[1] M., Abramowitz and I. A., Stegun. Handbook of Mathematical Functions. Dover, 1968.
[2] D. J., Acheson. Elementary Fluid Dynamics. Clarendon Press, 1990.
[3] M., Aguareles and I., Baldomà. Structure and Gevrey asymptotics of solutions representing topological defects to some partial differential equations. Nonlinearity, 24:2813, 2011.
[4] M., Aguareles, S. J., Chapman, and T., Witelski. Motion of spiral waves in the complex Ginzburg–Landau equation. Physica D, 239:348, 2010.
[5] S., Altschuler, S., Angenent, and Y., Giga. Mean curvature flow through singularities for surfaces of rotation. J. Geom. Anal., 5:293, 1995.
[6] S. B., Angenent and J. J. L., Velázquez. Degenerate neckpinches in mean curvature flow. J. Reine Angew. Math., 482:15, 1997.
[7] S. L., Anna and G. H., McKinley. Elasto-capillary thinning and breakup of model elastic liquids. J. Rheol., 45:115, 2001.
[8] V. I., Arnol'd. Mathematical Methods of Classical Mechanics, Second Edition. Springer, 1989.
[9] V. I., Arnol'd, V. A., Vasil'ev, V. V., Goryunov, and O. V., Lyashko. Singularity theory I: Local and global theory. In Dynamical Systems VI. Springer, 1993.
[10] V. I., Arnol'd, V. A., Vasil'ev, V. V., Goryunov, and O. V., Lyashko. Singularity theory II: Classification and applications. In Dynamical Syatems VIII. Springer, 1993.
[11] M., Arrayás, M. A., Fontelos, and J. L., Trueba. Ionization fronts in negative corona discharges. Phys. Rev. E, 71:037401, 2005.
[12] H., Ashley and M., Landahl. Aerodynamics of Wings and Bodies. Addison-Wesley, 1965.
[13] G. I., Barenblatt. On one class of the one-dimensional problem of non-stationary filtration of a gas in a porous medium. Prikl. Mat. i Mekh., 17:739, 1953.
[14] G. I., Barenblatt. Similarity, Self-Similarity and Intermediate Asymptotics. Cambridge University Press, 1996.
[15] G. I., Barenblatt and Y. B., Zel'dovich. Self-similar solutions as intermediate asymptotics. Ann. Rev. Fluid Mech., 4:285, 1972.
[16] O. A., Basaran. Small-scale free surface flows with breakup: drop formation and emerging applications. AICHE, 48:1842, 2002.
[17] G. K., Batchelor. An Introduction to Fluid Dynamics. Cambridge University Press, 1967.
[18] C. M., Bender and S. A., Orszag. Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill, 1978.
[19] A. J., Bernoff, A. L., Bertozzi, and T. P., Witelski. Axisymmetric surface diffusion: dynamics and stability of self-similar pinch-off. J. Stat. Phys., 93:725, 1998.
[20] M. V., Berry. Singularities in waves and rays. In R., Balian, M., Kleman, and J.-P., Poirier, editors, Les Houches, Session XXXV, pp. 453–543. North-Holland, 1981.
[21] M. V., Berry. Rays, wavefronts and phase: a picture book of cusps. In H., Blok, H. A., Ferwerda, and H. K., Kuiken, editors, Huygens’ Principle 1690–1990: Theory and Applications, pp. 97–111. Elsevier, 1992.
[22] M. V., Berry. Asymptotics, singularities and the reduction of theories. In D., Prawitz, B., Skyrms, and D., Westerståhl, editors, Proc. 9th Int. Cong. Logic, Method., and Phil. of Sci. IX, pp. 597–607. Elsevier, 1994.
[23] M. V., Berry and J., Goldberg. Renormalisation of curlicues. Nonlinearity, 1:1, 1988.
[24] S. I., Betelu and D. G., Aronson. Focusing of noncircular self-similar shock waves. Phys. Rev. Lett., 87:074501, 2001.
[25] F., Bethuel, H., Brezis, and F., Hélein. Ginzburg–Landau Vortices. Birkhäuser, 1994.
[26] S., Bianchini and A., Bressan. Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann. Math., 161:223, 2005.
