Skip to main content Accessibility help
×
  • Cited by 2
  • Volume 2: Floer Homology and its Applications
  • Yong-Geun Oh, Pohang University of Science and Technology, Republic of Korea
Publisher:
Cambridge University Press
Online publication date:
September 2015
Print publication year:
2015
Online ISBN:
9781316271889

Book description

Published in two volumes, this is the first book to provide a thorough and systematic explanation of symplectic topology, and the analytical details and techniques used in applying the machinery arising from Floer theory as a whole. Volume 2 provides a comprehensive introduction to both Hamiltonian Floer theory and Lagrangian Floer theory, including many examples of their applications to various problems in symplectic topology. The first volume covered the basic materials of Hamiltonian dynamics and symplectic geometry and the analytic foundations of Gromov's pseudoholomorphic curve theory. Symplectic Topology and Floer Homology is a comprehensive resource suitable for experts and newcomers alike.

Reviews

'This volume completes a comprehensive introduction to symplectic topology and Floer theory.'

Hansjorg Geiges Source: Mathematical Reviews

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
[Aa91] Aarnes, J. F., Quasi-states and quasi-measures, Adv. Math. 86 (1991), 41–67.
[Ab08] Abouzaid, M., On the Fukaya categories of higher genus surfaces, Adv. Math. 217 (2008), no. 3, 1192–1235.
[Ab12] Abouzaid, M., Framed bordism and Lagrangian embeddings of exotic spheres, Ann. Math. (2) 175 (2012), no. 1, 71–185.
[Ab14] Abouzaid, M., Family Floer cohomology and mirror symmetry, preprint, arXiv:1404.2659.
[AbS10] Abouzaid, M., Seidel, P., An open string analogue of Viterbo functoriality, Geom. Topol. 14 (2010), 627–718.
[AMR88] Abraham, R., Marsden, J., Ratiu, T., Manifolds, Tensor Analysis, and Applications, 2nd edn., Applied Mathematical Sciences, 75. Springer-Verlag, New York, 1988.
[ADN59] Agmon, S., Douglas, A., Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, Commun. Pure Appl. Math. 12 (1959) 623–727.
[ADN64] Agmon, S., Douglas, A., Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, II, Commun. Pure Appl. Math. 17 (1964), 35–92.
[AF08] Albers, P., Frauenfelder, U., A nondisplaceable Lagrangian torus in T*S 2, Commun. Pure Appl. Math. 61 (2008), no. 8, 1046–1051.
[AS53] Ambrose, W., Singer, I. M., A theorem on holonomy, Trans. Amer. Math. Soc. 75 (1953), 428–443.
[Ar65] Arnol'd, V. I., Sur une propriété topologique des applications globalement canoniques de la mécanique classique, C. R. Acad. Sci. Paris 261 (1965), 3719–3722.
[Ar67] Arnol'd, V. I., On a characteristic class entering the quantizations. Funct. Anal. Appl. 1 (1967), 1–14.
[Ar89] Arnol'd, V. I., Mathematical Methods of Classical Mechanics, GTM 60, 2nd edn., Springer-Verlag, New York, 1989.
[Aro57] Aronszajn, N., A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl. 36 (1957), 235–249.
[APS75] Atiyah, M. F., Patodi, V. K., Singer, I. M., Spectral asymmetry and Riemannian geometry. II, Math. Proc. Cambridge Philos. Soc. 78 (1975), no. 3, 405–432.
[Au88] Audin, M., Fibrés normaux d'immersions en dimension double, points doubles d'immersions lagrangiennes et plongements totalement réels, Comment. Math. Helv. 63 (1988), 593–623.
[AD14] Audin, M., Damian, M., Morse Theory and Floer Homology, Translated from the 2010 French original Théorie de Morse et Homologie de Floer by Reinie Ern. Universitext. Springer, London; EDP Sciences, Les Ulis, 2014.
[Ba78] Banyaga, A., Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique, Comment Math. Helv. 53 (1978), 174–227.
[Be97] Behrend, K., Gromov–Witten invariants in algebraic geometry. Invent. Math. 127 (1997), no. 3, 601–617.
[BF97] Behrend, K., Fantechi, B., The intrinsic normal cone, Invent. Math. 128 (1997), no. 1, 45–88.
[Bn82] Benci, V., On critical point theory for indefinite functionals in the presence of symmetries, Trans. Amer. Math. Soc. 274 (1982), 533–572.
[BnR79] Benci, V., Rabinowitz, P., Critical point theorems for indefinite functionals, Invent. Math. 52 (1979), 241–273.
[BzC95] Betz, M., Cohen, R., Graph moduli spaces and cohomology operations, Turkish J. Math. 18 (1995), 23–41.
[BP94] Bialy, M., Polterovich, L., Geodesics of Hofer's metric on the group of Hamiltonian diffeomorphisms, Duke Math. J. 76 (1994), 273–292.
[BCi02] Biran, P., Cieliebak, K., Lagrangian embeddings into subcritical Stein manifolds, Israel J. Math. 127 (2002), 221–244.
[BCo09] Biran, P., Cornea, O., Rigidity and uniruling for Lagrangian submanifolds, Geom. Topol. 13 (2009), 2881–2989.
[Bo54] Bott, R., Nondegenerate critical manifolds, Ann. Math. 60 (1954), 248–261.
[Bu10] Buhovsky, L., The Maslov class of Lagrangian tori and quantum products in Floer cohomology, J. Topol. Anal. 2 (2010), 57–75.
[BO13] Buhovsky, L., Ostrover, A., On the uniqueness of Hofer's geometry, Geom. Funct. Anal. 21 (2011), no. 6, 1296–1330.
[BS10] Buhovsky, L., Seyfaddini, S., Uniqueness of generating Hamiltonians for continuous Hamiltonian flows, J. Symplectic Geom. 11 (2013), no. 1, 37–52.
[C09] Calegari, D., scl (Stable Commutator Length), MSJ Memoirs, vol. 20, Mathematical Society of Japan, 2009.
[Ch84] Chaperon, M., Une idée du type “géodésiques brisées” pour les systèmes of hamiltoniens, C. R. Acad. Sci. Paris Série I Math. 298 (1984), no. 13, 293–296.
