[1] Aitken, A. C. 1943. The monomial expansion of determinantal symmetric functions. Proc. Royal Soc. Edinburgh (A), 61, 300–310.
[2] Aldous, D., and Diaconis, P. 1995. Hammersley's interacting particle process and longest increasing subsequences. Probab. Theory Related Fields, 103, 199–213.
[3] Aldous, D., and Diaconis, P. 1999. Longest increasing subsequences: from patience sorting to the Baik–Deift–Johansson theorem. Bull. Amer. Math. Soc., 36, 413–432.
[4] Anderson, G. W., Guionnet, A., and Zeitouni, O. 2010. An Introduction to Random Matrices. Cambridge University Press.
[5] Andrews, G. E., Askey, R., and Roy, R. 2001. Special Functions. Cambridge University Press.
[6] Angel, O., Holroyd, A. E., Romik, D., and Virág, B. 2007. Random sorting networks. Adv. Math., 215, 839–868.
[7] Angel, O., Holroyd, A. E., and Romik, D. 2009. The oriented swap process. Ann. Probab., 37, 1970–1998.
[8] Apostol, T. M. 1990. Modular Forms and Dirichlet Series in Number Theory. 2nd edition. Springer.
[9] Arnold, V. I. 1988. Mathematical Methods of Classical Mechanics. 2nd edition. Springer.
[10] Baer, R. M., and Brock, P. 1968. Natural sorting over permutation spaces. Math. Comp., 22, 385–410.
[11] Baik, J., Deift, P., and Johansson, K. 1999a. On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc., 12, 1119–1178.
[12] Baik, J., Deift, P., and Johansson, K. 1999b. On the distribution of the length of the second row of a Young diagram under Plancherel measure. Geom. Funct. Anal, 10, 702–731.
[13] Balázs, M., Cator, E., and Seppäläinen, T. 2006. Cube root fluctuations for the corner growth model associated to the exclusion process. Electron. J. Probab., 11, 1094–1132.
[14] Bivins, R. L., Metropolis, N., Stein, P. R., and Wells, M. B. 1954. Characters of the symmetric groups of degree 15 and 16. Math. Comp., 8, 212–216.
[15] Blair-Stahn, N. First passage percolation and competition models. Preprint, arXiv:1005.0649, 2010.
[16] Bollobás, B., and Brightwell, G. 1992. The height of a random partial order: concentration of measure. Ann. Appl. Probab., 2, 1009–1018.
[17] Bollobás, B., and Winkler, P. 1988. The longest chain among random points in Euclidean space. Proc. Amer. Math. Soc., 103, 347–353.
[18] Bornemann, F. 2010. On the numerical evaluation of distributions in random matrix theory: A review. Markov Process. Related Fields, 16, 803–866.
[19] Borodin, A., Okounkov, A., and Olshanski, G. 2000. Asymptotics of Plancherel measures for symmetric groups. J. Amer. Math. Soc., 13, 491–515.
[20] Boucheron, S., Lugosi, G., and Bousquet, O. 2004. Concentration inequalities. Pages 208–240 of: Bousquet, O., von Luxburg, U., and Rätsch, G. (eds), Advanced Lectures in Machine Learning. Springer.
[21] Bressoud, D. 1999. Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture. Cambridge University Press.
[22] Brown, J. W., and Churchill, R. 2006. Fourier Series and Boundary Value Problems. 7th edition. McGraw-Hill.
[23] Bufetov, A. I. 2012. On the Vershik-Kerov conjecture concerning the Shannon-McMillan-Breiman theorem for the Plancherel family of measures on the space of Young diagrams. Geom. Funct. Anal., 22, 938–975.
[24] Ceccherini-Silberstein, T., Scarabotti, F., and Tolli, F. 2010. Representation Theory of the Symmetric Groups: The Okounkov-Vershik Approach, Character Formulas, and Partition Algebras. Cambridge University Press.
[25] Chowla, S., Herstein, I. N., and Moore, W. K. 1951. On recursions connected with symmetric groups I. Canad. J. Math., 3, 328–334.
[26] Clarkson, P. A., and McLeod, J. B. 1988. A connection formula for the second Painlevé transcendent. Arch. Rat. Mech. Anal., 103, 97–138.
[27] Cohn, H., Elkies, N., and Propp, J. 1996. Local statistics for random domino tilings of the Aztec diamond. Duke Math. J., 85, 117–166.
