reflection from particulate planetary surface with a new function. Appl. Opt., 20, 2493–8.
Wooten, F. (1972). Optical Properties of Solids. New York: Academic Press.
Yolken, H., and Kruger, J. (1965). Optical constants of iron in the visible region. J. Opt. Soc. Amer., 55, 842–4.
Xu, Y. (1995). Electromagnetic scattering by a aggregate of spheres. Appl. Opt., 34, 4573–88.
Young, A. (1973). Are the clouds of Venus sulfuric acid?Icarus, 18, 564–82.
Zellner, B., and Gradie, J. (1976). Polarimetric evidence for the albedos and compositions of 94 asteroids. Astron. J., 81, 262–80.
Zellner, B., Gehrels, T., and Gradie, J. (1974). Polarimetric diameters. Astron. J., 79, 1100–10.
Zerull, R. (1976). Scattering measurements of dielectric and absorbing non-spherical particles. Contr. Atmos. Phys., 49, 168–88.
Zerull, R., and Giese, R. (1974). Microwave analogue studies. In Planets, Stars and Nebulae Studied with Photopolarimetry, ed. T., Gehrels (pp. 901–15). Tucson, AZ: University of Arizona Press.
Zubko, E., Shkuratov, Y., Mishchenko, M., and Videen, G. (2008). Light scattering in a finite multi-particle system. J. Quant. Spectrosc. Radiat. Transf. 109, 2195–206.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.