Skip to main content Accessibility help
×
  • Cited by 112

Book description

Many key phenomena in physics and engineering are described as singularities in the solutions to the differential equations describing them. Examples covered thoroughly in this book include the formation of drops and bubbles, the propagation of a crack and the formation of a shock in a gas. Aimed at a broad audience, this book provides the mathematical tools for understanding singularities and explains the many common features in their mathematical structure. Part I introduces the main concepts and techniques, using the most elementary mathematics possible so that it can be followed by readers with only a general background in differential equations. Parts II and III require more specialised methods of partial differential equations, complex analysis and asymptotic techniques. The book may be used for advanced fluid mechanics courses and as a complement to a general course on applied partial differential equations.

Reviews

'The book will serve as an excellent introduction to the field of singularities in continuum mechanics, and a valuable resource for researchers … In short, a wonderful achievement!'

H. K. Moffatt Source: Journal of Fluid Mechanics

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
[1] M., Abramowitz and I. A., Stegun. Handbook of Mathematical Functions. Dover, 1968.
[2] D. J., Acheson. Elementary Fluid Dynamics. Clarendon Press, 1990.
[3] M., Aguareles and I., Baldomà. Structure and Gevrey asymptotics of solutions representing topological defects to some partial differential equations. Nonlinearity, 24:2813, 2011.
[4] M., Aguareles, S. J., Chapman, and T., Witelski. Motion of spiral waves in the complex Ginzburg–Landau equation. Physica D, 239:348, 2010.
[5] S., Altschuler, S., Angenent, and Y., Giga. Mean curvature flow through singularities for surfaces of rotation. J. Geom. Anal., 5:293, 1995.
[6] S. B., Angenent and J. J. L., Velázquez. Degenerate neckpinches in mean curvature flow. J. Reine Angew. Math., 482:15, 1997.
[7] S. L., Anna and G. H., McKinley. Elasto-capillary thinning and breakup of model elastic liquids. J. Rheol., 45:115, 2001.
[8] V. I., Arnol'd. Mathematical Methods of Classical Mechanics, Second Edition. Springer, 1989.
[9] V. I., Arnol'd, V. A., Vasil'ev, V. V., Goryunov, and O. V., Lyashko. Singularity theory I: Local and global theory. In Dynamical Systems VI. Springer, 1993.
[10] V. I., Arnol'd, V. A., Vasil'ev, V. V., Goryunov, and O. V., Lyashko. Singularity theory II: Classification and applications. In Dynamical Syatems VIII. Springer, 1993.
[11] M., Arrayás, M. A., Fontelos, and J. L., Trueba. Ionization fronts in negative corona discharges. Phys. Rev. E, 71:037401, 2005.
[12] H., Ashley and M., Landahl. Aerodynamics of Wings and Bodies. Addison-Wesley, 1965.
[13] G. I., Barenblatt. On one class of the one-dimensional problem of non-stationary filtration of a gas in a porous medium. Prikl. Mat. i Mekh., 17:739, 1953.
[14] G. I., Barenblatt. Similarity, Self-Similarity and Intermediate Asymptotics. Cambridge University Press, 1996.
[15] G. I., Barenblatt and Y. B., Zel'dovich. Self-similar solutions as intermediate asymptotics. Ann. Rev. Fluid Mech., 4:285, 1972.
[16] O. A., Basaran. Small-scale free surface flows with breakup: drop formation and emerging applications. AICHE, 48:1842, 2002.
[17] G. K., Batchelor. An Introduction to Fluid Dynamics. Cambridge University Press, 1967.
[18] C. M., Bender and S. A., Orszag. Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill, 1978.
[19] A. J., Bernoff, A. L., Bertozzi, and T. P., Witelski. Axisymmetric surface diffusion: dynamics and stability of self-similar pinch-off. J. Stat. Phys., 93:725, 1998.
[20] M. V., Berry. Singularities in waves and rays. In R., Balian, M., Kleman, and J.-P., Poirier, editors, Les Houches, Session XXXV, pp. 453–543. North-Holland, 1981.
[21] M. V., Berry. Rays, wavefronts and phase: a picture book of cusps. In H., Blok, H. A., Ferwerda, and H. K., Kuiken, editors, Huygens’ Principle 1690–1990: Theory and Applications, pp. 97–111. Elsevier, 1992.
