Skip to main content Accessibility help
×
  • Cited by 1269
Publisher:
Cambridge University Press
Online publication date:
December 2014
Print publication year:
1996
Online ISBN:
9781107050242

Book description

Scaling laws reveal the fundamental property of phenomena, namely self-similarity - repeating in time and/or space - which substantially simplifies the mathematical modelling of the phenomena themselves. This book begins from a non-traditional exposition of dimensional analysis, physical similarity theory, and general theory of scaling phenomena, using classical examples to demonstrate that the onset of scaling is not until the influence of initial and/or boundary conditions has disappeared but when the system is still far from equilibrium. Numerous examples from a diverse range of fields, including theoretical biology, fracture mechanics, atmospheric and oceanic phenomena, and flame propagation, are presented for which the ideas of scaling, intermediate asymptotics, self-similarity, and renormalisation were of decisive value in modelling.

Reviews

‘A splendid and very readable work … Greatly recommended!’

Sjoerd Rienstra Source: ITW Nieuws

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Ablowitz, M.J. & Clarkson, P.A. (1991). Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press.
Abramowitz, M. & Stegun, I.A., eds. (1970). Handbook of Mathematical Functions. Dover Publications, New York.
Adamsky, V.B. (1956). Integration of a system of autosimulating equations for the problem of a short-duration shock in a cold gas. Soviet Phys. Acoustics 2 (1), 1–7.
Aldushin, A.P., Zeldovich, Ya.B. & Khudyaev, S.I. (1979). Flame propagation in a reacting gas mixture. Preprint, Institute of Chemical Physics, Chernogolovka.
Alexandrov, S.E. & Goldstein, R.V. (1993a). On the separated flows in the theory of plasticity. Izvestiya, Russian Ac. Sci. Mech. Solids4, 144–149.
Alexandrov, S.E. & Goldstein, R.V. (1993b). The flow of plastic mass in a converging channel: the singularities of a solution. Doklady, Russian Ac. Sci. 332 (3), 314–316.
Amit, D. (1989). Field Theory, the Renormalization Group and Critical Phenomena, 2nd edition, World Scientific, Singapore etc.
Andrade, E.N. da C. (1910). On the viscous flow of metals and allied phenomena. Proc. Roy. Soc. A84, 1–12.
Anderson, D.M. & Davis, S.H. (1993). Two-fluid viscous flow in a corner. J. Fluid Mech. 257, 1–31.
Andrianov, I.V. & Kholod, E.G. (1993). Intermediate asymptotics in nonlinear dynamics of shells. Izvestiya, Russian Ac. Sci., Mech. Solids 2, 172–7.
Andrushchenko, V.A., Barenblatt, G.I. & Chudov, L.A. (1975). Self-similar propagation of strong blast waves in the presence of radiation or energy release at the wave front. In Progress in the Mechanics of Deformable Media, collection of papers dedicated to the 100th anniversary of B.G. Galerkin, Shapiro, G.S. (ed.), 35–44, (in Russian) Nauka, Moscow.
Angenent, S.B. & Aronson, D.G. (1993). The focusing problem for the radially symmetric porous medium equation. Euro. J. Appl. Math., (to appear).
Aronson, D.G. & Graveleau, J. (1993). A self-similar solution to the focusing problem for the porous medium equation. Euro. J. Appl. Math. 4, 65–81.
Aronson, D.G.Vázquez, J.L. (1993). Anomalous exponents in nonlinear diffusion. IMA Preprint No. 1165, University of Minnesota.
Bailey, R.W. (1929). Transactions of Tokyo Sect. Meeting of the World Power Conference, Tokyo.
Baldin, A.M. & Didenko, L.A. (1990). Asymptotic properties of hadron matter in relative four-velocity space. Fortschritte der Physik 38 (4), 261–332.
Barenblatt, G.I. (1952). On some unsteady motions of fluids and gases in a porous medium, Prikl. Mat. Mekh. 16 (1), 67–78.
Barenblatt, G.I. (1953). On the motion of suspended particles in a turbulent flow, Prikl. Mat. Mekh. 17 (3), 261–274.
Barenblatt, G.I. (1954). On limiting self-similar motions in the theory of unsteady filtration of gas in a porous medium and the theory of the boundary layer, Prikl. Mat. Mekh. 18 (4), 409–414.
Barenblatt, G.I. (1955). On the motion of suspended particles in a turbulent flow, occupying a half-space or a plane open channel of finite depth, Prikl. Mat. Mekh. 19 (1), 61–88.
Barenblatt, G.I. (1956). On certain problems of the theory of elasticity, which arise in the theory of the hydraulic fracture of the oil stratum. Appl. Math. Mech. (PMM) 20 (4), 475–486.
Barenblatt, G.I. (1959a). On the equilibrium cracks formed in brittle fracture. Appl. Math. Mech. (PMM) 23: (3), 434-44; (4), 706-21; (5), 893–900.
Barenblatt, G.I. (1959b). The problem of thermal self-ignition. In: Gelfand, I.M.Some Problems of the Theory of Quasi-Linear Equations, Russian Mathematical Surveys Vol. 14 (2), 137–42.
Barenblatt, G.I. (1962). Mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55–129.
Barenblatt, G.I. (1964). On certain general concepts of the mathematical theory of brittle fracture. Appl. Math. Mech. (PMM) 28 (4), 630–43.
Barenblatt, G.I. (1977). Strong interaction of gravity waves and turbulence. Izvestiya, USSR Ac. Sci., Atmos. Oceanic Phys. 13 (8), 581–83.
Barenblatt, G.I. (1978a). Dynamics of turbulent spots and intrusions in a stably stratified fluid. Izvestiya, USSR Ac. Sci., Atmos. Oceanic Phys. 14 (2), 139–45.
Barenblatt, G.I. (1978b). Self-similarity of temperature and salinity distributions in the upper thermocline. Izvestiya, USSR Acad. Sci., Atmos. Oceanic Phys. 14 (11), 820–23.
Barenblatt, G.I. (1979). Similarity, Self-similarity, and Intermediate Asymptotics(1st Russian edition Gidrometeoizdat, Leningrad, 1978; 2nd Russian edition, Gidrometeoizdat, Leningrad, 1982). Plenum, New York, London.
Barenblatt, G.I. (1983). Self-similar turbulence propagation from an instantaneous plane source. In Non-linear dynamics and turbulence, Barenblatt, G.I., Iooss, G. & Joseph, D.D. (eds.), 48–60, Pitman, Boston.
Barenblatt, G.I. (1987). Dimensional Analysis, Gordon and Breach, New York, London.
Barenblatt, G.I. (1991). On the scaling laws (incomplete self-similarity with respect to Reynolds number) for the developed turbulent flows in tubes. C.R. Acad. Sci. Paris, 313, Sér. II, 107–12.
Barenblatt, G.I. (1993a). Scaling laws for fully developed turbulent shear flows. Part 1. Basic hypotheses and analysis. J. Fluid Mech. 248, 513–20.
Barenblatt, G.I. (1993b). Intermediate asymptotics, scaling laws and renormalization group in continuum mechanics. Meccanica 28, 177–83.