[27] R. B., Bird, R. C., Armstrong, and O., Hassager. Dynamics of Polymeric Liquids, Volume I: Fluid Mechanics; Volume II: Kinetic Theory. Wiley, 1987.
[28] G., Birkhoff. Hydrodynamics: A Study in Logic, Fact, and Similitude. Princeton University Press, 1950.
[29] D., Bonn, J., Eggers, J., Indekeu, J., Meunier, and E., Rolley. Wetting and spreading. Rev. Mod. Phys., 81:739, 2009.
[30] A., Boudaoud and S., Chaïeb. Singular thin viscous sheet. Phys. Rev. E, 64:050601, 2001.
[31] M. P., Brenner. Droplet breakup and other problems involving surface tension driven flows. Ph.D. thesis, University of Chicago, 1994.
[32] M. P., Brenner and A. L., Bertozzi. Spreading of droplets on a solid surface. Phys. Rev. Lett., 71:593, 1993.
[33] M. P., Brenner, J., Eggers, K., Joseph, S. R., Nagel, and X. D., Shi. Breakdown of scaling in droplet fission at high Reynolds number. Phys. Fluids, 9:1573, 1997.
[34] M. P., Brenner, J. R., Lister, and H. A., Stone. Pinching threads, singularities and the number 0.0304. . . Phys. Fluids, 8:2827, 1996.
[35] M. P., Brenner, X. D., Shi, and S. R., Nagel. Iterated instabilities during droplet fission. Phys. Rev. Lett., 73:3391, 1994.
[36] J. W., Bruce and T. J., Gaffney. Simple singularities of mappings C, 0 → C2, 0. J. London Math. Soc., 26:465, 1982.
[37] J. M., Burgers. Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion. Kon. Ned. Akad. Wet., Verh. (Eerste Sectie), 17:1, 1939.
[38] J. C., Burton, J. E., Rutledge, and P., Taborek. Fluid pinch-off dynamics at nanometer length scales. Phys. Rev. Lett., 92:244505, 2004.
[39] J. C., Burton and P., Taborek. 2D inviscid pinch-off: an example of self-similarity of the second kind. Phys. Fluids, 19:102109, 2007.
[40] R. E., Caflisch, N., Ercolani, T. Y., Hou, and Y., Landis. Multi-valued solutions and branch point singularities for nonlinear hyperbolic and elliptic systems. Comm. Pure and Appl. Math., 46:453, 1993.
[41] R. E., Caflisch and O. F., Orellana. Singular solutions and ill-posedness for the evolution of vortex sheets. SIAM J. Math. Anal., 20:293, 1989.
[42] G. F., Carrier, M., Krook, and C. E., Pearson. Functions of a Complex Variable. McGraw-Hill, 1966.
[43] J. R., Castrejón-Pita, A. A., Castrejón-Pita, E. J., Hinch, J. R., Lister, and I. M., Hutchings. Self-similar breakup of near-inviscid liquids. Phys. Rev. E, 86:015301(R), 2012.
[44] A. U., Chen, P. K., Notz, and O. A., Basaran. Computational and experimental analysis of pinch-off and scaling. Phys. Rev. Lett., 88:174501, 2002.
[45] J.-D., Chen. Experiments on a spreading drop and its contact angle on a solid. J. Colloid Interf. Sci., 122:60, 1988.
[46] X., Chen, C. M., Elliott, and T., Qi. Shooting method for vortex solutions of a complex-valued Ginzburg–Landau equation. Proc. Roy. Soc. Edinburgh A, 124:1075, 1994.
[47] Y.-J., Chen and P. H., Steen. Dynamics of inviscid capillary breakup: collapse and pinchoff of a film bridge. J. Fluid Mech., 341:245, 1997.
[48] R. F., Chisnell. An analytic description of converging shock waves. J. Fluid Mech., 354:357, 1998.
[49] M.W., Choptuik. Universality and scaling in gravitational collapse of a massless scalar field. Phys. Rev. Lett., 70:9, 1993.
[50] A., Chorin and J. E., Marsden. A Mathematical Introduction to Fluid Mechanics. Springer, 2000.
[51] C., Clasen, J., Eggers, M. A., Fontelos, J., Li, and G. H., McKinley. The beads-onstring structure of viscoelastic jets. J. Fluid Mech., 556:283, 2006.