[22] M. V., Berry. Asymptotics, singularities and the reduction of theories. In D., Prawitz, B., Skyrms, and D., Westerståhl, editors, Proc. 9th Int. Cong. Logic, Method., and Phil. of Sci. IX, pp. 597–607. Elsevier, 1994.
[23] M. V., Berry and J., Goldberg. Renormalisation of curlicues. Nonlinearity, 1:1, 1988.
[24] S. I., Betelu and D. G., Aronson. Focusing of noncircular self-similar shock waves. Phys. Rev. Lett., 87:074501, 2001.
[25] F., Bethuel, H., Brezis, and F., Hélein. Ginzburg–Landau Vortices. Birkhäuser, 1994.
[26] S., Bianchini and A., Bressan. Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann. Math., 161:223, 2005.
[27] R. B., Bird, R. C., Armstrong, and O., Hassager. Dynamics of Polymeric Liquids, Volume I: Fluid Mechanics; Volume II: Kinetic Theory. Wiley, 1987.
[28] G., Birkhoff. Hydrodynamics: A Study in Logic, Fact, and Similitude. Princeton University Press, 1950.
[29] D., Bonn, J., Eggers, J., Indekeu, J., Meunier, and E., Rolley. Wetting and spreading. Rev. Mod. Phys., 81:739, 2009.
[30] A., Boudaoud and S., Chaïeb. Singular thin viscous sheet. Phys. Rev. E, 64:050601, 2001.
[31] M. P., Brenner. Droplet breakup and other problems involving surface tension driven flows. Ph.D. thesis, University of Chicago, 1994.
[32] M. P., Brenner and A. L., Bertozzi. Spreading of droplets on a solid surface. Phys. Rev. Lett., 71:593, 1993.
[33] M. P., Brenner, J., Eggers, K., Joseph, S. R., Nagel, and X. D., Shi. Breakdown of scaling in droplet fission at high Reynolds number. Phys. Fluids, 9:1573, 1997.
[34] M. P., Brenner, J. R., Lister, and H. A., Stone. Pinching threads, singularities and the number 0.0304. . . Phys. Fluids, 8:2827, 1996.
[35] M. P., Brenner, X. D., Shi, and S. R., Nagel. Iterated instabilities during droplet fission. Phys. Rev. Lett., 73:3391, 1994.
[36] J. W., Bruce and T. J., Gaffney. Simple singularities of mappings C, 0 → C2, 0. J. London Math. Soc., 26:465, 1982.
[37] J. M., Burgers. Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion. Kon. Ned. Akad. Wet., Verh. (Eerste Sectie), 17:1, 1939.
[38] J. C., Burton, J. E., Rutledge, and P., Taborek. Fluid pinch-off dynamics at nanometer length scales. Phys. Rev. Lett., 92:244505, 2004.
[39] J. C., Burton and P., Taborek. 2D inviscid pinch-off: an example of self-similarity of the second kind. Phys. Fluids, 19:102109, 2007.
[40] R. E., Caflisch, N., Ercolani, T. Y., Hou, and Y., Landis. Multi-valued solutions and branch point singularities for nonlinear hyperbolic and elliptic systems. Comm. Pure and Appl. Math., 46:453, 1993.
[41] R. E., Caflisch and O. F., Orellana. Singular solutions and ill-posedness for the evolution of vortex sheets. SIAM J. Math. Anal., 20:293, 1989.
[42] G. F., Carrier, M., Krook, and C. E., Pearson. Functions of a Complex Variable. McGraw-Hill, 1966.
[43] J. R., Castrejón-Pita, A. A., Castrejón-Pita, E. J., Hinch, J. R., Lister, and I. M., Hutchings. Self-similar breakup of near-inviscid liquids. Phys. Rev. E, 86:015301(R), 2012.
[44] A. U., Chen, P. K., Notz, and O. A., Basaran. Computational and experimental analysis of pinch-off and scaling. Phys. Rev. Lett., 88:174501, 2002.
[45] J.-D., Chen. Experiments on a spreading drop and its contact angle on a solid. J. Colloid Interf. Sci., 122:60, 1988.
[46] X., Chen, C. M., Elliott, and T., Qi. Shooting method for vortex solutions of a complex-valued Ginzburg–Landau equation. Proc. Roy. Soc. Edinburgh A, 124:1075, 1994.