Barenblatt, G.I. (1993c). Some general aspects of fracture mechanics. In Modelling of Defects and Fracture Mechanics, Herrmann, G. (ed.), pp. 29–50. Springer-Verlag, Vienna, New York.
Barenblatt, G.I. (1994). Scaling Phenomena in Fluid Mechanics. Cambridge University Press.
Barenblatt, G.I. & Botvina, L.R. (1981). Incomplete self-similarity of fatigue in the linear range of crack growth. Fatigue of Engineering Materials and Structures 3, 193–212.
Barenblatt, G.I. & Botvina, L.R. (1982). A note concerning power-type constitutive equations of deformation and fracture of solids. Int. J. Eng. Sci., 20 (2), 187–91.
Barenblatt, G.I. & Botvina, L.R. (1983). The self-similarity of fatigue fracture. The damage accumulation. Izvestiya, USSR Ac. Sci., Mech. Solids 44, 161–5.
Barenblatt, G.I. & Botvina, L.R. (1986). Similarity methods in mechanics and physics of fracture. Physical and Chemical Mechanics of Materials (1), 57–62.
Barenblatt, G.I. & Botvina, L.R. (1993). Self-oscillatory modes of fatigue fracture and the formation of self-similar structures at the fracture surface. Proc. Roy. Soc. London A442, 489–94.
Barenblatt, G.I. & Christianovich, S.A. (1955). On the failure of the roof in mine-workings. Izvestiya, USSR Ac. Sci., Techn. Sci. 11, 73–86.
Barenblatt, G.I., Entov, V.M. & Ryzhik, V.M. (1990). Theory of Fluid Flows Through Natural Rocks. Kluwer Academic Publishers, Dordrecht, Boston, London.
Barenblatt, G.I., Galerkina, N.L. & Lebedev, I.A. (1992). Mathematical model of lower quasi-homogeneous oceanic layer: general concepts and sealing-off model. Izvestiya, Russian Ac. Sci., Atmos. Oceanic Phys. 28 (1), 68–74.
Barenblatt, G.I., Galerkina, N.L. & Lebedev, I.A. (1993). Mathematical model of lower quasi-homogeneous oceanic layer: effects of temperature and salinity stratification and tidal oscillations. Izvestiya, Russian Ac. Sci., Atmos. Oceanic Phys. 29 (4), 537–42.
Barenblatt, G.I., Galerkina, N.L. & Luneva, M.V. (1987). Evolution of turbulent burst. Inzhenerno-Fizichesky Zh. (Zh. Eng. Phys.) 53, 733–40.
Barenblatt, G.I. & Gavrilov, A.A. (1974). On the theory of self-similar degeneracy of homogeneous isotropic turbulence. Sov. Phys. JETP 38 (2), 399–402.
Barenblatt, G.I. & Goldenfeld, N.D. (1995). Does fully developed turbulence exist? Reynolds number independence versus asymptotic covariance. Phys. Fluids 7 (12), 3078–3082.
Barenblatt, G.I. & Golitsyn, G.S. (1974). Local structure of mature dust storms. J. Atmos. Sci. 31, 1917–33.
Barenblatt, G.I., Guirguis, R.H., Kamel, M.M., Kuhl, A.L., Oppenheim, A.K. & Zeldovich, Ya.B. (1980). Self-similar explosion waves of variable energy at the front. J. Fluid Mech. 99 (4), 811–58.
Barenblatt, G.I. & Krylov, A.P. (1955). On elasto-plastic regime of filtration. Izvestiya, USSR Ac. Sci., Tech. Sci. 2, 14–26.
Barenblatt, G.I. & Monin, A.S. (1976). Similarity Laws for Stratified Turbulent Shear Flows. Report of the Fourth All-Union Congress on Theoretical and Applied Mechanics, 41, Naukova Dumka. Kiev.
Barenblatt, G.I. & Monin, A.S. (1979a). Similarity laws for turbulent stratified shear flows. Arch. Rat. Mech. Anal. 70 (4), 307–17.
Barenblatt, G.I. & Monin, A.S. (1979b). On a plausible mechanism of the phenomenon of discoidal formations in the atmosphere. Doklady, USSR Ac. Sci., 246 (4) 834–837.
Barenblatt, G.I. & Monin, A.S. (1983). Similarity principles for the biology of pelagic animals. Proc. Natl. Acad. Sci. USA 80 (6), 3540–42.
Barenblatt, G.I. & Prostokishin, V.M. (1993). Scaling laws for fully developed turbulent shear flows. Part 2. Processing of experimental data. J. Fluid Mech. 248, 521–9.
Barenblatt, G.I. & Sivashinsky, G.I. (1969). Self-similar solutions of the second kind in nonlinear filtration. Appl. Math. Mech. (PMM) 33 (5), 836–45.
Barenblatt, G.I. & Sivashinsky, G.I. (1970). Self-similar solutions of the second kind in the problem of propagation of intense shock waves. Appl. Math. Mech. (PMM) 34 (4), 655–62.
Barenblatt, G.I. & Vishik, M.I. (1956). On the finite speed of propagation in the problems of unsteady filtration of fluid and gas in a porous medium. Appl. Math. Mech. (PMM) 20 (4), 411–17.
Barenblatt, G.I. & Zeldovich, Ya.B. (1957a). On the dipole-type solution in the problem of a polytropic gas flow in a porous medium. Appl. Math. Mech. (PMM), 21 (5), 718–20.
Barenblatt, G.I. & Zeldovich, Ya.B. (1957b). On the stability of flame propagation. Appl. Math. Mech. (PMM) 21 (6), 856–9.
Barenblatt, G.I. & Zeldovich, Ya.B. (1971). Intermediate asymptotics in mathematical physics. Russian Math. Surveys 26 (2), 45–61.
Barenblatt, G.I. & Zeldovich, Ya.B. (1972). Self-similar solutions as intermediate asymptotics. Ann. Rev. Fluid Mech. 4, 285–312.
Batchelor, G.K. (1967). An Introduction to Fluid Dynamics. Cambridge University Press.
Batchelor, G.K.Linden, P.F. (1992). Discussion at the Fluid Mechanics Seminar, DAMTP, University of Cambridge.
Bechert, K. (1941). Differentialgleichungen der Wellenausbreitung in Gasen. Ann. Phys. 39 (5), 357–72.
Belyaev, V.S. & Gesentzwei, A.N. (1978). Shear instabilities of internal waves in the ocean. Izvestiya, USSR Ac. Sci., Atmos. Oceanic Phys. 14 (6), 459–63.
Belyaev, V.S., Losovatsky, I.D. & Ozmidov, R.V. (1975). Relationships between small-scale turbulence parameters and local stratification conditions in the ocean. Izvestiya, USSR Ac. Sci., Atmos. Oceanic Phys. 11 (7), 448–52.
Benbow, J.J. (1960). Cone cracks in fused silica. Proc. Phys. Soc. B75, 697–99.
Benilov, A.Yu. (1973). Generation of ocean turbulence by surface waves. Izvestiya, USSR Ac. Sci., Atmos. Oceanic Phys. 9 (3), 160–4.
Beretta, E., Bertsch, M. & Dal Passo, R. (1995). Non-negative solutions of a fourth-order nonlinear degenerate parabolic equation. Arch. Rat. Mech. Anal. 129 (2), 175–200.