[52] I., Cohen, M. P., Brenner, J., Eggers, and S. R., Nagel. Two fluid drop snap-off problem: experiment and theory. Phys. Rev. Lett., 83:1147, 1999.
[53] P., Constantin, T. F., Dupont, R. E., Goldstein, L. P., Kadanoff, M. J., Shelley, and S.-M., Zhou. Droplet breakup in a model of the Hele-Shaw cell. Phys. Rev. E, 47:4169, 1993.
[54] S. D., Conte and C., De Boor. Elementary Numerical Analysis. McGraw Hill, 1965.
[55] S. Courrech du, Pont and J., Eggers. Sink flow deforms the interface between a viscous liquid and air into a tip singularity. Phys. Rev. Lett., 96:034501, 2006.
[56] V. F., Cowling and W. C., Royster. Domains of variability for univalent polynomials. Proc. Amer. Math. Soc., 19:767, 1968.
[57] R. F., Day, E. J., Hinch, and J. R., Lister. Self-similar capillary pinchoff of an inviscid fluid. Phys. Rev. Lett., 80:704, 1998.
[58] P.-G. de, Gennes, F., Brochart-Wyart, and D., Quéré. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer, 2003.
[59] F. de la, Hoz, M. A., Fontelos, and L., Vega. The effect of surface tension on the Moore singularity of vortex sheet dynamics. J. Nonlinear Sci., 18:463, 2008.
[60] W. R., Dean and P. E., Montagnon. On the steady motion of viscous liquid in a corner. Proc. Camb. Phil. Soc., 45:389, 1949.
[61] R. D., Deegan, O., Bakajin, T. F., Dupont, G., Huber, S. R., Nagel, and T. A., Witten. Contact line deposits in an evaporating drop. Phys. Rev. E, 62:756, 2000.
[62] M. P. do, Carmo. Differential Geometry of Curves and Surfaces. Prentice-Hall, 1976.
[63] P., Doshi, I., Cohen, W. W., Zhang, M., Siegel, P., Howell, O. A., Basaran et al. Persistence of memory in drop breakup: the breakdown of universality. Science, 302:1185, 2003.
[64] J. Douglas, Jr. and T. F., Dupont. Alternating-direction Galerkin methods on rectangles. In B., Hubbard, editor, Numerical Solution of Partial Differential Equations II, pp. 133–214. Academic Press, 1971.
[65] P. G., Drazin. Nonlinear Systems. Cambridge University Press, 1992.
[66] P. G., Drazin and W. H., Reid. Hydrodynamic Stability. Cambridge University Press, 1981.
[67] L., Duchemin and J., Eggers. The explicit–implicit–null method: removing the numerical instability of PDEs. J. Comp. Phys., 263:37, 2014.
[68] B. R., Duffy and S. K., Wilson. A third-order differential equation arising in thinfilm flows and relevant to Tanner's law. Appl. Math. Lett., 10:63, 1997.
[69] D. G., Duffy. Green's Functions with Applications. Chapman & Hall, 2001.
[70] C. R., Dun and G. C., Hocking. Withdrawal of fluid through a line sink beneath a free surface above a sloping boundary. J. Eng. Math., 29:1, 1995.
[71] H. E., Edgerton. Stopping Time: The Photographs of Harold Edgerton. Abrams, 1977.
[72] H., Effinger and S., Grossmann. Static structure function of turbulent flow from the Navier–Stokes equation. Z. Phys. B, 66:289, 1987.
[73] J., Eggers. Theory of drop formation. Phys. Fluids, 7:941, 1995.
[74] J., Eggers. Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys., 69:865, 1997.
[75] J., Eggers. Drop formation – an overview. ZAMM, 85:400, 2005.
[76] J., Eggers. Stability of a viscous pinching thread. Phys. Fluids, 24:072103, 2012.
[77] J., Eggers. Post-breakup solutions of Navier–Stokes and Stokes threads. Phys. Fluids, 26:072104, 2014.
[78] J., Eggers and T. F., Dupont. Drop formation in a one-dimensional approximation of the Navier–Stokes equation. J. Fluid Mech., 262:205, 1994.
[79] J., Eggers and M. A., Fontelos. Isolated inertialess drops cannot break up. J. Fluid Mech., 530:177, 2005.
