ReferencesAizenman, M. and Contucci, P. 1998. On the stability of the quenched state in mean-field spin-glass models. Journal of Statistical Physics, 92(5), 765–783.
Aizenman, M., Lebowitz, J.L., and Ruelle, D. 1987. Some rigorous results on the Sherrington—Kirkpatrick spin glass model. Communications in Mathematical Physics, 112(1), 3–20.
Aizenman, M., Sims, R., and Starr, S.L. 2003. Extended variational principle for the Sherrington—Kirkpatrick spin-glass model. Physical ReviewB, 68(21), 214403.
Aizenman, M., Sims, R., and Starr, S.L. 2007. Mean-field spin glass models from the cavity—ROSt perspective. Page 1 of: Prospects in Mathematical Physics: Young Researchers Symposium of the 14th International Congress on Mathematical Physics, July 25–26, 2003, Lisbon, Portugal. American Mathematical Society.
Almeida, J.R.L. and Thouless, D.J. 1978. Stability of the Sherrington—Kirkpatrick solution of a spin glass model. Journal of Physics A: Mathematical and General, 11, 983.
Arguin, L.P. 2007. A dynamical characterization of Poisson—Dirichlet distributions. Electronic Communication in Probability, 12, 283–290.
Arguin, L.P. 2008. Competing particle systems and the Ghirlanda—Guerra identities. Electronic Journal of Probability, 13, 2101–2117.
Arguin, L.P. and Aizenman, M. 2009. On the structure of quasi-stationary competing particle systems. Annals of Probability, 37(3), 1080–1113.
Arguin, L.P. and Chatterjee, S. 2010. Random overlap structures: properties and applications to spin glasses. Arxiv Preprint arXiv:1011.1823.
Barra, A. 2006. Irreducible free energy expansion and overlaps locking in mean field spin glasses. Journal of Statistical Physics, 123(3), 601–614.
Bauke, H. and Mertens, S. 2004. Universality in the level statistics of disordered systems. Physical ReviewE, 70(2), 25102.
Belletti, F., Cotallo, M., Cruz, et al. 2008. Nonequilibrium spin-glass dynamics from picoseconds to a tenth of a second. Physical Review Letters, 101(15), 157201.
Ben Arous, G., Dembo, A., and Guionnet, A. 2001. Aging of spherical spin glasses. Probability Theory and Related Fields, 120(1), 1–67.
Ben Arous, G., Bovier, A., and Gayrard, V. 2002. Aging in the random energy model. Physical Review Letters, 88(8), 87201.
Berestycki, N. 2009. Recent progress in coalescent theory. Ensaios Matematicos, 16, 1–193.
Berretti, A. 1985. Some properties of random Ising models. Journal of Statistical Physics, 38(3), 483–496.
Bhatt, R.N. and Young, A.P. 1988. Numerical studies of Ising spin glasses in two, three, and four dimensions. Physical ReviewB, 37(10), 5606.
Bianchi, A., Contucci, P., and Knauf, A. 2004. Stochastically stable quenched measures. Journal of Statistical Physics, 117(5), 831–844.
Billoire, A., Franz, S., and Marinari, E. 2003. On the tail of the overlap probability distribution in the Sherrington—Kirkpatrick model. Journal of Physics A: Mathematical and General, 36, 15.
Boettcher, S. 2005. Stiffness of the Edwards—Anderson model in all dimensions. Physical Review Letters, 95(19), 197205.
Bolthausen, E. and Kistler, N. 2009. On a nonhierarchical version of the generalized random energy model, II: Ultrametricity. Stochastic Processes and their Applications, 119(7), 2357–2386.
Bolthausen, E. and Sznitman, A.S. 1998. On Ruelle's probability cascades and an abstract cavity method. Communications in Mathematical Physics, 197(2), 247–276.
Bouchaud, J.P. 1992. Weak ergodicity breaking and aging in disordered systems. Journal de Physique I, 2(9), 1705–1713.
Bouchaud, J.P. 2005. Spin glasses: the saga continues!Journal Club for Condensed Matter Physics. www.condmatjournalclub.org/wp-content/uploads/2007/06/jccm novo5_02
Bouchaud, J.P. and Mézard, M. 1994. Self induced quenched disorder: a model for the glass transition. Journal de Physique I (France), 4, 1109.
Bovier, A. 2006. Statistical mechanics of disordered systems: a mathematical perspective. Cambridge University Press.
Bovier, A. and Kurkova, I. 2004a. Derrida's generalised random energy models 1: models with finitely many hierarchies. Annales de l'Institut Henri Poincaré—Probabilités et Statistiques, 40, 439–480.
Bovier, A. and Kurkova, I. 2004b. Derrida's generalized random energy models 2: models with continuous hierarchies. Annales de l'Institut Henri Poincaré—Probabilités et Statistiques, 40, 481–495.
Bovier, A. and Kurkova, I. 2006. Local energy statistics in disordered systems: a proof of the local REM conjecture. Communications in Mathematical Physics, 263(2), 513—533.