[28] Cohn, H., Larsen, M., and Propp, J. 1998. The shape of a typical boxed plane partition. New York J. Math., 4, 137–165.
[29] Daley, D. J., and Vere-Jones, D. 2003. An Introduction to the Theory of Point Processes, Vol. I: Elementary Theory and Methods. 2nd edition. Springer.
[30] Deift, P. 2000. Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach. American Mathematical Society.
[31] Dembo, A., and Zeitouni, O. 1998. Large Deviations Techniques and Applications. 2nd edition. Springer.
[32] Deuschel, J.-D., and Zeitouni, O. 1999. On increasing subsequences of I.I.D. samples. Combin. Probab. Comput., 8, 247–263.
[33] Durrett, R. 2010. Probability: Theory and Examples. 4th edition. Cambridge University Press.
[34] Edelman, P., and Greene, C. 1987. Balanced tableaux. Adv. Math., 63, 42–99.
[35] Edwards, H. M. 2001. Riemann's Zeta Function. Dover.
[36] Efron, B., and Stein, C. 1981. The jackknife estimate of variance. Ann. Stat., 9, 586–596.
[37] Elkies, N., Kuperberg, G., Larsen, M., and Propp, J. 1992. Alternating sign matrices and domino tilings. J. Algebraic Combin., 1, 111–132; 219–234.
[38] Estrada, R., and Kanwal, R. P. 2000. Singular Integral Equations. Birkhäuser.
[39] Feit, W. 1953. The degree formula for the skew-representations of the symmetric group. Proc. Amer. Math. Soc., 4, 740–744.
[40] Feller, W. 1967. A direct proof of Stirling's formula. Amer. Math. Monthly, 74, 1223–1225.
[41] Feller, W. 1968. An Introduction to Probability Theory and its Applications, Vol. 1. 3rd edition. Wiley.
[42] Forrester, P. J. 2010. Log-Gases and Random Matrices. Princeton University Press.
[43] Frame, J. S., Robinson, G. de B., and Thrall, R. M. 1954. The hook graphs of the symmetric group. Canad. J. Math., 6, 316–324.
[44] Franzblau, D. S., and Zeilberger, D. 1982. A bijective proof of the hook-length formula. J. Algorithms, 3, 317–343.
[45] Frieze, A. 1991. On the length of the longest monotone subsequence in a random permutation. Ann. Appl. Probab., 1, 301–305.
[46] Fristedt, B. 1993. The structure of random partitions of large integers. Trans. Amer. Math. Soc., 337, 703–735.
[47] Gessel, I. M. 1990. Symmetric functions and P-recursiveness. J. Combin. Theory Ser. A, 53, 257–285.
[48] Goodman, N. R. 1963. Statistical analysis based on a certain multivariate complex gaussian distribution (an introduction). Ann. Math. Statist., 34, 152–177.
[49] Graham, R. L., Knuth, D. E., and Patashnik, O. 1994. Concrete Mathematics. Addison-Wesley.
[50] Greene, C., Nijenhuis, A, and Wilf, H. S. 1979. A probabilistic proof of a formula for the number of Young tableaux of a given shape. Adv. Math., 31, 104–109.
[51] Greene, C., Nijenhuis, A, and Wilf, H. S. 1984. Another probabilistic method in the theory of Young tableaux. J. Comb. Theory Ser. A, 37, 127–135.
[52] Groeneboom, P. 2002. Hydrodynamical methods for analyzing longest increasing subsequences. J. Comp. Appl. Math., 142, 83–105.
[53] Haiman, M. D. 1989. On mixed insertion, symmetry, and shifted Young tableaux. J. Comb. Theory Ser. A, 50, 196–225.
[54] Hammersley, J.M. 1972. A few seedlings of research. Pages 345–394 of: LeCam, L. M., Neyman, J., and Scott, E. L. (eds), Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Theory of Statistics. University of California Press.
[55] Hamming, R. W. 1980. The unreasonable effectiveness of mathematics. Amer. Math. Monthly, 87, 81–90.
[56] Hardy, G. H., and Ramanujan, S. 1918. Asymptotic formulae in combinatory analysis. Proc. London Math. Soc., s2-17, 75–115.
[57] Hastings, S. P., and McLeod, J. B. 1980. A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation. Arch. Rational Mech. Anal., 73, 35–51.