[Che94] Chekanov, Yu. V., Hofer's symplectic energy and Lagrangian intersections, Contact and Symplectic Geometry (Cambridge, 1994), 296–306, Publications of the Newton Institute, 8, Cambridge University Press, Cambridge, 1996.
[Che96a] Chekanov, Yu. V., Critical points of quasifunctions, and generating families of Legendrian manifolds (in Russian), Funktsional. Anal. i Prilozhen. 30 (1996), no. 2, 56–69, 96; translation in Funct. Anal. Appl. 30 (1996), no. 2, 118–128.
[Che96b] Chekanov, Yu. V., Lagrangian tori in a symplectic vector space and global symplectomorphisms, Math. Z. 223 (1996), 547–559.
[Che98] Chekanov, Yu. V., Lagrangian intersections, symplectic energy, and areas of holomorphic curves, Duke Math. J. 95 (1998), 213–226.
[Che00] Chekanov, Yu. V., Invariant Finsler metrics on the space of Lagrangian embeddings, Math. Z. 234 (2000), 605–619.
[CS10] Chekanov, Yu. V., Schlenk, F., Notes on monotone Lagrangian twist tori, Electron. Res. Announc. Math. Sci. 17 (2010), 104–121.
[Chen73] Chen, K. T., Iterated integrals of differential forms and loop space homology, Ann. Math. 97 (1973), 217–246.
[Cher55] Chern, S. S., An elementary proof of the existence of isothermal parameters on a surface, Proc. Amer. Math. Soc. 6 (1955), 771–782.
[Cher67] Chern, S. S., Complex Manifolds without Potential Theory, Van NostrandMathematical Studies, No. 15 D. Van Nostrand Co., Inc., Princeton, NJ, 1967.
[Cho08] Cho, C.-H., Counting real J-holomorphic discs and spheres in dimension four and six, J. Korean Math. Soc. 45 (2008), no. 5, 1427–1442.
[CO06] Cho, C.-H., Oh, Y.-G., Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds, Asian J. Math. 10 (2006), 773–814.
[Co78] Conley, C., Isolated Invariant Sets and theMorse Index, CBMS Regional Conference Series in Mathematics, 38. American Mathematical Society, Providence, RI, 1978.
[CZ83] Conley, C., Zehnder, E., The Birkhoff–Lewis fixed point theorem and a conjecture of V. I. Arnold, Invent. Math. 73 (1983), 33–49.
[CZ84] Conley, C., Zehnder, E., Morse-type index theory for flows and periodic solutions of Hamiltonian equations, Commun. Pure Appl. Math. 37 (1984), 207–253.
[Cr99] Crainic, M., Cyclic cohomology of étale groupoids: the general case, K-Theory 17 (1999), 319–362.
[D09] Damian, M., Constraints on exact Lagrangians in cotangent bundles of manifolds fibered over the circle, Comment. Math. Helv. 84 (2009), 705–746.
[DM69] Deligne, P., Mumford, D., The irreducibility of the space of curves of given genus, IHES Publ. Math. 36 (1969), 75–109.
[Di58] Dirac, P., The Principles of Quantum Mechanics, 4th edn., Oxford University Press, Oxford, 1958.
[Do86] Donaldson, S. K., Connections, cohomology and the intersection forms of 4-manifolds, J. Diff. Geom. 24 (1986), 275–341.
[EL51] Ehresmann, C., Libermann, P., Sur les structures presque hermitiennes isotropes, C. R. Acad. Sci. Paris 232 (1951), 1281–1283.
[EkH89] Ekeland, I., Hofer, H., Symplectic topology and Hamiltonian dynamics, Math. Z. 200 (1989), 355–378.
[EkH90] Ekeland, I., Hofer, H., Symplectic topology and Hamiltonian dynamics II, Math. Z. 203 (1990), 553–567.
[El87] Eliashberg, Y., A theorem on the structure of wave fronts and its application in symplectic topology (in Russian), Funktsional. Anal. i Prilozhen. 21 (1987), no. 3, 65–72, 96.
[EG91] Eliashberg, Y., Gromov, M., Convex symplectic manifolds, in Several Complex Variables and Complex Geometry (Santa Cruz, CA 1989), Proc. Sympos. Pure Math. 52 Part 2. Amer. Math. Soc., Providence, RI (1991), 135–162.
[EP97] Eliashberg, Y., Polterovich, L., The problem of Lagrangian knots in fourmanifolds, Geometric Topology (Athens, GA, 1993), 313–327, AMS/IP Stud. Adv. Math., 2.1. American Mathematical Society, Providence, RI, 1997.
[EP10] Eliashberg, Y., Polterovich, L., Symplectic quasi-states on the quadric surface and Lagrangian submanifolds, arXiv:1006.2501.
[En00] Entov, M., K-area, Hofer metric and geometry of conjugacy classes in Lie groups, Invent. Math. 146 (2000), 93–141.
[En04] Entov, M., Commutator length of symplectomorphisms, Comment.Math. Helv. 79 (2004), 58–104.
[EnP03] Entov, M., Polterovich, L., Calabi quasimorphism and quantum homology, Internat. Math. Res. Notices no. 30 (2003), 1635–1676.
[EnP06] Entov, M., Polterovich, L., Quasi-states and symplectic intersections, Comment. Math. Helv. 81 (2006), 75–99.
[EnP09] Entov, M., Polterovich, L., Rigid subsets of symplectic manifolds, Compositio Math. 145 (2009), 773–826.
[Ev98] Evans, L., Partial Differential Equations. American Mathematical Society, Providence, RI, 1998.
[Fa05] Fathi, A., Weak KAM Theorem in Lagrangian Dynamics, book manuscript, 7th preliminary version, 2005 (available online).
[Fe69] Federer, H., Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften 153. Berlin: Springer, 1969.
[Fl87] Floer, A., Morse theory for fixed points of symplectic diffeomorphisms, Bull. Amer. Math. Soc. (N.S.) 16 (1987), no. 2, 279–281.
[Fl88a] Floer, A., The unregularized gradient flow of the symplectic action, Commun. Pure Appl. Math. 43 (1988), 576–611.