[47] Y.-J., Chen and P. H., Steen. Dynamics of inviscid capillary breakup: collapse and pinchoff of a film bridge. J. Fluid Mech., 341:245, 1997.
[48] R. F., Chisnell. An analytic description of converging shock waves. J. Fluid Mech., 354:357, 1998.
[49] M.W., Choptuik. Universality and scaling in gravitational collapse of a massless scalar field. Phys. Rev. Lett., 70:9, 1993.
[50] A., Chorin and J. E., Marsden. A Mathematical Introduction to Fluid Mechanics. Springer, 2000.
[51] C., Clasen, J., Eggers, M. A., Fontelos, J., Li, and G. H., McKinley. The beads-onstring structure of viscoelastic jets. J. Fluid Mech., 556:283, 2006.
[52] I., Cohen, M. P., Brenner, J., Eggers, and S. R., Nagel. Two fluid drop snap-off problem: experiment and theory. Phys. Rev. Lett., 83:1147, 1999.
[53] P., Constantin, T. F., Dupont, R. E., Goldstein, L. P., Kadanoff, M. J., Shelley, and S.-M., Zhou. Droplet breakup in a model of the Hele-Shaw cell. Phys. Rev. E, 47:4169, 1993.
[54] S. D., Conte and C., De Boor. Elementary Numerical Analysis. McGraw Hill, 1965.
[55] S. Courrech du, Pont and J., Eggers. Sink flow deforms the interface between a viscous liquid and air into a tip singularity. Phys. Rev. Lett., 96:034501, 2006.
[56] V. F., Cowling and W. C., Royster. Domains of variability for univalent polynomials. Proc. Amer. Math. Soc., 19:767, 1968.
[57] R. F., Day, E. J., Hinch, and J. R., Lister. Self-similar capillary pinchoff of an inviscid fluid. Phys. Rev. Lett., 80:704, 1998.
[58] P.-G. de, Gennes, F., Brochart-Wyart, and D., Quéré. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer, 2003.
[59] F. de la, Hoz, M. A., Fontelos, and L., Vega. The effect of surface tension on the Moore singularity of vortex sheet dynamics. J. Nonlinear Sci., 18:463, 2008.
[60] W. R., Dean and P. E., Montagnon. On the steady motion of viscous liquid in a corner. Proc. Camb. Phil. Soc., 45:389, 1949.
[61] R. D., Deegan, O., Bakajin, T. F., Dupont, G., Huber, S. R., Nagel, and T. A., Witten. Contact line deposits in an evaporating drop. Phys. Rev. E, 62:756, 2000.
[62] M. P. do, Carmo. Differential Geometry of Curves and Surfaces. Prentice-Hall, 1976.
[63] P., Doshi, I., Cohen, W. W., Zhang, M., Siegel, P., Howell, O. A., Basaran et al. Persistence of memory in drop breakup: the breakdown of universality. Science, 302:1185, 2003.
[64] J. Douglas, Jr. and T. F., Dupont. Alternating-direction Galerkin methods on rectangles. In B., Hubbard, editor, Numerical Solution of Partial Differential Equations II, pp. 133–214. Academic Press, 1971.
[65] P. G., Drazin. Nonlinear Systems. Cambridge University Press, 1992.
[66] P. G., Drazin and W. H., Reid. Hydrodynamic Stability. Cambridge University Press, 1981.
[67] L., Duchemin and J., Eggers. The explicit–implicit–null method: removing the numerical instability of PDEs. J. Comp. Phys., 263:37, 2014.
[68] B. R., Duffy and S. K., Wilson. A third-order differential equation arising in thinfilm flows and relevant to Tanner's law. Appl. Math. Lett., 10:63, 1997.
[69] D. G., Duffy. Green's Functions with Applications. Chapman & Hall, 2001.
[70] C. R., Dun and G. C., Hocking. Withdrawal of fluid through a line sink beneath a free surface above a sloping boundary. J. Eng. Math., 29:1, 1995.
[71] H. E., Edgerton. Stopping Time: The Photographs of Harold Edgerton. Abrams, 1977.
[72] H., Effinger and S., Grossmann. Static structure function of turbulent flow from the Navier–Stokes equation. Z. Phys. B, 66:289, 1987.
[73] J., Eggers. Theory of drop formation. Phys. Fluids, 7:941, 1995.
[74] J., Eggers. Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys., 69:865, 1997.
[75] J., Eggers. Drop formation – an overview. ZAMM, 85:400, 2005.
[76] J., Eggers. Stability of a viscous pinching thread. Phys. Fluids, 24:072103, 2012.
[77] J., Eggers. Post-breakup solutions of Navier–Stokes and Stokes threads. Phys. Fluids, 26:072104, 2014.
[78] J., Eggers and T. F., Dupont. Drop formation in a one-dimensional approximation of the Navier–Stokes equation. J. Fluid Mech., 262:205, 1994.
[79] J., Eggers and M. A., Fontelos. Isolated inertialess drops cannot break up. J. Fluid Mech., 530:177, 2005.
[80] J., Eggers and M. A., Fontelos. The role of self-similarity in singularities of partial differential equations. Nonlinearity, 22:R1, 2009.
[81] J., Eggers and J., Hoppe. Singularity formation for timelike extremal hypersurfaces. Phys. Lett. B, 680:274, 2009.
[82] J., Eggers and H. A., Stone. Characteristic lengths at moving contact lines for a perfectly wetting fluid: the influence of speed on the dynamic contact angle. J. Fluid Mech., 505:309, 2004.
[83] J., Eggers and E., Villermaux. Physics of liquid jets. Rep. Progr. Phys., 71:036601, 2008.
[84] J., Eggers, M. A., Fontelos, D., Leppinen, and J. H., Snoeijer. Theory of the collapsing axisymmetric cavity. Phys. Rev. Lett., 98:094502, 2007.
[85] V. M., Entov and A. L., Yarin. Influence of elastic stresses on the capillary breakup of dilute polymer solutions. Fluid Dyn., 19:21, 1984.
[86] M. A., Fontelos. Break-up and no break-up in a family of models for the evolution of viscoelastic jets. Z. Angew. Math. Phys., 54:84, 2003.
[87] M. A., Fontelos, J., Eggers, and J. H., Snoeijer. The spatial structure of bubble pinch-off. SIAM J. Appl. Math., 71:1696, 2011.
[88] L. B., Freund. Dynamic Fracture Mechanics. Cambridge, 1998.
[89] L. A., Galin. Unsteady seepage with a free surface. Dokl. Akad. Nauk. SSSR, 47:246, 1945.
[90] C. G., Gibson. Singular Points of Smooth Mappings. Pitman, 1979.
[91] C. G., Gibson and C. A., Hobbs. Simple singularities of space curves. Math. Proc. Camb. Phil. Soc., 113:297, 1993.
[92] Y., Giga and R. V., Kohn. Asymptotically self-similar blow-up of semi-linear heat-equations. Comm. Pure Appl. Math., 38:297, 1985.
[93] Y., Giga and R. V., Kohn. Characterizing blowup using similarity variables. Indiana University Math. J., 36:1, 1987.
[94] J. W., Goodman. Introduction to Fourier Optics. Roberts & Co., 2004.
[95] J. M., Gordillo and M. A., Fontelos. Satellites in inviscid breakup of bubbles. Phys. Rev. Lett., 98:144503, 2007.
[96] I. S., Gradshteyn and I. M., Ryzhik. Table of Integrals, Series, and Products. Academic Press, 1980.
[97] G. M., Greuel, C., Lossen, and E., Shustin. Introduction to Singularities and Deformations. Springer, 2007.
[98] W. C., Griffith and W., Bleakney. Shock waves in gases. Amer. J. Phys., 22:597, 1954.
[99] R. E., Grundy. Local similarity solutions for the initial value problem in nonlinear diffusion. IMA J. Appl. Math., 30:209, 1983.
[100] G., Guderley. Starke kugelige und zylindrische Verdichtungsstöße in der Nähe des Kugelmittelpunktes bzw. der Zylinderachse. Luftfahrtforschung, 19:302, 1942.
[101] B., Gustafsson and A., Vasil'ev. Conformal and Potential Analysis in Hele-Shaw Cells. Birkhäuser, 2006.
[102] S., Gutiérrez, J., Rivas, and L., Vega. Formation of singularities and self-similar vortex motion under the localized induction approximation. Comm. Partial Diff. Eq., 28:927, 2003.
[103] D. A., Hammond and L. G., Redekopp. Global dynamics of symmetric and asymmetric wakes. J. Fluid Mech., 331:231, 1997.
[104] T. H., Havelock. The stability of motion of rectilinear vortices in ring formation. Phil. Mag., 11:617, 1931.