[80] J., Eggers and M. A., Fontelos. The role of self-similarity in singularities of partial differential equations. Nonlinearity, 22:R1, 2009.
[81] J., Eggers and J., Hoppe. Singularity formation for timelike extremal hypersurfaces. Phys. Lett. B, 680:274, 2009.
[82] J., Eggers and H. A., Stone. Characteristic lengths at moving contact lines for a perfectly wetting fluid: the influence of speed on the dynamic contact angle. J. Fluid Mech., 505:309, 2004.
[83] J., Eggers and E., Villermaux. Physics of liquid jets. Rep. Progr. Phys., 71:036601, 2008.
[84] J., Eggers, M. A., Fontelos, D., Leppinen, and J. H., Snoeijer. Theory of the collapsing axisymmetric cavity. Phys. Rev. Lett., 98:094502, 2007.
[85] V. M., Entov and A. L., Yarin. Influence of elastic stresses on the capillary breakup of dilute polymer solutions. Fluid Dyn., 19:21, 1984.
[86] M. A., Fontelos. Break-up and no break-up in a family of models for the evolution of viscoelastic jets. Z. Angew. Math. Phys., 54:84, 2003.
[87] M. A., Fontelos, J., Eggers, and J. H., Snoeijer. The spatial structure of bubble pinch-off. SIAM J. Appl. Math., 71:1696, 2011.
[88] L. B., Freund. Dynamic Fracture Mechanics. Cambridge, 1998.
[89] L. A., Galin. Unsteady seepage with a free surface. Dokl. Akad. Nauk. SSSR, 47:246, 1945.
[90] C. G., Gibson. Singular Points of Smooth Mappings. Pitman, 1979.
[91] C. G., Gibson and C. A., Hobbs. Simple singularities of space curves. Math. Proc. Camb. Phil. Soc., 113:297, 1993.
[92] Y., Giga and R. V., Kohn. Asymptotically self-similar blow-up of semi-linear heat-equations. Comm. Pure Appl. Math., 38:297, 1985.
[93] Y., Giga and R. V., Kohn. Characterizing blowup using similarity variables. Indiana University Math. J., 36:1, 1987.
[94] J. W., Goodman. Introduction to Fourier Optics. Roberts & Co., 2004.
[95] J. M., Gordillo and M. A., Fontelos. Satellites in inviscid breakup of bubbles. Phys. Rev. Lett., 98:144503, 2007.
[96] I. S., Gradshteyn and I. M., Ryzhik. Table of Integrals, Series, and Products. Academic Press, 1980.
[97] G. M., Greuel, C., Lossen, and E., Shustin. Introduction to Singularities and Deformations. Springer, 2007.
[98] W. C., Griffith and W., Bleakney. Shock waves in gases. Amer. J. Phys., 22:597, 1954.
[99] R. E., Grundy. Local similarity solutions for the initial value problem in nonlinear diffusion. IMA J. Appl. Math., 30:209, 1983.
[100] G., Guderley. Starke kugelige und zylindrische Verdichtungsstöße in der Nähe des Kugelmittelpunktes bzw. der Zylinderachse. Luftfahrtforschung, 19:302, 1942.
[101] B., Gustafsson and A., Vasil'ev. Conformal and Potential Analysis in Hele-Shaw Cells. Birkhäuser, 2006.
[102] S., Gutiérrez, J., Rivas, and L., Vega. Formation of singularities and self-similar vortex motion under the localized induction approximation. Comm. Partial Diff. Eq., 28:927, 2003.
[103] D. A., Hammond and L. G., Redekopp. Global dynamics of symmetric and asymmetric wakes. J. Fluid Mech., 331:231, 1997.
[104] T. H., Havelock. The stability of motion of rectilinear vortices in ring formation. Phil. Mag., 11:617, 1931.
[105] H. S., Hele-Shaw. The flow of water. Nature, 58:34, 1898.
[106] D., Henderson, H., Segur, L. B., Smolka, and M., Wadati. The motion of a falling liquid filament. Phys. Fluids, 12:550, 2000.
[107] M. A., Herrero and J. J. L., Velázquez. Chemotactic collapse for the Keller–Segel model. J. Math. Biol., 35:177, 1996.