[Fl88b] Floer, A., Morse theory for Lagrangian intersections, J. Diff. Geom. 28 (1988), 513–547.
[Fl88c] Floer, A., An instanton-invariant for 3-manifolds, Commun. Math. Phys. 118 (1988), no. 2, 215–240.
[Fl89a] Floer, A., Witten's complex and infinite-dimensional Morse theory, J. Diff. Geom. 30 (1989), 207–221.
[Fl89b] Floer, A., Symplectic fixed points and holomorphic spheres, Commun. Math. Phys. 120 (1989), 575–611.
[FH93] Floer, A., Hofer, H., Coherent orientations for periodic orbit problems in symplectic geometry, Math. Z. 212 (1993), 13–38.
[FHS95] Floer, A., Hofer, H., Salamon, D., Transversality in elliptic Morse theory for the symplectic action, Duke Math. J. 80 (1995), 251–292.
[Fol99] Folland, G., Real Analysis, 2nd edn., Wiley Interscience, New York, 1999.
[FU84] Freed, D., Uhlenbeck, K., Instantons and Four-Manifolds, Mathematical Sciences Research Institute Publications, 1. Springer, New York, 1984.
[Fu93] Fukaya, K., Morse homotopy, A∞-category, and Floer homologies, Proceedings of GARC Workshop on Geometry and Topology ’93 (Seoul, 1993), 1–102, Lecture Notes Series, 18. Seoul National University, Seoul, 1993.
[Fu06] Fukaya, K., Application of Floer homology of Langrangian submanifolds to symplectic topology, in Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology, 231–276, NATO Sci. Ser. II Math. Phys. Chem., 217. Springer, Dordrecht, 2006.
[FOh97] Fukaya, K., Oh, Y.-G., Zero-loop open strings in the cotangent bundle and Morse homotopy, Asian J. Math. 1 (1997), 96–180.
[FOOO07] Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K., Lagrangian surgery and metamorphosis of pseudo-holomorphic polygons, preprint, 2007; available at http://www.math.wisc.edu/oh/Chapter10071117.pdf.
[FOOO09] Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K., Lagrangian Intersection Floer Theory: Anomaly and Obstruction, AMS/IP Studies in Advanced Mathematics, vol. 46. American Mathematical Society/International Press, 2009.
[FOOO10a] Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K., Anchored Lagrangian submanifolds and their Floer theory, Mirror Symmetry and Tropical Geometry, 15–54, Contemporary Mathematical, vol. 527. American Mathematical Society, Providence, RI, 2010.
[FOOO10b] Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K., Lagrangian Floer theory on compact toric manifolds I, Duke Math. J. 151 (2010), 23–174.
[FOOO11a] Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K., Lagrangian Floer theory on compact toric manifolds II; Bulk deformations, Selecta Math. (N.S.) 17 (2011), no. 3, 609–711.
[FOOO11b] Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K., Spectral invariants with bulk, quasimorphisms and Lagrangian Floer theory, preprint 2011, arXiv:1105.5123.
[FOOO12a] Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K., Toric degeneration and nondisplaceable Lagrangian tori in S 2 × S 2, Internat. Math. Res. Notices, No. 13 (2012), 2942–2993.
[FOOO12b] Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K., Technical details on Kuranishi structure and virtual fundamental chain, preprint 2012, arXiv: 1209.4410.
[FOOO13] Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K., Displacement of polydisks and Lagrangian Floer theory, J. Symplectic Geom. 11 (2013), 1–38.
[FOn99] Fukaya, K., Ono, K., Arnold conjecture and Gromov–Witten invariants, Topology 38 (1999), 933–1048.
[FSS08] Fukaya, K., Seidel, P., Smith, I., Exact Lagrangian submanifolds in simply-connected cotangent bundles, Invent. Math. 172 (2008), 1–27.
[GG97] Gambaudo, J.-M., Ghys, É., Enlacements asymptotiques, Topology 36 (1997), 1355–1379.
[GG04] Gambaudo, J.-M., Ghys, É., Commutators and diffeomorphisms of surfaces, Ergod. Theory Dynam. Syst. 24 (2004), 1591–1617.
[Ga97] Gauduchon, P., Hermitian connection and Dirac operators, Boll. Unione Mat. Ital. B (7) 11 (1997), suppl. 2, 257–288.
[GS68] Gelfand, I.M., Shilov, G.E., Generalized Functions, vol. 2. Academic Press, New York, 1968.
[Geo13] Georgieva, P., The orientability problem in open Gromov–Witten theory, Geom. Topol. 17 (2013), no. 4, 2485–2512.
[GJP91] Getzler, E., Jones, D. S., Petrack, S., Differential forms on loop spaces and the cyclic bar complex, Topology 30 (1991), 339–371.
[GT77] Gilbarg, D., Trudinger, N., Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, vol. 224. Springer, Berlin, 1977.
[Go80] Goldstein, H., Classical Mechanics, 2nd edn., Addison-Wesley Series in Physics. Addison-Wesley Publishing Co., Reading, MA, 1980.
[Gh06] Ghys, É., Knots and dynamics, Proceedings of ICM-2006 vol. 1, 247–277, Madrid, EMS, 2006.
[Gom95] Gompf, R., A new construction for symplectic 4-manifolds, Ann. Math. 142 (1995), 527–595.
[Gom98] Gompf, R.Symplectically aspherical manifolds with nontrivial π2, Math. Res. Lett. 5 (1998), 599–603.
[GLSW83] Gotay, M., Lashof, R., Śniatycki, J., Weinstein, A., Closed forms on symplectic fibre bundles, Comment. Math. Helv. 58 (1983), no. 4, 617–621.
[Gr85] Gromov, M., Pseudo-holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307–347.
[Gr88] Gromov, M., Metric Structures for Riemannian and Non-Riemannian spaces, Progress inMathematics, vol. 152. Birkäuser, Boston, MA, 1998.
[Gr96] Gromov, M., Positive curvature, macroscopic dimension, spectral gaps and higher signatures, Functional Analysis on the Eve of the 21st Century, Vol. II (New Brunswick, NJ, 1993), 1–213, Progress in Mathematics, vol. 132. Birkhäuser, Boston, MA, 1996.