[105] H. S., Hele-Shaw. The flow of water. Nature, 58:34, 1898.
[106] D., Henderson, H., Segur, L. B., Smolka, and M., Wadati. The motion of a falling liquid filament. Phys. Fluids, 12:550, 2000.
[107] M. A., Herrero and J. J. L., Velázquez. Chemotactic collapse for the Keller–Segel model. J. Math. Biol., 35:177, 1996.
[108] M. A., Herrero and J. J. L., Velázquez. Singularity patterns in a chemotaxis model. Math. Ann., 306:583, 1996.
[109] R.-M., Hervé and M., Hervé. Étude qualitative des solutions réelles d'une équation différentielle liée à l’équation de Ginzburg–Landau. Ann. Inst. H. Poincaré Anal. Non Linéaire, 11:427, 1994.
[110] H., Hochstadt. Integral Equations. Wiley, 1973.
[111] L. M., Hocking. Rival contact-angle models and the spreading of drops. J. Fluid Mech., 239:671, 1992.
[112] B., Hopkinson. Discontinuous fluid motions involving sources and vortices. Proc. Lond. Math. Soc., 29:142–164, 1898.
[113] J., Hoppe. Conservation laws and formation of singularities in relativistic theories of extended objects. In Nonlinear Waves, Gakuto International Series: Mathematical Sciences and Applications, Volume 8. Gakkotosho, 2006.
[114] S. D., Howison. Cusp development in Hele-Shaw flow with a free surface. SIAM J. Appl. Math, 46:20, 1986.
[115] C., Huh and L. E., Scriven. Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Coll. Int. Sci., 35:85, 1971.
[116] G., Huisken. Local and global behaviour of hypersurfaces moving by mean curvature. Proc. Symp. Pure Math., 54:175, 1993.
[117] L., Ignat, C., Lefter, and V. D., Radulescu. Minimization of the renormalized energy in the unit ball of R2. Nieuw Arch. Wiskd., 1:278, 2000.
[118] R., Ishiguro, F., Graner, E., Rolley, and S., Balibar. Coalescence of crystalline drops. Phys. Rev. Lett., 93:235301, 2004.
[119] R., Ishiguro, F., Graner, E., Rolley, S., Balibar, and J., Eggers. Dripping of a crystal. Phys. Rev. E, 75:041606, 2007.
[120] J. D., Jackson. Classical Electrodynamics. Wiley, 1975.
[121] D. J., Jeffrey and Y., Onishi. The slow motion of a cylinder next to a plane wall. Quart. J. Mech. Appl. Math., 34:129, 1981.
[122] J.-T., Jeong and H. K., Moffatt. Free-surface cusps associated with a flow at low Reynolds numbers. J. Fluid Mech., 241:1, 1992.
[123] F., John. Two-dimensional potential flows with a free boundary. Comm. Pure Appl. Math., 6:497, 1953.
[124] D. D., Joseph, J., Nelson, M., Renardy, and Y., Renardy. Two-dimensional cusped interfaces. J. Fluid Mech., 223:383, 1991.
[125] N. C., Keim, P., Møller, W. W., Zhang, and S. R., Nagel. Breakup of air bubbles in water: memory and breakdown of cylindrical symmetry. Phys. Rev. Lett., 97:144503, 2006.
[126] T. A., Kowalewski. On the separation of droplets. Fluid Dyn. Res., 17:121, 1996.
[127] S. N., Kruzkov. Generalized solutions of the Cauchy problem in the large for first order nonlinear equations. Dokl. Akad. Nauk. SSSR, 187:29, 1969.
[128] P. K., Kundu and I. M., Cohen. Fluid Mechanics, Second Edition. Academic Press, 2002.
[129] B., Lafaurie, C., Nardone, R., Scardovelli, S., Zaleski, and G., Zanetti. Modelling merging and fragmentation in multiphase flows with SURFER. J. Comput. Physics, 113:134, 1994.
[130] G., Lagubeau, M. A., Fontelos, C., Josserand, A., Maurel, V., Pagneux, and P., Petitjeans. Flower patterns in drop impact on thin liquid films. Phys. Rev. Lett., 105:184503, 2010.
[131] H., Lamb. Hydrodynamics, Sixth Edition. Cambridge University Press, 1932.
[132] L. D., Landau and E. M., Lifshitz. Elasticity. Pergamon, 1970.
[133] L. D., Landau and E. M., Lifshitz. Fluid Mechanics. Pergamon, 1987.
[134] L. D., Landau and E. M., Lifshitz. Electrodynamics of Continuous Media. Pergamon, 1984.
[135] N. N., Lebedev. Special Functions and Their Applications. Prentice-Hall, 1965.
[136] J.-B., Leblond. Mécanique de la rupture fragile et ductile. Hermès, 2003.
[137] D., Leppinen and J., Lister. Capillary pinch-off in inviscid fluids. Phys. Fluids, 15:568, 2003.
[138] J., Leray. Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math., 63:193, 1934.
[139] B. M., Levitan and I. S., Sargsjan. Sturm–Liouville and Dirac Operators. Springer, 1990.
[140] H., Li, T. C., Halsey, and A., Lobkovsky. Singular shape of a fluid drop in an electric or magnetic field. Europhys. Lett., 27:575, 1994.
[141] J., Li and M. A., Fontelos. Drop dynamics on the beads-on-string structure of viscoelastic jets: a numerical study. Phys. Fluids, 15:922, 2003.
[142] F.-H., Lin and J. X., Xin. On the dynamical law of the Ginzburg–Landau vortices on the plane. Comm. Pure Appl. Math., 52:1189, 1999.
[143] J. R., Lister and H. A., Stone. Capillary breakup of a viscous thread surrounded by another viscous fluid. Phys. Fluids, 10:2758, 1998.
[144] E. W., Llewellin, H. M., Mader, and S. D. R., Wilson. The rheology of a bubbly liquid. Proc. Roy. Soc. London A, 458:987, 2002.
[145] R. A., London and B. P., Flannery. Hydrodynamics of x-ray induced stellar winds. Astrophys. J., 258:260, 1982.
[146] B., Lopez. Comportement hydrodynamique d'un jet capillaire: influence de la buse d'ejection. Ph.D. thesis, University of Grenoble, 1998.
[147] E. N., Lorenz. Deterministic nonperiodic flow. J. Atmos. Sci., 20:130, 1963.
[148] A. J., Majda and A. L., Bertozzi. Vorticity and Incompressible Flow. Cambridge University Press, 2002.
[149] N., Marheineke and R., Wegener. Asymptotic model for the dynamics of curved viscous fibres with surface tension. J. Fluid Mech., 622:345, 2009.
[150] J. M., Martin-Garcia and C., Gundlach. Global structure of Choptuik's critical solution in scalar field collapse. Phys. Rev. D, 68:024011, 2003.
[151] J. M., Martin-Garcia and C., Gundlach. Critical phenomena in gravitational collapse. Living Rev. Rel., 10:5, 2007.
[152] J. B., McLeod. The asymptotic behavior near the crest of waves of extreme form. Trans. Amer. Math. Soc., 299:299, 1987.
[153] L. M., Milne-Thompson. Theoretical Hydrodynamics, Fourth Edition. Macmillan & Co., 1962.
[154] H. K., Moffatt. Viscous and resistive eddies near a sharp corner. J. Fluid Mech., 18:1, 1963.
[155] H. K., Moffatt and B. R., Duffy. Local similarity solutions and their limitations. J. Fluid Mech., 96:299, 1980.
[156] D., Mond. On the classification of germs of maps from R2 → R3. Proc. London Math. Soc., 50:333, 1985.
[157] D. W., Moore. Spontaneous appearance of a singularity in the shape of an evolving vortex sheet. Proc. Roy. Soc. London A, 365:105, 1979.
[158] M., Moseler and U., Landman. Formation, stability, and breakup of nanojets. Science, 289:1165, 2000.
[159] J. D., Murray. Mathematical Biology. Springer, New York, 1993.
[160] J. C., Neu. Vortices in complex scalar fields. Physica D, 43:385, 1990.
[161] P., Nozières. Shape and growth of crystals. In C., Godrèche, editor, Solids far from Equilibrium, pp. 1–154. Cambridge University Press, 1992.
[162] J., Nye. Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations. Institute of Physics Publishing, 1999.
[163] A., Oron, S. H., Davis, and S. G., Bankoff. Long-scale evolution of thin liquid films. Rev. Mod. Phys., 69:931, 1997.
[164] C., Pantano, A. M., Gañán-Calvo, and A., Barrero. Zeroth order, electrohydrostatic solution for electrospraying in cone-jet mode. J. Aerosol Sci., 25:1065, 1994.