[108] M. A., Herrero and J. J. L., Velázquez. Singularity patterns in a chemotaxis model. Math. Ann., 306:583, 1996.
[109] R.-M., Hervé and M., Hervé. Étude qualitative des solutions réelles d'une équation différentielle liée à l’équation de Ginzburg–Landau. Ann. Inst. H. Poincaré Anal. Non Linéaire, 11:427, 1994.
[110] H., Hochstadt. Integral Equations. Wiley, 1973.
[111] L. M., Hocking. Rival contact-angle models and the spreading of drops. J. Fluid Mech., 239:671, 1992.
[112] B., Hopkinson. Discontinuous fluid motions involving sources and vortices. Proc. Lond. Math. Soc., 29:142–164, 1898.
[113] J., Hoppe. Conservation laws and formation of singularities in relativistic theories of extended objects. In Nonlinear Waves, Gakuto International Series: Mathematical Sciences and Applications, Volume 8. Gakkotosho, 2006.
[114] S. D., Howison. Cusp development in Hele-Shaw flow with a free surface. SIAM J. Appl. Math, 46:20, 1986.
[115] C., Huh and L. E., Scriven. Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Coll. Int. Sci., 35:85, 1971.
[116] G., Huisken. Local and global behaviour of hypersurfaces moving by mean curvature. Proc. Symp. Pure Math., 54:175, 1993.
[117] L., Ignat, C., Lefter, and V. D., Radulescu. Minimization of the renormalized energy in the unit ball of R2. Nieuw Arch. Wiskd., 1:278, 2000.
[118] R., Ishiguro, F., Graner, E., Rolley, and S., Balibar. Coalescence of crystalline drops. Phys. Rev. Lett., 93:235301, 2004.
[119] R., Ishiguro, F., Graner, E., Rolley, S., Balibar, and J., Eggers. Dripping of a crystal. Phys. Rev. E, 75:041606, 2007.
[120] J. D., Jackson. Classical Electrodynamics. Wiley, 1975.
[121] D. J., Jeffrey and Y., Onishi. The slow motion of a cylinder next to a plane wall. Quart. J. Mech. Appl. Math., 34:129, 1981.
[122] J.-T., Jeong and H. K., Moffatt. Free-surface cusps associated with a flow at low Reynolds numbers. J. Fluid Mech., 241:1, 1992.
[123] F., John. Two-dimensional potential flows with a free boundary. Comm. Pure Appl. Math., 6:497, 1953.
[124] D. D., Joseph, J., Nelson, M., Renardy, and Y., Renardy. Two-dimensional cusped interfaces. J. Fluid Mech., 223:383, 1991.
[125] N. C., Keim, P., Møller, W. W., Zhang, and S. R., Nagel. Breakup of air bubbles in water: memory and breakdown of cylindrical symmetry. Phys. Rev. Lett., 97:144503, 2006.
[126] T. A., Kowalewski. On the separation of droplets. Fluid Dyn. Res., 17:121, 1996.
[127] S. N., Kruzkov. Generalized solutions of the Cauchy problem in the large for first order nonlinear equations. Dokl. Akad. Nauk. SSSR, 187:29, 1969.
[128] P. K., Kundu and I. M., Cohen. Fluid Mechanics, Second Edition. Academic Press, 2002.
[129] B., Lafaurie, C., Nardone, R., Scardovelli, S., Zaleski, and G., Zanetti. Modelling merging and fragmentation in multiphase flows with SURFER. J. Comput. Physics, 113:134, 1994.
[130] G., Lagubeau, M. A., Fontelos, C., Josserand, A., Maurel, V., Pagneux, and P., Petitjeans. Flower patterns in drop impact on thin liquid films. Phys. Rev. Lett., 105:184503, 2010.
[131] H., Lamb. Hydrodynamics, Sixth Edition. Cambridge University Press, 1932.
[132] L. D., Landau and E. M., Lifshitz. Elasticity. Pergamon, 1970.
[133] L. D., Landau and E. M., Lifshitz. Fluid Mechanics. Pergamon, 1987.
[134] L. D., Landau and E. M., Lifshitz. Electrodynamics of Continuous Media. Pergamon, 1984.
[135] N. N., Lebedev. Special Functions and Their Applications. Prentice-Hall, 1965.