[GrSi03] Gross, M., Siebert, B., Affine manifolds, log structures, and mirror symmetry, Turkish J. Math. 27 (2003), 33–60.
[GLS96] Guillemin, V., Lerman, E., Sternberg, S., Symplectic Fibrations and Multiplicity Diagrams. Cambridge University Press, Cambridge, 1996.
[GS77] Guillemin, V., Sternberg, S., Geometric Asymptotics, Mathematical Surveys, No. 14. American Mathematical Society, Providence, RI, 1977.
[He78] Helgason, S., Differential Geometry, Lie Groups, and Symmetric Spaces, Pure and AppliedMathematics, vol. 80. Academic Press, Inc., New York, 1978.
[HM04] Henriques, A.,Metzler, S., Presentations of noneffective orbifolds, Trans. Amer. Math. Soc. 356 (2004), 2481–2499.
[Hi99] Hitchin, N., Lectures on special Lagrangian submanifolds, Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds (Cambridge, MA, 1999), 151–182, AMS/IP Stud. Adv. Math., 23. American Mathematical Society, Providence, RI, 2001.
[H85] Hofer, H., Lagrangian embeddings and critical point theory. Ann. Inst. H. Poincaré, Anal. Non Linéaire, 2 (1985), 407–462.
[H90] Hofer, H., On the topological properties of symplectic maps, Proc. Royal Soc. Edinburgh 115 (1990), 25–38.
[H93] Hofer, H., Estimates for the energy of a symplectic map, Comment.Math. Helv. 68 (1993), 48–72.
[H08] Hofer, H., Polyfolds and a general Fredholm theory, preprint, arXiv:0809.3753.
[HS95] Hofer, H., Salamon, D., Floer homology and Novikov rings, in The Floer Memorial Volume, Progress in Mathematics, 133. Birkhaüser, Basel, 1995, pp. 483–524.
[HWZ02] Hofer, H.,Wysocki, K., Zehnder, E., Finite energy cylinder of small area, Ergod. Theory Dynam. Syst. 22 (2002), 1451–1486.
[HWZ07] Hofer, H., Wysocki, K., Zehnder, E., A general Fredholm theory, I: A splicing-based differential geometry, J. Eur.Math. Soc. (JEMS) 9 (2007), 841–876.
[HZ94] Hofer, H., Zehnder, E., Symplectic Invariants and Hamiltonian Dynamics. Birkhäuser, Basel, 1994.
[Hor71] Hörmander, L., Fourier integral operators. I, Acta Math. 127 (1971), 79–183.
[KL01] Katz, S., Liu, C. M., Enumerative geometry of stable maps with Lagrangian boundary conditions and multiple covers of the disc, Adv. Theor. Math. Phys. 5 (2001), no. 1, 1–49.
[KL03] Kerman, E., Lalonde, F., Length minimizing Hamiltonian paths for symplectically aspherical manifolds, Ann. Inst. Fourier, 53 (2003), 1503–1526.
[Ko03] Kobayashi, S., Natural connections in almost complex manifolds, Explorations in Complex and Riemannian Geometry, 153–169, Contemporary Mathematics, 332. American Mathematical Society, Providence, RI, 2003.
[KN96] Kobayashi, S., Nomizu, K., Foundations of Differential Geometry, vol. 2, John Wiley & Sons, New York, 1996, Wiley Classics Library Edition.
[Kon95] Kontsevich, M., Enumeration of rational curves via torus actions, in The Moduli Space of Curves, Progress in Mathematics 129, pp. 335–368. Birkhäuser, Basel, 1995.
[Kon03] Kontsevich, M., Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66 (2003), 157–216.
[Kor16] Korn, A., Zwei Anwendungen der Methode der sukzessiven Annäherungen. Schwarz Abhandlungen (1916), 215–219.
[KM07] Kronheimer, P., Mrowka, T., Monopoles and Three-Manifolds. New Mathematical Monographs, 10. Cambridge University Press, Cambridge, 2007.
[KO00] Kwon, D., Oh, Y.-G., Structure of the image of (pseudo)-holomorphic discs with totally real boundary condition, Appendix 1 by Jean-Pierre Rosay. Commun. Anal. Geom. 8 (2000), no. 1, 31–82.
[L04] Lalonde, F., A field theory for symplectic fibrations over surfaces, Geom. Top. 8 (2004), 1189–1226.
[LM95a] Lalonde, F., McDuff, D., The geometry of symplectic energy, Ann. Math. 141 (1995), 349–371.
[LM95b] Lalonde, F., McDuff, D., Hofer's L∞-geometry: energy and stability of Hamiltonian flows I, II, Invent. Math. (1995), 1–33, 35–69.
[LMP98] Lalonde, F., McDuff, D., Polterovich, L., On the flux conjectures, Geometry, Topology, and Dynamics (Montreal, PQ, 1995), 69–85, CRM Proc. Lecture Notes, 15. American Mathematical Society, Providence, RI, 1998.
[La83] Lang, S., Real Analysis, 2nd edn. Addison-Wesley Publishing Company, Reading, MA, 1983.
[La02] Lang, S., Introduction to Differentiable Manifolds, 2nd edn., Universitext. Springer, New York, 2002.
[Lat91] Latour, F., Transversales lagrangiennes, périodicité de Bott et formes généatrices pour une immersion lagrangienne dans un cotangent, Ann. Sci. École Norm. Sup. (4) 24 (1991), no. 1, 3–55.
[LS85] Laudenbach, F., Sikorav, J.-C., Persistence of intersection with the zero section during a Hamiltonian isotopy into a cotangent bundle, Invent. Math. 82 (1985), no. 2, 349–357
[Law80] Lawson, H. B., Lectures on Minimal Submanifolds. Publish or Perish, Berkeley, CA, 1980.
[Laz00] Lazzarini, L., Existence of a somewhere injective pseudo-holomorphic disc, Geom. Funct. Anal. 10 (2000), no. 4, 829–862.
[LO96] Le, H. V., Ono, K., Perturbation of pseudo-holomorphic curves, Addendum to: “Notes on symplectic 4-manifolds with b+2 = 1, II”, Internat. J. Math. 7 (1996), no. 6, 755–770 by H. Ohta and Ono, Internat. J. Math. 7 (1996), no. 6, 771–774.