Bernis, F. & Friedman, A. (1990). Higher order nonlinear degenerate parabolic equations. J. Diff. Equations 83 (1), 179–206.
Bernis, F., Peletier, L.A. & Williams, S.M. (1992). Source type solutions of a fourth order nonlinear degenerate parabolic equation. Nonlinear Anal., Theory, Meth. Applic. 18 (3), 217–34.
Bertozzi, A.L., Brenner, M.P., Dupont, T.F. & Kadanoff, L.P. (1993). Singularities and similarities in Interface Flows. Preprint, Ryerson Laboratory, University of Chicago.
Bertozzi, A.L. & Pugh, M. (1995). The lubrication approximation for thin viscous films: regularity and long time behavour of weak solutions. Comm. Pure Appl. Math, (in press).
Bertsch, M., Dal Passo, R. & Kersner, R. (1994). The evolution of turbulent bursts: the b – ε model. Euro. J. Appl. Math. 5 (4), 537–557.
Birkhoff, G. (1960). Hydrodynamics, a Study in Logic, Fact, and Similitude, 2nd edition. Princeton University Press.
Bluman, G.W. & Cole, J.D. (1974). Similarity Methods for Differential Equations, Springer-Verlag, New York, Heidelberg, Berlin.
Boatto, S., Kadanoff, L.P. & Olla, P. (1993). Travelling wave solutions to thin film equations. Preprint, Ryerson Laboratory, University of Chicago.
Bogolyubov, N.N. & Shirkov, D.V. (1955). On the renormalization group in quantum electrodynamics. Doklady, USSR Ac. Sci., 103 (2), 203–6.
Bogolubov, N.N. & Shirkov, D.V. (1959). Introduction to the Theory of Quantized Fields. Wiley Interscience, New York, London.
Bose, E. & Bose, M. (1911). Über die Turbulenzreibung verschiedener Flüssigkeiten. Physikalische Zeitschrift 12 (4), 126–35.
Bose, E. & Rauert, D. (1909). Experimentalbeitrag zur Kenntnis der turbulenten Flüssigkeitsreibung. Physikalische Zeitschrift 10 (12), 406–9.
Botvina, L.R. (1989). Kinetics of Fracture of Structural Materials. Nauka, Moscow.
Brailovsky, I. & Sivashinsky, G.I. (1994). Oscillatory propagation of reaction waves sustained by external sources of energy (to appear).
Bricmont, J. & Kupiainen, A. (1992). Renormalization group and the Ginzburg-Landau equation. Comm. Math. Phys. 150, 193–208.
Bridgman, P.W. (1931). Dimensional Analysis. Yale University Press, New Haven.
Brushlinsky, K.V. & Kazhdan, Ya.M. (1963). On auto-models in the solution of certain problems of gas dynamics. Russian Math. Surveys 18 (2), 1–22.
Budiansky, B. & Carrier, G.F. (1973). The pointless wedge. SI AM J. Appl. Math. 25 (3), 378–87.
Bui, H.D. (1977). Mécanique de la Rupture Fragile. Masson, Paris.
Cane, B.J. & Greenwood, G.W. (1975). The nucleation and growth of cavities in iron during deformation at elevated temperatures. Metal Sci. 9 (2), 55–60.
Carothers, S.D. (1912). Plane strain in a wedge. Proc. Roy. Soc. Edinburgh 23, 292–306.
Carrier, G.F. & Pearson, C.E. (1976). Partial Differential Equations, Theory and Technique. Academic Press, New York, San Francisco, London.
Carslaw, H.W. & Jaeger, J.C. (1960). Conduction of Heat in Solids, 2nd edition. Clarendon, Oxford.
Castaing, B., Gagne, Y. & Hopfinger, E.J. (1990). Velocity probability density functions of high Reynolds number turbulence. Physica D. 46 177–200.
Chen, L.-Y. & Goldenfeld, N. (1992). Renormalization-group theory for the propagation of a turbulent burst. Phys. Rev. A45 (8), 5572–4.
Chen, L.-Y., Goldenfeld, N. & Oono, Y. (1991). Renormalization-group theory for the modified porous-medium equation. Phys. Rev. A44 (10), 6544–50.
Chen, L.-Y., Goldenfeld, N. & Oono, Y. (1994). Renormalization group theory for global asymptotic analysis. Phys. Rev. Lett, (submitted).
Chernyi, G.G. (1961). Introduction to Hypersonic Flow (trans. R.F. Probstein). Academic Press, New York.
Cole, J.D. (1968). Perturbation Methods in Applied Mathematics. Blaisdell, Toronto, London.
Cole, J.D. & Wagner, B.A. (1995) On self-similar solutions of Barenblatt's non-linear filtration equation. Euro. J. Appl. Math (in press).
Collins, R.E. (1961). Flow of Fluids through Porous Materials. Reinhold, New York.
Corino, E.R. & Brodkey, R.S. (1969). A visual investigation of the wall region in turbulent flow. J. Fluid Mech. 37 (1), 1–30.
Daniell, P.J. (1930). The theory of flame motion. Proc. Roy. Soc. A126, 393–402.
Dempsey, J.P. (1981). The wedge subjected to tractions: a paradox resolved. J. Elasticity 11, 1–10.
Diez, J.A., Gratton, R. & Gratton, J. (1992). Self-similar solution of the second kind for a convergent viscous gravity current. Phys. Fluids A4 (6), 1148–55.
Drazin, P.G. & Johnson, R.S. (1989). Solitons: An Introduction. Cambridge University Press.
Dryden, H.L. (1943). A review of the statistical theory of turbulence. Quart. J. Appl. Math. 1, 7–42.
Dundurs, J. & Markenscoff, X. (1989). The Sternberg-Koifer conclusion and other anomalies of the concentrated couple. ASME J. Appl. Mech. 56, 240–5.
Dussan, V., E.B. & Davis, S.H. (1986). Stability in systems with moving contact lines. J. Fluid Mech. 173, 115–30.
Dussan, V., E.B., Ramé, E. & Garoff, S. (1991). On identifying the appropriate boundary conditions at a moving contact line: an experimental investigation. J. Fluid Mech. 230, 97–116.
Efimov, S.S. & Tsarenko, V.M. (1980). Self-similarity of the temperature distribution in the upper thermocline. Izvestiya, USSR Ac. Sci., Atmos. Oceanic Phys. 16 (6), 429–33.
Eilenberger, G. (1981). Solitons. Mathematical Methods for Physicists. Springer-Verlag, Berlin, Heidelberg, New York.
Einstein, H.A. & Ning, Chen (1955). Effects of Heavy Sediment Concentration Near the Bed on the Velocity and Sediment Distribution. University of California MRD Series Report No. 8.
Entov, V.M. (1994). Private communication.
Fedorov, K.N. (1976). Fine Thermohaline Structure of Ocean Water. Gidrometeoizdat, Leningrad.
Fisher, R.A. (1937). The wave of advance of advantageous genes. Ann. Eugenics, 7, 355–69.
Fordy, A.P. (ed.) (1990). Soliton Theory: A Survey of Results. Manchester University Press, Manchester, New York.