[136] J.-B., Leblond. Mécanique de la rupture fragile et ductile. Hermès, 2003.
[137] D., Leppinen and J., Lister. Capillary pinch-off in inviscid fluids. Phys. Fluids, 15:568, 2003.
[138] J., Leray. Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math., 63:193, 1934.
[139] B. M., Levitan and I. S., Sargsjan. Sturm–Liouville and Dirac Operators. Springer, 1990.
[140] H., Li, T. C., Halsey, and A., Lobkovsky. Singular shape of a fluid drop in an electric or magnetic field. Europhys. Lett., 27:575, 1994.
[141] J., Li and M. A., Fontelos. Drop dynamics on the beads-on-string structure of viscoelastic jets: a numerical study. Phys. Fluids, 15:922, 2003.
[142] F.-H., Lin and J. X., Xin. On the dynamical law of the Ginzburg–Landau vortices on the plane. Comm. Pure Appl. Math., 52:1189, 1999.
[143] J. R., Lister and H. A., Stone. Capillary breakup of a viscous thread surrounded by another viscous fluid. Phys. Fluids, 10:2758, 1998.
[144] E. W., Llewellin, H. M., Mader, and S. D. R., Wilson. The rheology of a bubbly liquid. Proc. Roy. Soc. London A, 458:987, 2002.
[145] R. A., London and B. P., Flannery. Hydrodynamics of x-ray induced stellar winds. Astrophys. J., 258:260, 1982.
[146] B., Lopez. Comportement hydrodynamique d'un jet capillaire: influence de la buse d'ejection. Ph.D. thesis, University of Grenoble, 1998.
[147] E. N., Lorenz. Deterministic nonperiodic flow. J. Atmos. Sci., 20:130, 1963.
[148] A. J., Majda and A. L., Bertozzi. Vorticity and Incompressible Flow. Cambridge University Press, 2002.
[149] N., Marheineke and R., Wegener. Asymptotic model for the dynamics of curved viscous fibres with surface tension. J. Fluid Mech., 622:345, 2009.
[150] J. M., Martin-Garcia and C., Gundlach. Global structure of Choptuik's critical solution in scalar field collapse. Phys. Rev. D, 68:024011, 2003.
[151] J. M., Martin-Garcia and C., Gundlach. Critical phenomena in gravitational collapse. Living Rev. Rel., 10:5, 2007.
[152] J. B., McLeod. The asymptotic behavior near the crest of waves of extreme form. Trans. Amer. Math. Soc., 299:299, 1987.
[153] L. M., Milne-Thompson. Theoretical Hydrodynamics, Fourth Edition. Macmillan & Co., 1962.
[154] H. K., Moffatt. Viscous and resistive eddies near a sharp corner. J. Fluid Mech., 18:1, 1963.
[155] H. K., Moffatt and B. R., Duffy. Local similarity solutions and their limitations. J. Fluid Mech., 96:299, 1980.
[156] D., Mond. On the classification of germs of maps from R2 → R3. Proc. London Math. Soc., 50:333, 1985.
[157] D. W., Moore. Spontaneous appearance of a singularity in the shape of an evolving vortex sheet. Proc. Roy. Soc. London A, 365:105, 1979.
[158] M., Moseler and U., Landman. Formation, stability, and breakup of nanojets. Science, 289:1165, 2000.
[159] J. D., Murray. Mathematical Biology. Springer, New York, 1993.
[160] J. C., Neu. Vortices in complex scalar fields. Physica D, 43:385, 1990.
[161] P., Nozières. Shape and growth of crystals. In C., Godrèche, editor, Solids far from Equilibrium, pp. 1–154. Cambridge University Press, 1992.
[162] J., Nye. Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations. Institute of Physics Publishing, 1999.
[163] A., Oron, S. H., Davis, and S. G., Bankoff. Long-scale evolution of thin liquid films. Rev. Mod. Phys., 69:931, 1997.
[164] C., Pantano, A. M., Gañán-Calvo, and A., Barrero. Zeroth order, electrohydrostatic solution for electrospraying in cone-jet mode. J. Aerosol Sci., 25:1065, 1994.
[165] D. T., Papageorgiou. On the breakup of viscous liquid threads. Phys. Fluids, 7:1529, 1995.
[166] T., Pearcey. The structure of the electromagnetic field in the neighbourhood of a cusp of a caustic. Phil. Mag., 37:311, 1946.
[167] C. L., Pekeris and Y., Accad. Solution of Laplace's equations for the M2 tide in the world oceans. Phil. Trans. Roy. Soc. London, 265:413, 1969.
[168] D. H., Peregrine, G., Shoker, and A., Symon. The bifurcation of liquid bridges. J. Fluid Mech., 212:25, 1990.
[169] L. M., Pismen. Vortices in Nonlinear Fields: From Liquid Crystals to Superfluids, from Non-equilibrium Patterns to Cosmic Strings. Oxford, 1999.
[170] L. M., Pismen and J., Eggers. Solvability condition for the moving contact line. Phys. Rev. E, 78:056304, 2008.
[171] L. M., Pismen and J., Rubinstein. Motion of vortex lines in the Ginzburg–Landau model. Physica D, 47:353, 1991.
[172] P. I., Plotnikov and J. F., Toland. Convexity of Stokes waves of extreme form. Arch. Rational Mech. Anal., 171:349, 2004.
[173] P. Ya., Polubarinova-Kochina. Concerning unsteady motions in the theory of filtration. Prikl. Matem. Mech., 9:79, 1945.
[174] P. Ya., Polubarinova-Kochina. On a problem of the motion of the contour of a petroleum shell. Dokl. Akad. Nauk USSR, 47:254, 1945.
[175] S., Popinet. An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys., 228:5838, 2009.
[176] T., Poston and I., Stewart. Catastrophe Theory and Its Applications. Dover, 1978.
[177] C., Pozrikidis. Boundary Integral and Singularity Methods for Linearized Flow. Cambridge University Press, 1992.
[178] W. H., Press, S. A., Teukolsky, W. T., Vetterling, and B. P., Flannery. Numerical Recipes: The Art of Scientific Computing, Third Edition. Cambridge University Press, 2007.
[179] W. H., Press, S. A., Teukolski, W. T., Vetterling, and B. P., Flannery. Numerical Recipes in Fortran; The Art of Scientific Computing Second Edition. Cambridge University Press, 1992.
[180] A., Pumir and E. D., Siggia. Development of singular solutions to the axisymmtric Euler equations. Phys. Fluids A, 4:1472, 1992.
[181] A., Ramos and A., Castellanos. Conical points in liquid–liquid interfaces subjected to electric fields. Phys. Lett. A, 184:268, 1994.
[182] Michael, Renardy. Self-similar breakup of non-Newtonian fluid jets. In Rheology Reviews, pp. 171–196, 2004.
[183] O., Reynolds. On the theory of lubrication and its application to M. Beauchamp Tower's experiments, including an experimental determination of the viscosity of olive oil. Phil. Trans. Roy. Soc. 177:157, 1886.
[184] E., Reyssat, E., Lorenceau, F., Restagno, and D., Quéré. Viscous jet drawing air into a bath. Phys. Fluids, 20:091107, 2008.
[185] L. F., Richardson. Atmospheric diffusion shown in a distance–neighbor graph. Proc. Roy. Soc. London A, 110:709, 1926.
[186] H., Risken. The Fokker–Planck Equation. Springer, 1984.
[187] A., Rothert, R., Richter, and I., Rehberg. Transition from symmetric to asymmetric scaling function before drop pinch-off. Phys. Rev. Lett., 87:084501, 2001.
[188] A. I., Ruban and J. S. B., Gajjar. Fluid Dynamics. Oxford University Press, 2014.
[189] P. G., Saffman. Vortex Dynamics. Cambridge University Press, 1992.
[190] E., Sandier and S., Serfaty. Gamma-convergence of gradient flows with applications to Ginzburg–Landau. Comm. Pure Appl. Math., 57:1627, 2004.
[191] C., Sautreaux. Mouvement d'un liquide parfait soumis à la pesanteur. Détermination des lignes de courant. J. Math. Pures Appl., 7:125, 1901.
[192] K., Schowalter. Quadratic and cubic reaction–diffusion fronts. Nonlinear Sci. Today, 4:3, 1995.
[193] D. W., Schwendeman and G. B., Whitham. On converging shock waves. Proc. Roy. Soc. London A, 413:297, 1987.
[194] L. I., Sedov. Similarity and Dimensional Methods in Mechanics. CRC Press, 1993.
[195] D., Segalman and M. W. Johnson, Jr. A model for viscoelastic fluid behavior which allows non-affine deformation. J. Non-Newtonian Fluid Mech., 2:255, 1977.
[196] M. J., Sewell. On Legendre transformations and elementary catastrophes. Math. Proc. Camb. Soc., 82:147, 1977.
[197] X. D., Shi, M. P., Brenner, and S. R., Nagel. A cascade of structure in a drop falling from a faucet. Science, 265:157, 1994.
[198] A., Sierou and J. R., Lister. Self-similar solutions for viscous capillary pinch-off. J. Fluid Mech., 497:381, 2003.
[199] I. N., Sneddon. Elements of Partial Differential Equations. McGraw-Hill, 1957.
[200] J. H., Snoeijer. Free surface flows with large slopes: beyond lubrication theory. Phys. Fluids, 18:021701, 2006.
[201] H. A., Stone, J. R., Lister, and M. P., Brenner. Drops with conical ends in electric and magnetic fields. Proc. Roy. Soc. Lond. A, 455:329, 1999.
[202] S. H., Strogatz. Nonlinear Dynamics and Chaos. Westview Press, 1994.
[203] C., Sulem, P. L., Sulem, C., Bardos, and U., Frisch. Finite time analyticity for the two and three dimensional Kelvin–Helmholtz instability. Comm. Math. Phys., 80:485, 1981.
[204] S., Taneda. Visualization of separating Stokes flows. J. Phys. Soc. Japan, 46:1935, 1979.
[205] S., Taneda and M., Honji. Unsteady flow past a flat plate normal to the direction of motion. J. Phys. Soc. Japan, 30:262, 1971.
[206] G. I., Taylor. The formation of a blast wave by a very intense explosion. Proc. Roy. Soc. London A, 201:159, 1950.
[207] G. I., Taylor. On scraping viscous fluid from a plane surface. In G. K., Batchelor, editor, G. I. Taylor: Scientific Papers, Volume IV, p. 410. Cambridge University Press, 1960.
[208] S. T., Thoroddsen, E. G., Etoh, and K., Takeara. Experiments on bubble pinch-off. Phys. Fluids, 19:042101, 2007.
[209] L., Ting and J. B., Keller. Slender jets and thin sheets with surface tension. SIAM J. Appl. Math., 50:1533, 1990.
[210] L. R. G., Treloar. The Physics of Rubber Elasticity. Oxford University Press, 1975.
[211] M. P., Valignat, N., Fraysse, A.-M., Cazabat, F., Heslot, and P., Levinson. An ellipsometric study of layered droplets. Thin Solid Films, 234:475, 1993.
[212] M. Van, Dyke. An Album of Fluid Motion. The Parabolic Press, 1982.
[213] A., Vilenkin and E. P. S., Shellard. Cosmic Strings and Other Topological Defects. Cambridge University Press, 2000.
[214] O. V., Voinov. Hydrodynamics of wetting [English translation]. Fluid Dynamics, 11:714, 1976.
[215] H. von, Foerster, P. M., Mora, and L. W., Amiot. Doomsday: Friday, 13 November, AD 2026. Science, 132:1291, 1960.
[216] M., Watanabe and K., Takayama. Stability of converging cylindrical shock waves. Shock Waves, 1:149, 1991.
[217] R. C., Weast, editor. Handbook of Chemistry and Physics. CRC Press, 1978.
[218] F. J., Wegner. Corrections to scaling laws. Phys. Rev. B, 5:4529, 1972.
[219] H., Werlé. Hydrodynamic flow visualization. Ann. Rev. FluidMech., 5:361, 1973.
[220] H. M., Westergaard. Bearing pressures and cracks. J. Appl. Mech., 6:A49, 1939.
[221] G. B., Whitham. A new approach to problems of shock dynamics. Part I: Two-dimensional problems. J.|Fluid Mech., 2:145, 1957.
[222] G. B., Whitham. Linear and Nonlinear Waves. Wiley, 1974.
[223] T. P., Witelski and A. J., Bernoff. Self-similar asymptotics for linear and nonlinear diffusion equations. Stud. Appl. Math., 100:153, 1998.