[LiT98] Li, J., Tian, G., Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998), no. 1, 119–174.
[Li16] Lichtenstein, L., Zur Theorie der konformen Abbildung, Bull. Internat. Acad. Sci. Cracovie. Cl. Sci. Math. Nat. Série A. (1916), 192–217.
[LT98] Liu, G., Tian, G., Floer homology and Arnold conjecture, J. Diff. Geom. 49 (1998), 1–74.
[LT99] Liu, G., Tian, G., On the equivalence of multiplicative structures in Floer homology and quantum homology, Acta Math. Sinica 15 (1999), 53–80.
[L02] Liu, M. C., Moduli of J-holomorphic curves with Lagrangian boundary coniditions and open Gromov–Witten invariants for an S 1-equivariant pair, preprint, 2002, arXiv:math/0210257.
[LM85] Lockhard, R., McOwen, R., Elliptic differential operators on noncompact manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12 (1985), no. 3, 409–447.
[LuG96] Lu, Guangcun, The Weinstein conjecture on some symplectic manifolds containing holomorphic spheres, Kyushu J. Math. 50 (1996), 331–351.
[MW74] Marsden, J., Weinstein, A., Reduction of symplectic manifolds with symmetry, Rep. Math. Phys. 5 (1974), 121–130.
[McC85] McCleary, J., User's Guide to Spectral Sequences, Mathematics Lecture Series 12. Publish or Perish, Wilmington, DE, 1985.
[Mc87] McDuff, D., Examples of symplectic structures, Invent. Math. 89 (1987), 13–36.
[Mc90] McDuff, D., The structure of rational and ruled symplectic 4-manifolds, J. Amer. Math. Soc. 3 (1990), no. 3, 679–712.
[MSa94] McDuff, D., Salamon, D., Introduction to Symplectic Topology. Oxford University Press, Oxford, 1994.
[MSa04] McDuff, D., Salamon, D., J-holomorphic Curves and Symplectic Topology. AMS, Providence, RI, 2004.
[MSl01] McDuff, D., Slimowitz, J., Hofer–Zehnder capacity and length minimizing Hamiltonian paths, Geom. Topol. 5 (2001), 799–830.
[Mi99] Milinković, D., Morse homology for generating functions of Lagrangian submanifolds, Trans. Amer. Math. Soc. 351 (1999), 3953–3974.
[Mi00] Milinković, D., On equivalence of two constructions of invariants of Lagrangian submanifolds, Pacific J. Math. 195 (2000), no. 2, 371–415.
[MiO95] Milinković, D., Oh, Y.-G., Generating functions versus action functional: Stable Morse theory versus Floer theory, Geometry, Topology, and Dynamics (Montreal, PQ, 1995), 107–125, CRM Proc. Lecture Notes, 15.
[MiO97] Milinković, D., Oh, Y.-G., Floer homology as the stable Morse homology, J. Korean Math. Soc. 34 (1997), 1065–1087.
[Mil65] Milnor, J., Lectures on the H-cobordism Theorem, Notes by L., Siebenmann and J., Sondow. Princeton University Press, Princeton, NJ, 1965.
[MSt74] Milnor, J., Stasheff, J., Characteristic Classes, Ann. Math. Studies. Princeton University Press, Princeton, NJ, 1974.
[MVZ12] Monzner, A., Vichery, N, Zapolsky, F., Partial quasimorphisms and take to next line quasistates on cotangent bundles, and symplectic homogenization, J. Mod. Dyn. 6 (2012), no. 2, 205–249.
[Mo66] Morrey, C. B., Multiple Integrals in the Calculus of Variations. Springer, New York, 1966.
[Mo65] Moser, J., Volume elements on manifolds, Trans. Amer. Math. Soc. 120 (1965), 286–294.
[MFK94] Mumford, D., Fogarty, J., Kirwan, F., Geometric Invariant Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2), 34, 3rd edn. Springer, Berlin, 1994.
[Mue08] Müller, S., The group of Hamiltonian homeomorphisms in the L∞-norm, J. Korean Math. Soc. 45 (2008), No. 6, 1769–1784.
[MT09] Mundet i Riera, I., Tian, G., A compactification of the moduli space of twisted holomorphic maps, Adv. Math. 222 (2009), 1117–1196.
[Na09] Nadler, D., Microlocal branes are constructible sheaves, Selecta Math. (N.S.) 15 (2009), 563–619.
[NaZ09] Nadler, D., Zaslow, E., Constructible sheaves and the Fukaya category, J. Amer. Math. Soc. 22 (2009), 233–286.
[Nas56] Nash, J., The imbedding problem for Riemannian manifolds, Ann. Math. (2) 63 (1956), 20–63.
[NiW63] Nijenhuis, A., Wolf, W., Some integration problems in almost-complex and complex manifolds, Ann. Math. 77 (1963), 424–489.
[No81] Novikov, S. P., Multivalued functions and functionals. An analogue of the Morse theory (in Russian), Dokl. Akad. Nauk SSSR 260 (1981), no. 1, 31–35.
[No82] Novikov, S. P., The Hamiltonian formalism and a multivalued analogue of Morse theory (in Russian), Uspekhi Mat. Nauk 37 (1982), no. 5(227), 3–49, 248.
[Oh92] Oh, Y.-G., Removal of boundary singularities of pseudo-holomorphic curves with Lagrangian boundary conditions, Commun. Pure Appl. Math. 45 (1992), 121–139.
[Oh93a] Oh, Y.-G., Floer cohomology of Lagrangian intersections and pseudoholomorphic disks. I, Commun. Pure Appl. Math. 46 (1993), 949–993.
[Oh93b] Oh, Y.-G., Floer cohomology of Lagrangian intersections and pseudoholomorphic disks. II; (ℂPn,ℝPn), Commun. Pure Appl. Math. 46 (1993), 995–1012.
[Oh95a] Oh, Y.-G., Addendum to: “Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I”, Commun. Pure Appl. Math. 48 (1995), no. 11, 1299–1302,
[Oh95b] Oh, Y.-G., Riemann–Hilbert problem and application to the perturbation theory of analytic discs, Kyungpook Math. J. 35 (1995), 39–75.