Bovier, A., Eckhoff, M., Gayrard, V., and Klein, M. 2001. Metastability in stochastic dynamics of disordered mean-field models. Probability Theory and Related Fields, 119(1), 99–161.
Bray, A.J. and Moore, M.A. 1984. Lower critical dimension of Ising spin glasses: a numerical study. Journal of Physics C: Solid State Physics, 17, L463.
Brézin, E. 2010. Introduction to Statistical Field Theory. Cambridge University Press.
Brézin, E., Franz, S., and Parisi, G. 2010. Critical interface: twisting spin glasses at Tc. Physical ReviewB, 82(14), 144427.
Cacciuto, A., Marinari, E., and Parisi, G. 1997. A numerical study of ultrametricity in finite-dimensional spin glasses. Journal of Physics A: Mathematical and General, 30, L263.
Carter, A.C., Bray, A.J., and Moore, M.A. 2002. Aspect-ratio scaling and the stiffness exponent θ for Ising spin glasses. Physical Review Letters, 88(7), 77201.
Chatterjee, S. 2009. The Ghirlanda—Guerra identities without averaging. Arxiv Preprint arXiv:0911.4520.
Contucci, P. 2002. Toward a classification of stochastically stable quenched measures. Markov Processes and Related Fields, 9(2), 167–176.
Contucci, P. 2003. Replica equivalence in the Edwards—Anderson model. Journal of Physics A: Mathematical and General, 36, 10961–10966.
Contucci, P. and Giardinà, C. 2005. Spin-glass stochastic stability: a rigorous proof. Annales Henri Poincaré, 6(5), 915–923.
Contucci, P. and Giardinà, C. 2007. The Ghirlanda—Guerra identities. Journal of Statistical Physics, 126(4), 917–931.
Contucci, P. and Graffi, S. 2004a. Monotonicity and thermodynamic limit for short range disordered models. Journal of Statistical Physics, 115(1), 581–589.
Contucci, P. and Graffi, S. 2004b. On the surface pressure for the Edwards—Anderson model. Communications in Mathematical Physics, 248(1), 207–216.
Contucci, P. and Lebowitz, J.L. 2007. Correlation inequalities for spin glasses. Annales Henri Poincaré, 8(8), 1461–1467.
Contucci, P. and Lebowitz, J.L. 2010. Correlation inequalities for quantum spin systems with quenched centered disorder. Journal of Mathematical Physics, 51, 023302.
Contucci, P. and Starr, S. 2009. Thermodynamic limit for spin glasses. Beyond the annealed bound. Journal of Statistical Physics, 135(5), 1159–1166.
Contucci, P. and Unguendoli, F. 2008. Correlation inequalities for spin glass in one dimension. Rendiconti Lincei, Matematica e Applicazioni, 19(2), 141–147.
Contucci, P., Graffi, S., and Isola, S. 2002. Mean field behaviour of spin systems with orthogonal interaction matrix. Journal of Statistical Physics, 106(5), 895–914.
Contucci, P., Degli, Esposti, M., Giardinà, C., and Graffi, S. 2003. Thermodynamical limit for correlated Gaussian random energy models. Communications in Mathematical Physics, 236(1), 55–63.
Contucci, P., Giardinà, C., and Pulé, J. 2004. Thermodynamic limit for finite dimensional classical and quantum disordered systems. Review in Mathematical Physics, 16(5), 629–637.
Contucci, P., Giardinà, C., Giberti, C., and Vernia, C. 2006. Overlap equivalence in the Edwards—Anderson model. Physical Review Letters, 96(21), 217204.
Contucci, P., Giardinà, C., Giberti, C., Parisi, G., and Vernia, C. 2007. Ultrametricity in the Edwards—Anderson model. Physical Review Letters, 99(5), 57206.
Contucci, P., Unguendoli, F., and Vernia, C. 2008. Lack of monotonicity in spin glass correlation functions. Journal of Physics A: Mathematical and Theoretical, 41, 385001.
Contucci, P., Giardinà, C., and Giberti, C. 2009a. Interaction-flip identities in spin glasses. Journal of Statistical Physics, 135(5), 1181–1203.
Contucci, P., Giardinà, C., and Nishimori, H. 2009b. Spin glass identities and the Nishimori line. Pages 103–121 of: Spin Glasses: Statics and Dynamics Spin Glasses: Statics and Dynamics. Summer School Paris, 2007. A. Boutet de Monvel and A. Bovier (Eds.). Birkhäauser, Basel-Boston-Berlin.
Contucci, P., Giardinà, C., Giberti, C., Parisi, G., and Vernia, C. 2009c. Structure of correlations in three dimensional spin glasses. Physical Review Letters, 103(1), 17201.
Contucci, P., Dommers, S., Giardinà, C., and Starr, S. 2011a. Antiferromagnetic Potts model on the Erdos—Rényi random graph. Arxiv Preprint arXiv:1106.4714.
Contucci, P., Giardinà, C., Giberti, C., Parisi, G., and Vernia, C. 2011b. Interface energy in the Edwards—Anderson model. Journal of Statistical Physics, 142, 1–10.
Contucci, P., