Skip to main content Accessibility help
×
  • Cited by 54
Publisher:
Cambridge University Press
Online publication date:
January 2010
Print publication year:
2008
Online ISBN:
9780511543203

Book description

As a partner to Volume 1: Dimensional Continuous Models, this monograph provides a self-contained introduction to algebro-geometric solutions of completely integrable, nonlinear, partial differential-difference equations, also known as soliton equations. The systems studied in this volume include the Toda lattice hierarchy, the Kac-van Moerbeke hierarchy, and the Ablowitz-Ladik hierarchy. An extensive treatment of the class of algebro-geometric solutions in the stationary as well as time-dependent contexts is provided. The theory presented includes trace formulas, algebro-geometric initial value problems, Baker-Akhiezer functions, and theta function representations of all relevant quantities involved. The book uses basic techniques from the theory of difference equations and spectral analysis, some elements of algebraic geometry and especially, the theory of compact Riemann surfaces. The presentation is constructive and rigorous, with ample background material provided in various appendices. Detailed notes for each chapter, together with an exhaustive bibliography, enhance understanding of the main results.

Reviews

Reviews of Volume 1:'… this is a book that I would recommend to any student of mine, for clarity and completeness of exposition … Any expert as well would enjoy the book and learn something stimulating from the sidenotes that point to alternative developments. We look forward to volumes two and three!'

Source: Mathematical Reviews

'The book is very well organized and carefully written. It could be particularly useful for analysts wanting to learn new methods coming from algebraic geometry.'

Source: EMS Newsletter

Review of Volume 2:'As with the first part, the book is very well written and carefully organised and it is a pleasure to read it.'

Source: EMS Newsletter

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.