[Oh96a] Oh, Y.-G., Fredholm theory of holomorphic discs under the perturbation of boundary conditions, Math. Z. 222 (1996), 505–520.
[Oh96b] Oh, Y.-G., Floer cohomology, spectral sequences, and the Maslov class of Lagrangian embeddings, Internat. Math. Res. Notices no. 7 (1996), 305–346.
[Oh96c] Oh, Y.-G., Relative Floer and quantum cohomology and the symplectic topology of Lagrangian submanifolds, in Contact and Symplectic Geometry (Cambridge, 1994), 201–267, Publications of the Newton Institute, 8. Cambridge University Press, Cambridge, 1996.
[Oh97a] Oh, Y.-G., On the structure of pseduo-holomorphic discs with totally real boundary conditions, J. Geom. Anal. 7 (1997), 305–327.
[Oh97b] Oh, Y.-G., Symplectic topology as the geometry of action functional, I, J. Diff. Geom. 46 (1997), 499–577.
[Oh97c] Oh, Y.-G., Gromov–Floer theory and disjunction energy of compact Lagrangian embeddings, Math. Res. Lett. 4 (1997), 895–905.
[Oh99] Oh, Y.-G., Symplectic topology as the geometry of action functional, II, Commun. Anal. Geom. 7 (1999), 1–55.
[Oh02] Oh, Y.-G., Chain level Floer theory and Hofer's geometry of the Hamiltonian diffeomorphism group, Asian J. Math. 6 (2002), 579–624; Erratum 7 (2003), 447–448.
[Oh05a] Oh, Y.-G., Normalization of the Hamiltonian and the action spectrum, J. Korean Math. Soc. 42 (2005), 65–83.
[Oh05b] Oh, Y.-G., Spectral invariants and length minimizing property of Hamiltonian paths, Asian J. Math. 9 (2005), 1–18.
[Oh05c] Oh, Y.-G., Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds, in The Breadth of Symplectic and Poisson Geometry: Festschrift in Honor of Alan Weinstein, Progress in Mathematics 232, 525–570. Birkhäuser, Boston, MA, 2005.
[Oh05d] Oh, Y.-G., Spectral invariants, analysis of the Floer moduli space and geometry of Hamiltonian diffeomorphisms, Duke Math. J. 130 (2005), 199–295.
[Oh06a] Oh, Y.-G., Lectures on Floer theory and spectral invariants of Hamiltonian flows, in Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology, 321–416, NATO Sci. Ser. II Math. Phys. Chem., 217. Springer, Dordrecht, 2006.
[Oh06b] Oh, Y.-G., C0-coerciveness of Moser's problem and smoothing area preserving homeomorphisms, preprint; arXiv:math/0601183.
[Oh07] Oh, Y.-G., Locality of continuous Hamiltonian flows and Lagrangian intersections with the conormal of open subsets, J. Gökova Geom. Top. 1 (2007), 1–32.
[Oh09a] Oh, Y.-G., Floer mini-max theory, the Cerf diagram, and the spectral invariants, J. Korean Math. Soc. 46 (2009), 363–447.
[Oh09b] Oh, Y.-G., Unwrapped continuation invariance in Lagrangian Floer theory: energy and C0 estimates, preprint 2009, arXiv:0910.1131.
[Oh10] Oh, Y.-G., The group of Hamiltonian homeomorphisms and continuous Hamiltonian flows, in Symplectic Topology and Measure Preserving Dynamical Systems, 149–177, Contemporary Mathematics, 512. American Mathematical Society, Providence, RI, 2010.
[Oh11a] Oh, Y.-G., Higher jet evaluation transversality of J-holomorphic curves, J. Korean Math. Soc. 48 (2011), no. 2, 341–365.
[Oh11b] Oh, Y.-G., Localization of Floer homology of engulfable topological Hamiltonian loops, Commun. Info. Syst. 13 (2013), no. 4, 399–443 in a special volume in honor of Marshall Slemrod's 70th birthday.
[OhM07] Oh, Y.-G., Müller, S., The group of Hamiltonian homeomorphisms and C0-symplectic topology, J. Symplectic Geom. 5 (2007), 167–219.
[OhP05] Oh, Y.-G., Park, J. S., Deformations of coisotropic submanifolds and strong homotopy Lie algebroids, Invent. Math. 161 (2005), 287–360.
[OhW12] Oh, Y.-G., Wang, R., Canonical connection and contact Cauchy–Riemann maps on contact manifolds I. preprint 2012, arXiv:1215.5186.
[OhZ09] Oh, Y.-G., Zhu, K., Embedding property of J-holomorphic curves in Calabi–Yau manifolds for generic J, Asian J. Math. 13 (2009), 323–340.
[OhZ11a] Oh, Y.-G., Zhu, K., Thick–thin decomposition of Floer trajectories and adiabatic gluing, preprint, 2011, arXiv:1103.3525.
[OhZ11b] Oh, Y.-G., Zhu, K., Floer trajectories with immersed nodes and scaledependent gluing, J. Symplectic Geom. 9 (2011), 483–636.
[On95] Ono, K., On the Arnold conjecture for weakly monotone symplectic manifolds, Invent. Math. 119 (1995), no. 3, 519–537.
[On06] Ono, K., Floer–Novikov cohomology and the flux conjecture, Geom. Funct. Anal. 16 (2006), 981–1020.
[Os03] Ostrover, Y., A comparison of Hofer's metrics on Hamiltonian diffeomorphisms and Lagrangian submanifolds, Commun. Contemp. Math. 5 (2003), 803–812.
[OW05] Ostrover, Y., Wagner, R., On the extremality of Hofer's metric on the group of Hamiltonian diffeomorphisms, Internat. Math. Res. Notices (2005), no. 35, 2123–2141.
[Pa94] Pansu, P., Compactness. Holomorphic curves in symplectic geometry, 233–249, Progress in Mathematics, 117. Birkhäuser, Basel, 1994.
[PW93] Parker, T., Wolfson, J., Pseudoholomorphic maps and bubble trees, J. Geom. Anal. 3 (1993), 63–98.