[58] Hiai, F., and Petz, D. 2000. The Semicircle Law, Free Random Variables and Entropy. American Mathematical Society.
[59] Hough, J. B., Krishnapur, M., Peres, Y., and Virág, B. 2009. Zeros of Gaussian Analytic Functions and Determinantal Point Processes. American Mathematical Society.
[60] Jockusch, W., Propp, J., and Shor, P. Domino tilings and the arctic circle theorem. Preprint, arXiv:math/9801068, 1998.
[61] Johansson, K. 1998. The longest increasing subsequence in a random permutation and a unitary random matrix model. Math. Res. Letters, 5, 63–82.
[62] Johansson, K. 2000. Shape fluctuations and random matrices. Commun. Math. Phys., 209, 437–476.
[63] Johansson, K. 2001. Discrete orthogonal polynomial ensembles and the Plancherel measure. Ann. Math., 153, 259–296.
[64] Johansson, K. 2002. Non-intersecting paths, random tilings and random matrices. Probab. Theory Related Fields, 123, 225–280.
[65] Johnstone, I. M. 2001. On the distribution of the largest eigenvalue in principal components analysis. Ann. Stat., 29, 295–327.
[66] Kerov, S. 1998. A differential model of growth of Young diagrams. Pages 111–130 of: Ladyzhenskaya, O. A. (ed), Proceedings of the St Petersburg Mathematical Society Volume IV. American Mathematical Society.
[67] Kim, J. H. 1996. On increasing subsequences of random permutations. J. Comb. Theory Ser. A, 76, 148–155.
[68] King, F. W. 2009. Hilbert Transforms, Vols. 1–2. Cambridge University Press.
[69] Kingman, J. F. C. 1968. The ergodic theory of subadditive processes. J. Roy. Stat. Soc. B, 30, 499–510.
[70] Knuth, D. E. 1970. Permutations, matrices, and generalized Young tableaux. Pacific J. Math., 34, 316–380.
[71] Knuth, D. E. 1998. The Art of Computer Programming, Vol. 3: Sorting and Searching. 2nd edition. Addison-Wesley.
[72] König, W. 2005. Orthogonal polynomial ensembles in probability theory. Probab. Surv., 2, 385–447.
[73] Korenev, B. G. 2002. Bessel Functions and Their Applications. CRC Press.
[74] Lax, P. D. 2002. Functional Analysis. Wiley-Interscience.
[75] Lifschitz, V., and Pittel, B. 1981. The number of increasing subsequences of the random permutation. J. Comb. Theory Ser. A, 31, 1–20.
[76] Liggett, T. M. 1985a. An improved subadditive ergodic theorem. Ann. Probab., 13, 1279–1285.
[77] Liggett, T. M. 1985b. Interacting Particle Systems. Springer.
[78] Liggett, T. M. 1999. Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer.
[79] Logan, B. F., and Shepp, L. A. 1977. A variational problem for random Young tableaux. Adv. Math., 26, 206–222.
[80] Lyons, R. 2003. Determinantal probability measures. Publ. Math. Inst. Hautes Études Sci., 98, 167–212.
[81] Lyons, R. 2014. Determinantal probability: basic properties and conjectures. To appear in Proc. International Congress of Mathematicians, Seoul, Korea.
[82] Lyons, R., and Steif, J. E. 2003. Stationary determinantal processes: phase multiplicity, Bernoullicity, entropy, and domination. Duke Math. J., 120, 515–575.
[83] Macchi, O. 1975. The coincidence approach to stochastic point processes. Adv. Appl. Prob., 7, 83–122.
[84] Mallows, C. L. 1963. Problem 62-2, patience sorting. SIAM Rev., 5, 375–376.
[85] Mallows, C. L. 1973. Patience sorting. Bull. Inst. Math. Appl., 9, 216–224.
[86] Martin, J. 2006. Last-passage percolation with general weight distribution. Markov Process. Related Fields, 273–299.
[87] McKay, J. 1976. The largest degrees of irreducible characters of the symmetric group. Math. Comp., 30, 624–631.
[88] Mehta, M. L. 2004. Random Matrices. 3rd edition. Academic Press.
[89] Miller, K. S., and Ross, B. 1993. An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley-Interscience.
[90] Mountford, T., and Guiol, H. 2005. The motion of a second class particle for the tasep starting from a decreasing shock profile. Ann. Appl. Probab., 15, 1227–1259.
[91] Newman, D. J. 1997. Analytic number theory. Springer.