[165] D. T., Papageorgiou. On the breakup of viscous liquid threads. Phys. Fluids, 7:1529, 1995.
[166] T., Pearcey. The structure of the electromagnetic field in the neighbourhood of a cusp of a caustic. Phil. Mag., 37:311, 1946.
[167] C. L., Pekeris and Y., Accad. Solution of Laplace's equations for the M2 tide in the world oceans. Phil. Trans. Roy. Soc. London, 265:413, 1969.
[168] D. H., Peregrine, G., Shoker, and A., Symon. The bifurcation of liquid bridges. J. Fluid Mech., 212:25, 1990.
[169] L. M., Pismen. Vortices in Nonlinear Fields: From Liquid Crystals to Superfluids, from Non-equilibrium Patterns to Cosmic Strings. Oxford, 1999.
[170] L. M., Pismen and J., Eggers. Solvability condition for the moving contact line. Phys. Rev. E, 78:056304, 2008.
[171] L. M., Pismen and J., Rubinstein. Motion of vortex lines in the Ginzburg–Landau model. Physica D, 47:353, 1991.
[172] P. I., Plotnikov and J. F., Toland. Convexity of Stokes waves of extreme form. Arch. Rational Mech. Anal., 171:349, 2004.
[173] P. Ya., Polubarinova-Kochina. Concerning unsteady motions in the theory of filtration. Prikl. Matem. Mech., 9:79, 1945.
[174] P. Ya., Polubarinova-Kochina. On a problem of the motion of the contour of a petroleum shell. Dokl. Akad. Nauk USSR, 47:254, 1945.
[175] S., Popinet. An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys., 228:5838, 2009.
[176] T., Poston and I., Stewart. Catastrophe Theory and Its Applications. Dover, 1978.
[177] C., Pozrikidis. Boundary Integral and Singularity Methods for Linearized Flow. Cambridge University Press, 1992.
[178] W. H., Press, S. A., Teukolsky, W. T., Vetterling, and B. P., Flannery. Numerical Recipes: The Art of Scientific Computing, Third Edition. Cambridge University Press, 2007.
[179] W. H., Press, S. A., Teukolski, W. T., Vetterling, and B. P., Flannery. Numerical Recipes in Fortran; The Art of Scientific Computing Second Edition. Cambridge University Press, 1992.
[180] A., Pumir and E. D., Siggia. Development of singular solutions to the axisymmtric Euler equations. Phys. Fluids A, 4:1472, 1992.
[181] A., Ramos and A., Castellanos. Conical points in liquid–liquid interfaces subjected to electric fields. Phys. Lett. A, 184:268, 1994.
[182] Michael, Renardy. Self-similar breakup of non-Newtonian fluid jets. In Rheology Reviews, pp. 171–196, 2004.
[183] O., Reynolds. On the theory of lubrication and its application to M. Beauchamp Tower's experiments, including an experimental determination of the viscosity of olive oil. Phil. Trans. Roy. Soc. 177:157, 1886.
[184] E., Reyssat, E., Lorenceau, F., Restagno, and D., Quéré. Viscous jet drawing air into a bath. Phys. Fluids, 20:091107, 2008.
[185] L. F., Richardson. Atmospheric diffusion shown in a distance–neighbor graph. Proc. Roy. Soc. London A, 110:709, 1926.
[186] H., Risken. The Fokker–Planck Equation. Springer, 1984.
[187] A., Rothert, R., Richter, and I., Rehberg. Transition from symmetric to asymmetric scaling function before drop pinch-off. Phys. Rev. Lett., 87:084501, 2001.
[188] A. I., Ruban and J. S. B., Gajjar. Fluid Dynamics. Oxford University Press, 2014.
[189] P. G., Saffman. Vortex Dynamics. Cambridge University Press, 1992.
[190] E., Sandier and S., Serfaty. Gamma-convergence of gradient flows with applications to Ginzburg–Landau. Comm. Pure Appl. Math., 57:1627, 2004.
[191] C., Sautreaux. Mouvement d'un liquide parfait soumis à la pesanteur. Détermination des lignes de courant. J. Math. Pures Appl., 7:125, 1901.
[192] K., Schowalter. Quadratic and cubic reaction–diffusion fronts. Nonlinear Sci. Today, 4:3, 1995.