[Pe59] Peetre, J., Une caractérisation abstraite des opérateurs différentiels, Math. Scand. 7 (1959), 211–218; Rectifications, ibid. 8 (1960), 116–120.
[Pi94] Piunikhin, S., Quantum and Floer cohomology have the same ring structure, preprint 1994, arXiv:hep-th/9401130.
[PSS96] Piunikhin, S., Salamon, D., Schwarz, M., Symplectic Floer–Donaldson theory and quantum cohomology, Publications of the Newton Institute 8, ed. by Thomas, C. B., 171–200. Cambridge University Press, Cambridge, 1996.
[Po91a] Polterovich, L., The Maslov class of the Lagrange surfaces and Gromov's pseudo-holomorphic curves, Trans. Amer. Math. Soc. 325 (1991), 217–222.
[Po91b] Polterovich, L., The surgery of Lagrange submanifolds, Geom. Funct. Anal. 1 (1991), 198–210.
[Po93] Polterovich, L., Symplectic displacement energy for Lagrangian submanifolds, Ergod. Theory Dynam. Syst., 13 (1993), 357–367.
[Po96] Polterovich, L., Gromov's K-area and symplectic rigidity, Geom. Funct. Anal. 6 (1996), no. 4, 726–739.
[Po98a] Polterovich, L., Geometry on the group of Hamiltonian diffeomorphisms, Doc. Math. J. DMV, Extra Volume ICM 1998, Vol. II, pp 401–410.
[Po98b] Polterovich, L., Hofer's diameter and Lagrangian intersections, Internat. Math. Res. Notices, 1998 No. 4, 217–223.
[Po01] Polterovich, L., The Geometry of the Group of Symplectic Diffeomorphisms, Lectures in Mathematics ETH Zürich. Birkhäuser, Basel, 2001.
[Poz99] Poźniak, M., Floer homology, Novikov rings and clean intersections, Northern California Symplectic Geometry Seminar, 119–181, Amer. Math. Soc. Transl. Ser. 2, 196. American Mathematical Society, Providence, RI, 1999.
[Ra78] Rabinowitz, P., Periodic solutions of Hamiltonian systems, Commun. Pure Appl. Math. 31 (1978), 157–184.
[RS93] Robbin, J., Salamon, D., The Maslov index for paths, Topology 32 (1993), 827–844.
[RS95] Robbin, J., Salamon, D., The spectral flow and the Maslov index, Bull. London Math. Soc. 27 (1995), 1–33.
[RS01] Robbin, J., Salamon, D., Asymptotic behaviour of holomorphic strips, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001), 573–612.
[RS06] Robbin, J., Salamon, D. A construction of the Deligne–Mumford orbifold, J. Eur. Math. Soc. (JEMS) 8 (2006), no. 4, 611–699; Corrigendum, ibid. 9 (2007), no. 4, 901–205.
[Ru96] Ruan, Y., Topological sigma model and Donaldson-type invariants in Gromov theory, Duke Math. J. 83 (1996), 461–500.
[Ru99] Ruan, Y., Virtual neighborhoods and pseudo-holomorphic curves, Proceedings of 6th Gökova Geometry–Topology Conference. Turkish J. Math. 23 (1999), 161–231.
[RT95a] Ruan, Y., Tian, G., A mathematical theory of quantum cohomology, J. Diff. Geom. 42 (1995), 259–367.
[RT95b] Ruan, Y., Tian, G., Bott-type symplectic Floer cohomology and its multiplication structures, Math. Res. Lett. 2 (1995), 203–219.
[Rud73] Rudin, W., Functional Analysis. McGraw-Hill Book Co., New York, 1973.
[SU81] Sacks, J., Uhlenbeck, K., The existence of minimal immersions of 2 spheres, Ann. Math. 113 (1981), 1–24.
[SZ92] Salamon, D., Zehnder, E., Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Commun. Pure Appl. Math. 45 (1992), 1303–1360.
[Sc84] Schoen, R., Analytic aspects of the harmonic map problem, in Lectures on Partial Differential Equations, S. S., Chern, ed. Springer, Berlin, 1984.
[ScU83] Schoen, R., Uhlenbeck, K., Boundary regularity and the Dirichlet problem for harmonic maps, J. Diff. Geom. 18 (1983), 253–268.
[Sch06] Schlenk, F., Applications of Hofer's geometry to Hamiltonian dynamics, Comment. Math. Helv. 81 (2006), no. 1, 105–121.
[Schw93] Schwarz, M., Morse Homology, Progress in Mathematics, 111. Birkhäuser, Basel, 1993.
[Schw95] Schwarz, M., Thesis, ETH Zürich, 1995.
[Schw00] Schwarz, M., On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math. 193 (2000), 419–461.
[SS88] Seeley, R., Singer, I. M., Extending ∂ to singular Riemann surfaces, J. Geom. Phys. 5 (1988), 121–136.
[Se97] Seidel, P., π1 of symplectic automorphism groups and invertibles in quantum homology rings, Geom. Funct. Anal. 7 (1997), 1046–1095.
[Se03a] Seidel, P., A long exact sequence for symplectic Floer homology, Topology 42 (2003), 1003–1064.
[Se03b] Seidel, P., Homological mirror symmetry for the quartic surface, preprint 2003, math.SG/0310414.
[Se06] Seidel, P., A biased view of symplectic cohomology, Current Developments in Mathematics, 2006, 211–253. International Press, Somerville, MA, 2008.
[Se08] Seidel, P., Fukaya Categories and Picard–Lefshetz Theory, Zürich Lectures in Advanced Mathematics. European Mathematical Society, Zurich, 2008.
[Sey13a] Seyfaddini, S., C0-limits of Hamiltonian paths and the Oh–Schwarz spectral invariants, Int. Math. Res. Notices, 2013, no. 21, 4920–4960.
[Sey13b] Seyfaddini, S., The displaced disks problem via symplectic topology, C. R. Math. Acad. Sci. Paris 351 (2013), no. 21–22, 841–843.
[Sie99] Siebert, B., Symplectic Gromov–Witten invariants, in New Trends in Algebraic Geometry, ed. Catanese, P., Reid, L. M. S. Lecture Notes 264. Cambridge University Press, Cambridge, 1999, 375–424.