Forsyth, P.J.E. (1976). Some observations and measurements on mixed fatigue tensile crack growth in aluminium alloys. Scripta Metall. 10, 383–6.
Fourier, J. (1822). Théorie analytique de la chaleur. Firmin Didot, Paris.
Frankel, M., Roytburd, V. & Sivashinsky, G. (1994). A sequence of period doubling and chaotic pulsations in a free-boundary problem modelling thermal instabilities. SI AM J. Appl. Math, (to appear).
Gad-el-Hak, M. & Corrsin, S. (1974). Measurements of the nearly isotropic turbulence behind a uniform jet grid. J. Fluid Mech. 62 (1), 115–43.
Gardner, C.S.J., Greene, J.M., Kruskal, M.D. & Miura, R.M. (1967). A method for solving the Korteweg-de-Vries equation. Phys. Rev. Lett. 19, 1095–97.
Gell-Mann, M. & Low, F.E. (1954). Quantum electrodynamics at small distances. Phys. Rev. 95, 1300–12.
Germain, P. (1973). Méthodes asymptotiques en mécanique des fluids. In Dynamics of Fluids, R., Balian & J.L., Peube (eds.), 7–147. Gordon and Breach, London, etc.
Germain, P. (1986a). Mécanique, tome I. Ecole Polytechnique, Ellipses, Paris.
Germain, P. (1986b). Mécanique, tome II. Ecole Polytechnique, Ellipses, Paris.
Ginzburg, I.S., Entov, V.M. & Theodorovich, E.V. (1992). Renormalization group method for the problem of convective diffusion with irreversible sorption. Appl. Math. Mech. (PMM) 56 (1), 59–96.
Goldenfeld, N. (1989). The approach to equilibrium: scaling and the renormalization group. Invited lecture at the Conference on Non-linear Phenomena, Moscow, USSR Ac. Sci., 19-22 September.
Goldenfeld, N. (1992). Lectures on Phase Transitions and the Renormalization Group. Addison-Wesley.
Goldenfeld, N., Martin, O. & Oono, Y. (1989). Intermediate asymptotics and renormalization group theory. J. Scient. Comput. 4, 355–72.
Goldenfeld, N., Martin, O. & Oono, Y. (1991). Asymptotics of partial differential equations and the renormalization group. In Proc. NATO Advanced Research Workshop on Asymptotics Beyond all Orders, La Jolla, S., Tanvera (ed.). Plenum Press.
Goldenfeld, N., Martin, O., Oono, Y. & Liu, F. (1990). Anomalous dimensions and the renormalization group in a non-linear diffusion process. Phys. Rev. Lett. 65 (12), 1361–64.
Goldenfeld, N. & Oono, Y. (1991). Renormalization group theory for two problems in linear continuum mechanics. Physica A. 177, 213–19.
Goldstein, S. (1939). A note on the boundary layer equations. Proc. Camb. Phil. Soc. 35, 338–40.
Goldstein, R.V. & Vainshelbaum, V.M. (1978). Material scale length as a measure of fracture toughness in fracture mechanics of plastic materials. Int. J. Fracture, 14 (2), 185–201.
Golitsyn, G.S. (1973). Introduction to the Dynamics of Planetary Atmospheres. Gidrometeoizdat, Leningrad.
Gossard, E.E. & Hooke, W.H. (1975). Waves in the Atmosphere. Elsevier, New York.
Grebenev, V.N. (1992). The dynamic system that arises in the problem of the evolution of a turbulent layer of a homogeneous fluid. Comput. Math, and Math. Phys. 32 (1), 103–13.
Griffith, A.A. (1920). The phenomenon of rupture and flow in solids. Phil. Trans. Roy. Soc. London A221, 163–98.
Guderley, K.G. (1942). Starke kugelige und zylindrische Verdichtungsstösse in der Nähe des Kugelmittelpunktes bzw. der Zylinderachse. Luftfahrtforschung 19 (9), 302–12.
Häfele, W. (1955). Zur analytischen Behandlung ebener, starker, instationarer Stoss-wellen. Z. Naturforschung 10a (9/10), 693–7.
Hahn, H.G. (1976). Bruchmechanik. Teubner, Stuttgart.
Hain, K. & Hörner, S.V. (1954). Instationare starke Stossfronten. Z. Naturforschung 9a (12), 993–1004.
Hanjalic, K. & Launder, B.E. (1972). A Reynolds stress model of turbulence, and its application to thin shear flows. J. Fluid Mech. 52, 609–38.
Harmon, L.D. (1973). Recognition of faces. Scientific American 229 (5), 70–82.
Hastings, S.P. & Peletier, L.A. (1992). On a self-similar solution for the decay of turbulent bursts. Euro. J. Appl. Math. 3, 319–41.
Heiser, F.A. & Mortimer, W. (1972). Effects of thickness and orientation on fatigue crack growth rate in 4340 steel. Met. Trans. 3, 2119–23.
Hill, R. (1992). Similarity analysis of creep indentation tests. Proc. Roy. Soc. London A436, 617–30.
Hill, R., Storåkers, B. & Zdunek, A.B. (1989). A theoretical study of the Brinell hardness test. Proc. Roy. Soc. London A423, 301–30.
Hinch, E.J. (1991). Perturbation Methods. Cambridge University Press.
Hinze, J.O. (1959). Turbulence. An Introduction to its Mechanism and Theory. McGraw-Hill, New York, Toronto, London.
Hinze, J.O. (1962). Turbulent pipe-flow, in Mècanique de la turbulence, 63–76. Edition du Centre Nat. Rech. Sci. Paris.
Hulshof, J. (1993). Self-similar solutions of the κ – ε model for turbulence. Report No. W93-11, Mathematical Institute, University of Leiden.
Hulshof, J. & Vázquez, J.L. (1993). Self-similar solutions of the second kind for the modified porous medium equation. Report No. W93-04, Mathematical Institute, University of Leiden.
Huppert, H.E. (1982). The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface. J. Fluid Mech. 121, 43–58.
Inglis, C.E. (1922). Some special cases of two-dimensional stress and strain. Thins. Inst. Naval Arch. 64, 253–8.
Irwin, G.R. (1949). Fracture dynamics, in Fracturing of Metals, 147–66. ASM, Cleveland, OH.
Irwin, G.R. (1957). Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–4.
Irwin, G.R. (1958). Fracture, in Handbuch der Physik, Bd VI, pp. 551–90. Springer, Berlin.
Irwin, G.R. (1960). Fracture mode transition for a crack traversing a plate. Trans. ASME, Ser. D 82, 417–25.
Jeffrey, A. & Kakutani, T. (1972). Weak non-linear dispersive waves: a discussion centered around the Korteweg-de-Vries equation. SIAM Review 14 (4), 582–643.
Johnson, K.L. (1985). Contact Mechanics. Cambridge University Press.
Kadanoff, L.P. (1966). Scaling laws for Ising model nearTc. Physics 2 (6), 263–72.
Kadanoff, L.P., Götze, W., Hamblen, D., Hecht, R., Lewis, E.A.S., Paleiauskas, V.V.I., Rayl, M., Swift, J., Aspnes, D. & Kane, J. (1967). Static phenomena near critical points: theory and experiment. Rev. Mod. Phys. 39 (2), 395–431.
Kalashnikov, A.S. (1987). Some problems of qualitative theory of non-linear second-order parabolic equations. Russian Math. Surveys 42, 169–222.
Kamenomostskaya, S.L. (Kamin) (1957). On a problem of the theory of filtration. Doklady, USSR Ac. Sci., 116 (1), 18–20.
Kamin, S., Peletier, L.A. & Vázquez, J.-L. (1991). On the Barenblatt equation of elasto-plastic filtration. Indiana Univ. Math. J. 40 (4), 1333–62.
Kamin, S. & Vázquez, J.L. (1992). The propagation of turbulent bursts. Euro. J. Appl. Math. 3, 263–72.
Kanel', Ya.I. (1962). On the stabilization of solutions of Cauchy problems met within the theory of combustion. Matem. Sb. 59 (101), 245–88.
Kao, T.W. (1976). Principal stage of wake collapse in a stratified fluid: two-dimensional theory. Phys. Fluids 19 (8), 1071–4.
Kapitza, S.P., (1966). A natural system of units in classical electrodynamics and electronics. Sov. Phys. Uspekhi 9, 184.
Karpman, V.I. (1975). Non-linear Waves in Dispersive Media. Pergamon, Oxford.
Keller, L.V. & Friedmann, A.A. (1924). Differentialgleichungen für die turbulente Bewegung einer kompressiblen Flüssigkeit. In Proc. First Int. Congress Appl. Mech., pp. 395–405. J. Waltman Jr, Delft.
Kerchman, V.I. (1971). On self-similar solutions of the second kind in the theory of unsteady filtration. Appl. Math. Mech. (PMM) 35 (1), 158–62.
Kestin, J. & Richardson, P.D. (1963). Heat transfer across turbulent incompressible boundary layers. Int. J. Heat. Mass Transfer 6 (2), 147–89.
Kevorkian, J. & Cole, J.D. (1980). Perturbation Methods in Applied Mathematics. Springer-Verlag, New York, Heidelberg, Berlin.
Kim, H.T., Kline, S.J. & Reynolds, W.C. (1971). The production of turbulence near a smooth wall in a turbulent boundary layer. J. Fluid Mech. 50 (1), 133–60.
Kistler, A.L. & Vrebalovich, T. (1966). Grid turbulence at large Reynolds numbers. J. Fluid Mech. 26 (1), 37–47.
Kitaigorodsky, S.A. & Miropolsky, Yu.Z. (1970). Izvestiya, USSR Ac. Set, Atmos. Oceanic Phys. 6 (2), 97–102.
Kline, S.J., Reynolds, W.C., Schraub, F.A. & Runstadler, P.W. (1967). The structure of turbulent boundary layers. J. Fluid Mech. 30 (4), 741–74.
Kochin, N.E., Kibel', I.A. & Roze, N.V. (1964). Theoretical Hydromechanics, Vol. 1. Interscience, New York. Vol. 2 available from ASTIA as AD129210.
Kochina, I.N., Mikhailov, N.N. & Filinov, M.V. (1983). Groundwater mound damping. Int. J. Eng. Sci. 21 (4), 413–21.
Kolmogorov, A.N. (1941). The local structure of turbulence in incompressible fluids at very high Reynolds numbers. Doklady, USSR Ac. Sci. 30 (4), 299–303.
Kolmogorov, A.N. (1942). The equations of turbulent motion of incompressible fluids. Izvestiya, USSR Ac. Sci., Phys. 6 (1-2), 56–8.
Kolmogorov, A.N. (1954). On a new variant of the gravitational theory of motion of suspended sediment. Vestn. MGU 3, 41–5.
Kolmogorov, A.N. (1962). A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13 (1), 82–5.
Kolmogorov, A.N., Petrovsky, I.G. & Piskunov, N.S. (1937). Investigation of the diffusion equation connected with an increasing amount of matter and its application to a biological problem. Bull. MGU Al (6), 1–26.
Korotaev, G.K. & Panteleev, N.A. (1977). Experimental investigations of hydrody-namic instability in the oceans. Oceanology USSR 17 (6), 914–53.
Kovasznay, L.S.G., Kilens, V. & Blackwelder, R.F. (1970). Large-scale motion in the intermittent region of a turbulent boundary layer. J. Fluid Mech. 41 (2), 283–325.
Kulikovsky, A.G. & Lyubimov, G.A. (1965). Magneto-hydrodynamics. Addison-Wesley, Reading MA.
Lagerstrom, P.A. & Casten, R.J. (1972). Some basic concepts underlying singular perturbation techniques. SIAM Review 14 (1), 63–120.
Landau, L.D. & Lifshitz, E.M. (1986). Theory of Elasticity, 2nd edition. Pergamon Press, London.
Landau, L.D. & Lifshitz, E.M. (1987). Fluid Mechanics, 2nd edition. Pergamon Press, London.
Launder, B.E. & Spalding, D.B. (1972). Mathematical Models of Turbulence. Academic Press, London.
Launder, B.E., Morse, A.P., Rodi, W. & Spalding, D.B. (1972). Prediction of free shear flows – a comparison of six turbulence models. NASA Report SP 321.
Launder, B.E. & Spalding, D.B. (1974). The numerical computation of turbulent flows. Comp. Math. Appl. Mech. Eng. 3, 269–89.
Lax, P.D. (1968). Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math. 21 (5), 467–90.
Liebowitz, H. (ed.) (1968a). Fracture. An Advanced Treatise, Vol. I. Academic Press, New York, London.
Liebowitz, H. (ed). (1968b). Fracture. An Advanced Treatise, Vol II. Academic Press, New York, London.
Lighthill, J. (1978). Waves in Fluids. Cambridge University Press.
Linden, P.F. (1975). The deepening of a mixed layer in a stratified fluid. J. Fluid Mech. 71 (2), 385–405.
Ling, S.C. & Huang, T.T. (1970). Decay of weak turbulence. Phys. Fluids 13 (12), 2912–20.
Ling, S.C. & Wan, C.A. (1972). Decay of isotropic turbulence generated by a mechanically agitated grid. Phys. Fluids 15 (8), 1363–9.
Loitsiansky, L.G. (1939). Some basic laws of isotropic turbulent flow. Proc. Central Aero-Hydrodynamic Institute, Moscow 440, 3–23. (In Russian.) Translated as Loitsiansky, L.G. (1945). Some basic laws of isotropic turbulent flow. NACA Technical Memo. No. 1079.
Ma, S.-K. (1976). Modern Theory of Critical Phenomena. Benjamin/Cummings, Reading MA.
Mandelbrot, B. (1975). Les objects fractals: forme, hasard et dimension. Flammarion, Paris.
Mandelbrot, B. (1977). Fractals, Form, Chance and Dimension. W.H. Freeman and Co., San Francisco.
Mandelbrot, B. (1982). The Fractal Geometry of Nature. W.H. Freeman and Co., San Francisco.
Maxworthy, T. (1973). Experimental and theoretical studies of horizontal jets in a stratified fluid. In Proc. Int. Symposium on Stratified Flows, Novosibirsk, 1972, 611–18. Am. Soc. Civ. Eng., New York.
McMahon, T.A. (1971). Rowing: a similarity analysis. Science 173, 23 July 1971, 349–51.
Meyer, F. (1955). Zur Darstellung starker Stossfronten durch Homologie-Losungen. Z. Naturforschung 10a (9/10), 693–7.
Migdal, A.B. (1977). Qualitative Methods in Quantum Theory. W.A. Benjamin, Reading, MA.
Miles, J.W. (1961). On the stability of heterogeneous shear flow. J. Fluid Mech. 10 (4), 496–508.
Miles, J.W. (1963). On the stability of heterogeneous shear flow. J. Fluid Mech. 16 (2), 209–27.
Millionshchikov, M.D. (1939). Decay of homogeneous turbulence in a viscous incompressible fluid. Doklady, USSR Ac. Sci. 22 (5), 236–40.
Moffatt, H.K. (1964). Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18 (1), 1–18.
Moffatt, H.K. & Duffy, B.R. (1980). Local similarity solutions and their limitations. J. Fluid Mech. 96 (2), 299–313.
Monin, A.S. (1950). Turbulence in the atmospheric surface layer. Coll. Sci. Inform. Hydromet. Science USSR, Moscow (1), 13–27.
Monin, A.S. & Obukhov, A.M. (1953). Dimensionless characteristics of turbulence in the surface layer of the atmosphere. Doklady, USSR Ac. Sci. 93 (2), 223–6.
Monin, A.S. & Obukhov, A.M. (1954). Basic relationships for turbulent mixing in the surface layer of the atmosphere. Proc. Inst. Theor. Geophys., USSR Ac. Sci. 24 (151), 163–87.
Monin, A.S. & Ozmidov, R.V. (1981). Oceanic Turbulence. Gidrometeoizdat, Leningrad.
Monin, A.S. & Yaglom, A.M. (1971). Statistical Fluid Mechanics. Mechanics of Turbulence, Vol. 1. MIT Press, Cambridge, London.
Monin, A.S. & Yaglom, A.M. (1975), Statistical Fluid Mechanics. Mechanics of Turbulence, Vol. 2. MIT Press, Cambridge, London.
Monin, A.S. & Yaglom, A.M. (1992). Statistical Fluid Mechanics: Theory of Turbulence, Vol. 1, 2nd Russian edition. Gidrometeoizdat, St Petersburg.
Munk, W. (1966). Abyssal recipes. Deep Sea Research 13, 707–30.
Murray, J.D. (1977). Lectures on Non-linear Differential Equation Models in Biology. Clarendon Press, Oxford.
Muskhelishvili, N.I. (1963). Some Basic Problems of the Mathematical Theory of Elasticity, 2nd English edition. P. Noordhoff, Groningen.
Muskhelishvili, N.I. (1966). Some Basic Problems of Mathematical Theory of Elasticity, 5th Russian edition. Nauka, Moscow.
Nigmatulin, R.I. (1965). A plane strong explosion on a boundary of two ideal, calor-ically perfect gases. Bulletin MGU, Ser. Matem. Mekh. 1, 83–7.
Nikuradse, J. (1932). Gesetzmässigkeiten der turbulenten Strömung in glatten Röhren. VDI Forschungscheft No. 356.
Nikolaeva, G.G. et al. (1975). Metabolism rate and size-weight characteristics of theRhithropanopeus harrisii tredantatus crab from the Caspian Sea. Oceanology USSR 15, 99–100.
Norton, F.H. (1929). Creep of Steel at High Temperatures. McGraw Hill, New York.
Novikov, S., Manakov, S.V., Pitaevsky, L.P. & Zakharov, V.E. (1984). Theory of Solitions: The Inverse Scattering Method. Consultants Bureau, New York, London.
Nowell, A.R.M. & Hollister, C.D. (1985). The objectives and rationale of HEBBLE. Marine Geology 66, 1–12.
Obukhov, A.M. (1941). On the distribution of energy in the spectrum of a turbulent flow. Doklady, USSR Ac. Sci. 32 (1), 22–4.
Obukhov, A.M. (1946). Turbulence in thermally inhomogeneous atmosphere. Proc. Inst. Theor. Geophys., USSR Ac. Sci. 1, 95–115.
Obukhov, A.M. (1962). Some specific features of atmospheric turbulence. J. Fluid Mech. 13 (1), 77–81.
Offen, G.R. & Kline, S.J. (1975). A proposed model of the bursting process in turbulent boundary layers. J. Fluid Mech. 70 (2), 209–28.
Oleinik, O.A. (1957). Discontinuous solutions of nonlinear differential equations. Uspekhi Mat. Nauk 12, 3(75), 3–73.
Oleynik, O.A., Kalashnikov, A.S. & Chzhou, Yui-lin (1958). The Cauchy problem and boundary problems for equations of the type of unsteady filtration. Izvestiya, USSR Ac. Sci., Ser. Mat. 22, 667–704.
Oppenheim, A.K., Kuhl, A.C. & Kamel, M.M. (1972). On self-similar blast waves headed by the Chapman-Jouguet detonation. J. Fluid Mech. 55 (2), 257–70.
Oppenheim, A.K., Kuhl, A.L., Lundstrom, E.A. & Kamel, M.M. (1971). A systematic exposition of the conservation equations for blast waves. J. Appl. Mech. 38 (4), 783–94.
Oppenheim, A.K., Lundström, E.A., Kuhl, A.C. & Kamel, M.M. (1972). A parametric study of self-similar blast waves. J. Fluid Mech. 52 (4), 657–82.
Orowan, E. (1949). Fracture and strength of solids. Rep. Progr. Phys. Soc. London 12, 185–232.
Ovsyannikov, L.V. (1978). Group Analysis of Differential Equations. Nauka, Moscow.
Panasyuk, V.V. (1968). Limiting Equilibrium of Brittle Bodies with Cracks. Naukova Dumka, Kiev.
Paquette, G.C., Chen, L.-Y., Goldenfeld, N. & Oono, Y. (1994). Structural stability and renormalization group for propagating fronts. Phys. Rev. Lett. 72, 76–9.
Paquette, G.C. & Oono, Y. (1994). Structural stability and selection of propagation fronts in semilinear partial diffferential equations. Phys. Rev. E 49, 2368–88.
Paris, P.C. & Erdogan, F. (1963). A critical analysis of crack propagation laws. J. Basic Eng. Trans. ASME, Ser. D. 85, 528–34.
Parkhomenko, V.P., Popov, S.P. & Ryzhov, O.S. (1977a). On the influence of the initial velocity of particles on the unsteady axisymmetric gas motions. Uchenye Zapiski (Research Notes) TSAGI, 8 (3), 32–8.
Parkhomenko, V.P., Popov, S.P. & Ryzhov, O.S. (1977b). On the influence of the initial velocity of particles on the unsteady spherically symmetric gas motions. Comput. Math, and Math. Phys. 15 (5), 1325–9.
Parvin, M. & Williams, J.G. (1975). The effect of temperature on the fracture of polycarbonate. J. Mater. Sci. 10 (11), 1883–6.
Patashinsky, A.Z. & Pokrovsky, V.L. (1966). On the behaviour of ordering systems near the phase transition point. J. Exp. Theor. Phys. 50 (2), 439–47.
Pattle, R.E. (1959). Diffusion from an instantaneous point source with a concentration-dependent coefficient. Quart. J. Mech. Appl. Math. 12, 407–9.
Pedlosky, J. (1979). Geophysical Fluid Dynamics. Springer-Verlag, New York, Heidelberg, Berlin.
Petrovsky, I.G. (1967). Lectures on Partial Differential Equations. Saunders, Philadelphia.
Phillips, O.M. (1967). The generation of clear-air turbulence by the degradation of internal waves. In Atmospheric Turbulence and the Propagation of Radio Waves, 130–8. Nauka, Moscow.
Phillips, O.M. (1976). Energy loss mechanisms from low-mode waves. Report on the Soviet-American Conference on Internal Waves, Novobirsk, December 1976.
Phillips, O.M. (1977). The Dynamics of the Upper Ocean, 2nd edition. Cambridge University Press, Princeton.
Polubarinova-Kochina, P.Ya. (1962). Theory of Groundwater Movement. Princeton University Press.
Prandtl, L. (1932a). Meteorologische Anwendungen der Strömungslehre. Beiträge Phys. Atmos. 19 (3), 188–202.
Prandtl, L. (1932b). Zur turbulenten Strömung in Röhren und längs Platten. Ergebn. Aerodyn. Versuchsanstalt, Göttingen B4, 18–29.
Prandtl, L. (1945). Ueber ein neues Formelsystem für die ausgebildete Turbulenz. Nach. Ges. Wiss. Gottingen, Math.-Phys. Kl, 6–18.
Praskovsky, A. & Oncley, S. (1994). Measurement of Kolmogorov constant and intermittency exponent at very high Reynolds numbers. Physics of Fluids 6 (9), 2886–2889.
Prostokishin, V.M. (1994). Private communication.
Raizer, Yu.P. (1968). A high-frequency high-pressure gas flow discharge as a slow combustion process. J. Appl. Mech. Tech. Phys. 9 (3), 239–43.
Raizer, Yu.P. (1970). Physical foundations of the theory of cracks in brittle fracture. Soviet Phys. Uspekhi 100 (2), 329–47.
Raizer, Yu.P. (1977). Laser-induced Discharge Phenomena. Consultants Bureau, New York.
Rao, K.N., Narasimha, R. & Badri Narayanan, M.A. (1971). The bursting phenomenon in a turbulent boundary layer. J. Fluid Mech. 48 (2), 339–52.
Reynolds, O. (1895). On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Phil. Trans. Roy. Soc. London 186, 123–64.
Reynolds, W.C. (1976). Computation of turbulent flows. An. Rev. Fluid Mech. 8, 183–208.
Richardson, L.F. (1922). Weather Prediction by Numerical Process. Cambridge University Press.
Richardson, L.F. (1961). The problem of contiguity: an appendix of statistics of deadly quarrels. General Systems Year Book 6, 139–87.
Roesler, F. (1956). Brittle fracture near equilibrium. Proc. Phys. Soc. B69, 981–92.
Rosen, J.B. (1954). Theory of laminar flame stability, I, II. J. Chem. Phys. 22 (4), 733–48.
Samarsky, A.A. & Sobol', I.M. (1963). Examples of numerical computation of temperature waves. Comput. Math, and Math. Phys. 3 (4), 702–16.
Sapunkow, Ia.G. (1967). Convergent detonation waves under Chapman-Jouguet conditions in media with variable and constant initial densities. Appl. Math. Mech. (PMM) 31 (5), 945–8.
Schlichting, H. (1968). Boundary Layer Theory, 6th edition. McGraw-Hill, New York.
Sedov, L.I. (1944). Decay of isotropic turbulent motions of an incompressible fluid. Doklady, USSR Ac. Sci. 42 (3), 121–4.
Sedov, L.I. (1945). On some unsteady motions of compressible fluids. Prikl. Mat. Mekh. 9 (4), 293–311.
Sedov, L.I. (1946). Propagation of strong shock waves. Prikl. Mat. Mekh. 10, 241–50, (Pergamon Translations, No. 1223).
Sedov, L.I. (1959). Similarity and Dimensional Methods in Mechanics. Academic Press, New York.
Sedov, L.I. (1971). A Course in Continuum Mechanics. Wolters-Noordhoff, Groningen.
SethuRaman, S. (1980). A case of persistent breaking of internal gravity waves in the atmospheric gravity waves in the atmospheric surface layer over the ocean. Boundary-layer Meteorology 19 (1), 67–80.
Shchelkachev, V.N. (1959). Development of Oil-water Strata Under Elastic Drive. Gostoptekhizdat, Moscow.
Shkadinsky, K.G., Khaikin, B.I. & Merzhanov, A.G. (1971). Propagation of a pulsating exothermic reaction front in the condensed phase. Comb. Expl. Shock Waves 7, 15–22.
Shushkina, E.A., Kus'micheva, V.I. & Ostapenko, L.A. (1971). Energy equivalent of body mass, respiration, and calorific value of mysids from the Sea of Japan. Oceanology USSR 11 (6), 880–3.
Sobolev, S.L. (1954). On a new problem of mathematical physics. Izvestiya, USSR Ac. Sci., ser. mat. 18 (1), 3–50.
Sneddon, I.N. (1951). Fourier Transforms. McGraw-Hill, New York.
Staniukovich, K.P. (1960). Unsteady Motion of Continuous Media. Pergamon Press, New York.
Sternberg, E. & Koiter, W.T. (1958). The wedge under a concentrated couple: a paradox in the two-dimensional theory of elasticity. J. Appl. Mech. 25 (4), 575–81.
Stewart, R.W. (1951). Triple velocity correlations in isotropic turbulence. Proc. Camb. Phil. Soc. 47, 146–57.
Stommel, H. (1958). The abyssal circulation. Deep Sea Research 5, 80–2.
Storåkers, B. & Larsson, P.L. (1994). On Brinell and Boussinesq indentation of creeping solids. J. Mech. Phys. Solids (in press).
Stückelberg, E.C.G. & Peterman, A. (1953). La normalisation des constantes dans la theorie des quanta. Helvetica Physica Acta XXVI, 499–520.
Swift, J. (1992) Gulliver's Travels. Wordsworth Classics (seep. 124).
Tabor, D. (1951). Hardness of Metals. Clarendon Press, Oxford.
Taffanel, M. (1913). Sur la combustion des mélanges gazeux et les vitessesde réaction. C. R. Ac. Sci. Paris 157, 714–7.
Taffanel, M. (1914). Sur la combustion des mélanges gazeux et les vitesses de réaction. C. R. Ac. Sci. Paris 158, 42–5.
Taylor, G.I. (1910). The conditions necessary for discontinuous motion in gases. Proc. Roy. Soc. A84, 371–7.
Taylor, G.I. (1935). Statistical theory of turbulence, I-IV. Proc. Roy. Soc. A151, 421–78.
Taylor, G.I. (1941). The formation of a blast wave by a very intense explosion. Report RC-210, 27 June 1941, Civil Defence Research Committee.
Taylor, G.I. (1950a). The formation of a blast wave by a very intense explosion. I, Theoretical discussion. Proc. Roy. Soc. A201, 159–74.
Taylor, G.I. (1950b). The formation of a blast wave by a very intense explosion. II. The atomic explosion of 1945. Proc. Roy. Soc. A201, 175–86.
Taylor, G.I. (1963). Scientific Papers, G.K., Batchelor (ed.), Vol. 3, Aerodynamics and the Mechanics of Projectiles and Explosions. Cambridge University Press.
Thompson, S.M. & Turner, J.S. (1975). Mixing across an interface due to turbulence generated by an oscillating grid. J. Fluid Mech. 67 (2), 349–68.
Ting, T.C.T. (1984). The wedge subjected to tractions: a paradox reexamined. J. Elasticity 14, 235–47.
Townsend, A.A. (1976). Structure of Turbulent Shear Flow, 2nd edition. Cambridge University Press.
Turner, J.S. (1968). The influence of molecular diffusivity on turbulent entrainment across a density interface. J. Fluid Mech. 33 (4), 639–6.
Turner, J.S. (1973). Buoyancy Effects in Fluids. Cambridge University Press.
Turner, J.S. (1978). The temperature profile below the surface mixed layer. Ocean Modelling 11, 6–8.
Van den Booghaart, A. (1966). Crazing and characterisation of brittle fracture in polymers. In Proc. Conf. Phys. Basis of Yield and Fracture, Oxford University Press.
Van Dyke, M. (1975). Perturbation Methods in Fluid Mechanics, 2nd edition. Parabolic Press, Stanford.
Van Dyke, M. (1982). An Album of Fluid Motions. Parabolic Press, Stanford.
Vanoni, V. (1946). Transportation of suspended sediment by water. Thins. Am. Soc. Civil Eng. 111, 67–133.
Vavakin, A.S. & Salganik, R.L. (1975). On experimental determination of rate dependence of fracture toughness. Izvestiya, USSR Ac. Sci., Mech. Solids 5, 127–33.
Vlasov, I.O., Derzhavina, A.I. & Ryzhov, O.S. (1974). On an explosion on the boundary of two media. Comput. Math, and Math. Phys. 14 (6), 1544–52.
von Kármán, Th. (1911). Über die Turbulenzreibung verschiedener Flüssigkeiten. Phys. Zeit. 12 (8), 1071–4.
von Kármán, Th. (1930). Mechanische Ahnlichkeit und Turbulenz. Nachrichten Ges. Wiss. Gottingen, Math-Phys. Kl, 58–76.
von Kármán, Th. (1957). Aerodynamics. Cornell University Press, Ithaca.
von Kármán, Th. & Howarth, L. (1938). On the statistical theory of isotropic turbulence. Proc. Roy. Soc. London A164 (917), 192–215.
von Koch, H. (1904). Sur une courbe continue sans tangente obtenue par une construction geometrique elementaire. Arkiv Mat. Astron. Fys. 2, 681–704.
von Neumann, J. (1941). The point source solution. National Defence Research Committee, Div. B, Report AM-9, June 30, 1941.
von Neumann, J. (1963). The point source solution, in Collected Works, Vol. VI, 219–37. Pergamon Press, Oxford, New York, London, Paris,
von Weizsäcker, C.F. (1954). Genäherte Darstellung starker instationärer Stosswellen durch Homologie-Lösungen. Z. Naturforschung 9a, 269–75.
Weatherly, G.L. & Kelly, E.A. (1982). ‘Too cold’ bottom layer at the bottom of Scotia Rise. J. Marine Res. 40, 985–1012.
Whitham, G.B. (1974). Linear and Nonlinear Waves. Wiley, New York.
Williams, M.L. (1952). Stress singularities resulting from various boundary conditions in angular corners of plates in extension. J. Appl. Mech. 19 (4), 526–8.
Wilson, K. (1971). Renormalization group and critical phenomena, I, II. Phys. Rev. B4 (9), 3174-83, 3184–205.
Woods, J.D. (1968). Wave-induced shear instability in the summer thermocline. J. Fluid Mech. 32 (4), 792–800.
Wu, J. (1969). Mixed region collapse with internal wave generation in a density stratified medium. J. Fluid Mech. 35 (3), 531–44.
Yaglom, A.M. (1974). Data on the characteristics of turbulence in the surface layer of the atmosphere. Izvestiya, USSR Ac. Sci., Atmos. Oceanic Phys. 10 (6), 566–86.
Zatsepin, A.G., Fedorov, K.N., Voropayev, S.I. & Pavlov, A.M. (1978). Experimental study of the spreading of a mixed region in a stratified fluid. Izvestiya, USSR Ac. Sci., Atmos. Oceanic Phys. 14 (2), 170–3.
Zeldovich, Ya.B. (1942). On the distribution of pressure and velocity in products of detonation blasts, in particular for spherically propagating detonation waves. Zhurn. Bksper. Teor. Fiz. 12 (9), 389–406.
Zeldovich, Ya.B. (1948). On the theory of flame propagation. Zhurn. Fiz. Khimii 22 (1), 27–48.
Zeldovich, Ya.B. (1956). The motion of a gas under the action of a short term pressure shock. Akust. Zh. 2 (1), 28–38, (Sov. Phys. Acoustics 2, 25-35).
Zeldovich, Ya.B. (1978). The flame propagation in a mixture reacting at the initial temperature. Preprint, Institute of Chemical Physics, Chernogolovka.
Zeldovich, Ya.B. (1992). Selected Works. Volume 1, Chemical Physics and Hydrodynamics. Princeton University Press, Princeton.
Zeldovich, Ya.B. & Barenblatt, G.I. (1958). The asymptotic properties of self-modeling solutions of the nonstationary gas filtration equations. Soviet Phys. Doklady 3 (1), 44–7.
Zeldovich, Ya.B., Barenblatt, G.I., Librovich, V.B. & Makhviladze, G.M. (1985). The Mathematical Theory of Combustion and Explosions. Consultants Bureau, New York, London.
Zeldovich, Ya.B. & Frank-Kamenetsky, D.A. (1938a). Theory of uniform propagation of flames. Doklady, USSR Ac. Sci. 19 (2), 693–7.
Zeldovich, Ya.B. & Frank-Kamenetsky, D.A. (1938b). Theory of uniform propagation of flames. Zhurn. Fiz. Khimii 12 (1), 100–5.
Zeldovich, Ya.B. & Kompaneets, A.S. (1950). On the theory of propagation of heat with thermal conductivity depending on temperature. In Collection of Papers Dedicated to the 70th Birthday of A.F. Ioffe, 61–71. Izd. Akad. Nauk USSR, Moscow.
Zeldovich, Ya.B. & Kompaneets, A.S. (1960). Theory of Detonation. Academic Press, New York.
Zeldovich, Ya.B. & Raizer, Yu.P. (1966). Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, Vol. I. Academic Press, New York, London.
Zeldovich, Ya.B. & Raizer, Yu.P. (1967). Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, Vol. II, Academic Press, New York, London.
Zheltov, Yu.P. & Christianovich, S.A. (1955). On the hydraulic fracture of the oil stratum. Izvestiya, USSR Ac. Sci. Techn. Sci. 5, 3–41.
Zhukov, A.I. & Kazhdan, Ia.M. (1956). Motion of a gas due to the effect of a brief impulse. Soviet Phys. Acoustics 2 (4), 375–381.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.