[193] D. W., Schwendeman and G. B., Whitham. On converging shock waves. Proc. Roy. Soc. London A, 413:297, 1987.
[194] L. I., Sedov. Similarity and Dimensional Methods in Mechanics. CRC Press, 1993.
[195] D., Segalman and M. W. Johnson, Jr. A model for viscoelastic fluid behavior which allows non-affine deformation. J. Non-Newtonian Fluid Mech., 2:255, 1977.
[196] M. J., Sewell. On Legendre transformations and elementary catastrophes. Math. Proc. Camb. Soc., 82:147, 1977.
[197] X. D., Shi, M. P., Brenner, and S. R., Nagel. A cascade of structure in a drop falling from a faucet. Science, 265:157, 1994.
[198] A., Sierou and J. R., Lister. Self-similar solutions for viscous capillary pinch-off. J. Fluid Mech., 497:381, 2003.
[199] I. N., Sneddon. Elements of Partial Differential Equations. McGraw-Hill, 1957.
[200] J. H., Snoeijer. Free surface flows with large slopes: beyond lubrication theory. Phys. Fluids, 18:021701, 2006.
[201] H. A., Stone, J. R., Lister, and M. P., Brenner. Drops with conical ends in electric and magnetic fields. Proc. Roy. Soc. Lond. A, 455:329, 1999.
[202] S. H., Strogatz. Nonlinear Dynamics and Chaos. Westview Press, 1994.
[203] C., Sulem, P. L., Sulem, C., Bardos, and U., Frisch. Finite time analyticity for the two and three dimensional Kelvin–Helmholtz instability. Comm. Math. Phys., 80:485, 1981.
[204] S., Taneda. Visualization of separating Stokes flows. J. Phys. Soc. Japan, 46:1935, 1979.
[205] S., Taneda and M., Honji. Unsteady flow past a flat plate normal to the direction of motion. J. Phys. Soc. Japan, 30:262, 1971.
[206] G. I., Taylor. The formation of a blast wave by a very intense explosion. Proc. Roy. Soc. London A, 201:159, 1950.
[207] G. I., Taylor. On scraping viscous fluid from a plane surface. In G. K., Batchelor, editor, G. I. Taylor: Scientific Papers, Volume IV, p. 410. Cambridge University Press, 1960.
[208] S. T., Thoroddsen, E. G., Etoh, and K., Takeara. Experiments on bubble pinch-off. Phys. Fluids, 19:042101, 2007.
[209] L., Ting and J. B., Keller. Slender jets and thin sheets with surface tension. SIAM J. Appl. Math., 50:1533, 1990.
[210] L. R. G., Treloar. The Physics of Rubber Elasticity. Oxford University Press, 1975.
[211] M. P., Valignat, N., Fraysse, A.-M., Cazabat, F., Heslot, and P., Levinson. An ellipsometric study of layered droplets. Thin Solid Films, 234:475, 1993.
[212] M. Van, Dyke. An Album of Fluid Motion. The Parabolic Press, 1982.
[213] A., Vilenkin and E. P. S., Shellard. Cosmic Strings and Other Topological Defects. Cambridge University Press, 2000.
[214] O. V., Voinov. Hydrodynamics of wetting [English translation]. Fluid Dynamics, 11:714, 1976.
[215] H. von, Foerster, P. M., Mora, and L. W., Amiot. Doomsday: Friday, 13 November, AD 2026. Science, 132:1291, 1960.
[216] M., Watanabe and K., Takayama. Stability of converging cylindrical shock waves. Shock Waves, 1:149, 1991.
[217] R. C., Weast, editor. Handbook of Chemistry and Physics. CRC Press, 1978.
[218] F. J., Wegner. Corrections to scaling laws. Phys. Rev. B, 5:4529, 1972.
[219] H., Werlé. Hydrodynamic flow visualization. Ann. Rev. FluidMech., 5:361, 1973.
[220] H. M., Westergaard. Bearing pressures and cracks. J. Appl. Mech., 6:A49, 1939.
[221] G. B., Whitham. A new approach to problems of shock dynamics. Part I: Two-dimensional problems. J.|Fluid Mech., 2:145, 1957.
[222] G. B., Whitham. Linear and Nonlinear Waves. Wiley, 1974.
[223] T. P., Witelski and A. J., Bernoff. Self-similar asymptotics for linear and nonlinear diffusion equations. Stud. Appl. Math., 100:153, 1998.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.