Skip to main content Accessibility help
×
  • Cited by 80
Publisher:
Cambridge University Press
Online publication date:
March 2010
Print publication year:
1998
Online ISBN:
9780511600708

Book description

This book focuses on the representation theory of q-Schur algebras and connections with the representation theory of Hecke algebras and quantum general linear groups. The aim is to present, from a unified point of view, quantum analogues of certain results known already in the classical case. The approach is largely homological, based on Kempf's vanishing theorem for quantum groups and the quasi-hereditary structure of the q-Schur algebras. Beginning with an introductory chapter dealing with the relationship between the ordinary general linear groups and their quantum analogies, the text goes on to discuss the Schur Functor and the 0-Schur algebra. The next chapter considers Steinberg's tensor product and infinitesimal theory. Later sections of the book discuss tilting modules; the Ringel dual of the q-Schur algebra; Specht modules for Hecke algebras; and the global dimension of the q-Schur algebras. An appendix gives a self-contained account of the theory of quasi-hereditary algebras and their associated tilting modules. This volume will be primarily of interest to researchers in algebra and related topics in pure mathematics.

Reviews

"This is a well-written book which should be accessible to a graduate student with a background in homological algebra. It will be of particular interest to researchers working on the representation theory of the general linear group and quantum groups." Proceedings of the Edinburgh Mathematical Society

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.