[92] Novelli, J.-C., Pak, I., and Stoyanovskii, A. V. 1997. A direct bijective proof of the hook-length formula. Discr. Math. Theor. Comp. Sci., 1, 53–67.
[93] Odlyzko, A. M. 1995. Asymptotic enumeration methods. Pages 1063–1229 of: Graham, R. L., Groetschel, M., and Lovász, L. (eds), Handbook of Combinatorics, Vol. 2. Elsevier.
[94] Odlyzko, A. M., and Rains, E. M. 2000. On longest increasing subsequences in random permutations. Pages 439–451 of: Grinberg, E. L., Berhanu, S., Knopp, M., Mendoza, G., and Quinto, E. T. (eds), Analysis, Geometry, Number Theory: The Mathematics of Leon Ehrenpreis. American Mathematical Society.
[95] Okounkov, A. 2000. Random matrices and random permutations. Int. Math. Res. Notices, 2000, 1043–1095.
[96] Pak, I. 2001. Hook length formula and geometric combinatorics. Sém. Lothar. Combin., 46, Article B46f.
[97] Peché, S. 2009. Universality results for the largest eigenvalues of some sample covariance matrix ensembles. Probab. Theory Related Fields, 143, 481–516.
[98] Petersen, T. K., and Speyer, D. 2005. An arctic circle theorem for Groves. J. Combin. Theory Ser. A, 111, 137–164.
[99] Pillai, N., and Yin, J. Universality of covariance matrices. Preprint, arXiv:1110.2501, 2011.
[100] Pittel, B., and Romik, D. Limit shapes for random square Young tableaux and plane partitions. Preprint, arXiv:math/0405190v1, 2004.
[101] Pittel, B., and Romik, D. 2007. Limit shapes for random square Young tableaux. Adv. Appl. Math, 38, 164–209.
[102] Prähofer, M., and Spohn, H. 2004. Exact scaling functions for one-dimensional stationary KPZ growth. J. Stat. Phys., 115, 255–279. Numerical tables available at http://www-m5.ma.tum.de/KPZ.
[103] Reiner, V. 2005. Note on the expected number of Yang-Baxter moves applicable to reduced decompositions. Eur. J. Combin., 26, 1019–1021.
[104] Robinson, G. de B. 1938. On the representations of the symmetric group. Amer. J. Math., 60, 745–760.
[105] Rockafellar, R. T. 1996. Convex Analysis. Princeton University Press.
[106] Romik, D. 2000. Stirling's approximation for n!: the ultimate short proof?Amer. Math. Monthly, 107, 556–557.
[107] Romik, D. 2005. The number of steps in the Robinson-Schensted algorithm. Funct. Anal. Appl., 39, 152–155.
[108] Romik, D. 2006. Permutations with short monotone subsequences. Adv. Appl. Math., 37, 501–510.
[109] Romik, D. 2012. Arctic circles, domino tilings and square Young tableaux. Ann. Probab., 40, 611–647.
[110] Rost, H. 1981. Nonequilibrium behaviour of a many particle process: density profile and local equilibria. Z. Wahrsch. Verw. Gebiete, 58, 41–53.
[111] Rudin, W. 1986. Real and Complex Analysis. 3rd edition. McGraw-Hill.
[112] Sagan, B. E. 2001. The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions. Springer.
[113] Schensted, C. 1961. Longest increasing and decreasing subsequences. Canad. J. Math., 13, 179–191.
[114] Schützenberger, M.-P. 1963. Quelques remarques sur une construction de Schensted. Math. Scand., 12, 117–128.
[115] Seppäläinen, T. Lecture notes on the corner growth model. Unpublished notes (2009), available at http://www.math.wisc.edu/~seppalai/cornergrowth-book/ajo.pdf.
[116] Seppäläinen, T. 1996. A microscopic model for the Burgers equation and longest increasing subsequences. Electron. J. Probab., 1-5, 1–51.
[117] Seppäläinen, T. 1998a. Hydrodynamic scaling, convex duality and asymptotic shapes of growth models. Markov Process. Related Fields, 4, 1–26.
[118] Seppäläinen, T. 1998b. Large deviations for increasing sequences on the plane. Probab. Theory Related Fields, 112, 221–244.
[119] Simon, B. 1977. Notes on infinite determinants of Hilbert space operators. Adv. Math., 24, 244–273.
[120] Simon, B. 2005. Trace Ideals and Their Applications. 2nd edition. American Mathematical Society.
[121] Soshnikov, A. 2000. Determinantal random point fields. Russian Math. Surveys, 55, 923–975.
[122] Soshnikov, A. 2002. A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices. J. Stat. Phys., 108, 1033–1056.
[123] Spitzer, F. 1970. Interaction of Markov processes. Adv. Math., 5, 246–290.
[124] Stanley, R. P. 1984. On the number of reduced decompositions of elements of Coxeter groups. Eur. J. Combin., 5, 359–372.
[125] Stanley, R. P. 1999. Enumerative Combinatorics, Vol. 2. Cambridge University Press.
[126] Stanley, R. P. 2007. Increasing and decreasing subsequences and their variants. Pages 545–579 of: Sanz-Solé, M., Soria, J., Varona, J. L., and Verdera, J. (eds), Proceedings of the International Congress of Mathematicians, Madrid 2006. American Mathematical Society.
[127] Stanley, R. P. 2011. Enumerative Combinatorics, Vol. 1. 2nd edition. Cambridge University Press.
[128] Steele, J. M. 1986. An Efron-Stein inequality for nonsymmetric statistics. Ann. Stat., 14, 753–758.
[129] Steele, J. M. 1995. Variations on the monotone subsequence theme of Erdős and Szekeres. Pages 111–131 of: Aldous, D., Diaconis, P., Spencer, J., and Steele, J. M. (eds), Discrete Probability and Algorithms. Springer.
[130] Szalay, M., and Turán, P. 1977. On some problems of statistical theory of partitions. I. Acta Math. Acad. Sci. Hungr., 29, 361–379.
[131] Szegő, G. 1975. Orthogonal Polynomials. 4th edition. American Mathematical Society.
[132] Talagrand, M. 1995. Concentration of measure and isoperimetric inequalities in product spaces. Publ. Math. Inst. Hautes Etud. Sci., 81, 73–205.
[133] Temperley, H. 1952. Statistical mechanics and the partition of numbers. The form of the crystal surfaces. Proc. Camb. Philos. Soc., 48, 683–697.
[134] Thrall, R. M. 1952. A combinatorial problem. Michigan Math. J., 1, 81–88.
[135] Titschmarsh, E. C. 1948. Introduction to the Theory of Fourier Integrals. 2nd edition. Clarendon Press.
[136] Tracy, C. A., and Widom, H. 1994. Level-spacing distributions and the Airy kernel. Commun. Math. Phys., 159, 151–174.
[137] Tracy, C. A., and Widom, H. 2009. Asymptotics in ASEP with step initial condition. Commun. Math. Physics, 290, 129–154.
[138] Ulam, S. 1961. Monte Carlo calculations in problems of mathematical physics. Pages 261–281 of: Beckenbach, E. F. (ed), Modern Mathematics For the Engineer, Second Series. McGraw-Hill.
[139] Varadhan, S. R. S. 2008. Large deviations. Ann. Probab., 36, 397–419.
[140] Vershik, A., and Pavlov, D. 2009. Numerical experiments in problems of asymptotic representation theory. Zap. Nauchn. Sem., 373, 77–93. Translated in J. Math. Sci., 168:351–361, 2010.
[141] Vershik, A. M. 1996. Statistical mechanics of combinatorial partitions and their limit shapes. Funct. Anal. Appl., 30, 90–105.
[142] Vershik, A. M., and Kerov, S. V. 1977. Asymptotics of the Plancherel measure of the symmetric group and the limiting shape of Young tableaux. Soviet Math. Dokl., 18, 527–531.
[143] Vershik, A. M., and Kerov, S. V. 1985. The asymptotics of maximal and typical dimensions irreducible representations of the symmetric group. Funct. Anal. Appl., 19, 21–31.
[144] Wang, K. 2012. Random covariance matrices: universality of local statistics of eigenvalues up to the edge. Random Matrices: Theory Appl., 1, 1150005.
[145] Watson, G. N. 1995. A Treatise on the Theory of Bessel Functions. 2nd edition. Cambridge University Press.
[146] Wigner, E. 1960. The unreasonable effectiveness of mathematics in the natural sciences. Comm. Pure Appl. Math., 13, 1–14.
[147] Wishart, J. 1928. The generalised product moment distribution in samples from a normal multivariate population. Biometrika, 20A, 32–53.