[Sik87] Sikorav, J. C., Problèmes d'intersections et de points fixes en géométrie hamiltonienne, Comment. Math. Helv. 62 (1987), 62–73.
[Sik94] Sikorav, J. C., Some properties of holomorphic curves in almost complex manifolds, Chapter V of Holomorphic Curves in Symplectic Geometry, ed. Audin, M. and Lafontaine, J. Birkhäuser, Basel, 1994.
[Sik07] Sikorav, J. C., Approximation of a volume-preserving homeomorphism by a volume-preserving diffeomorphism, preprint, September 2007; available from http://www.umpa.ens-lyon.fr/symplexe.
[Sil98] de Silva, V., Products in the symplectic Floer homology of Lagrangian intersections, Ph D thesis, University of Oxford (1998).
[Sm61] Smale, S., Generalized Poincaré's conjecture in dimensions greater than four, Ann. Math. 74 (1961), 391–406.
[Sm65] Smale, S., An infinite dimensional version of Sard's theorem, Amer. J. Math. 87 (1965), 861–866.
[Spa08] Spaeth, P., Length minimizing paths in the Hamiltonian diffeomorphism group, J. Symplectic Geom. 6 (2008), no. 2, 159–187.
[Spi79] Spivak, M., A Comprehensive Introduction to Differential Geometry. Vols. I & II, 2nd edn. Publish or Perish, Wilmington, DE, 1979.
[SYZ01] Strominger, A., Yau, S.-T., Zaslow, E., Mirror symmetry is T-duality, Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds (Cambridge, MA, 1999), 333–347, AMS/IP Stud. Adv. Math., 23. American Mathematical Society, Providence, RI, 2001.
[Ta82] Taubes, C., Self-dual Yang–Mills connections on non-self-dual 4-manifolds, J. Diff. Geom. 17 (1982), 139–170.
[Th99] Theret, D., A complete proof of Viterbo's uniqueness theorem on generating functions, Topology Appl. 96 (1999), 249–266.
[Tr94] Traynor, L., Symplectic homology via generating functions, Geom. Funct. Anal. 4 (1994), 718–748.
[Ush08] Usher, M., Spectral numbers in Floer theories, Compositio Math. 144 (2008), 1581–1592.
[Ush10a] Usher, M., The sharp energy–capacity inequality, Commun. Contemp. Math. 12 (2010), no. 3, 457–473.
[Ush10b] Usher, M., Duality in filtered Floer–Novikov complexes, J. Topol. Anal. 2 (2010), 233–258.
[Ush11] Usher, M., Boundary depth in Floer theory and its applications to Hamiltonian dynamics and coisotropic submanifolds, Israel J. Math. 184 (2011), 1–57.
[Ush12] Usher, M., Many closed symplectic manifolds have infinite Hofer–Zehnder capacity, Trans. Amer. Math. Soc. 364 (2012), no. 11, 5913–5943.
[Ush13] Usher, M., Hofer's metrics and boundary depth, Ann. Sci. École Norm. Supér. (4) 46 (2013), no. 1, 57–128.
[Ust96] Ustilovsky, I., Conjugate points on geodesics of Hofer's metric, Diff. Geom. Appl. 6 (1996), 327–342.
[Va92] Vafa, C., Topological mirrors and quantum rings, in Essays on Mirror Manifolds, ed. S. T., Yau. International Press, Hong Kong, 1992.
[Via13] Vianna, R., On exotic Lagrangian tori in ℂP2, Geom. Top. 18 (2014), no. 4, 2419–2476.
[Via14] Vianna, R., Infinitely many exotic monotone Lagrangian tori in ℂP2, preprint 2014, arXiv:1409.2850.
[Vi88] Viterbo, C., Indice de Morse des points critiques obtenus par minimax, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), 221–225.
[Vi90] Viterbo, C., A new obstruction to embedding Lagrangian tori, Invent. Math. 100 (1990), 301–320.
[Vi92] Viterbo, C., Symplectic topology as the geometry of generating functions, Math. Ann. 292 (1992), 685–710.
[Vi99] Viterbo, C., Functors and computations in Floer homology with applications, I, Geom. Funct. Anal. 9 (1999), 985–1033.
[Vi06] Viterbo, C., Uniqueness of generating Hamiltonians for continuous Hamiltonian flows, Internat. Math. Res. Notices vol. 2006, Article ID 34028, 9 pages; Erratum, ibid., vol. 2006, Article ID 38784, 4 pages.
[Wb94] Weibel, C., An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics 38. Cambridge University Press, Cambridge, 1994.
[Wn73] Weinstein, A., Lagrangian submanifolds and Hamiltonian systems, Ann. Math. (2) 98 (1973), 377–410.
[Wn78] Weinstein, A., Bifurcations and Hamilton's principle, Math. Z. 159 (1978), 235–248.
[Wn83] Weinstein, A., The local structure of Poisson manifolds, J. Diff. Geom. 18 (1983), 523–557.
[Wn87] Weistein, A., Graduate courses given during 1987–1988 at the University of California-Berkeley.
[Wn90] Weinstein, A., Connections of Berry and Hannay type for moving Lagrangian submanifolds, Adv. Math. 82 (1990), 133–159.
[WW10] Wehrheim, K., Woodward, C., Functoriality for Lagrangian correspondences in Floer theory, Quantum Topol. 1 (2010), no. 2, 129–170.
[Wi91] Witten, W., Two dimensional gravity and intersection theory on moduli spaces, Surv. Differ. Geom. 1 (1991), 243–310.
[Wu12] Wu, W.-W., On an exotic Lagrangian torus in CP2, preprint 2012, arXiv:1201-2446.
[Ye94] Ye, R, Gromov's compactness theorem for pseudo holomorphic curves, Trans. Amer. Math. Soc. 342 (1994), 671–694.
[Yo69] Yorke, J., Periods of periodic solutions and the Lipschitz constant, Proc. Amer. Math. Soc. 22 (1969), 509–512.
[Z93] Zwiebach, B., Closed string field theory: Quantum action and the Batalin–Vilkovisky master equation, Nucl. Phys. B 390 (1993), 33–152.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.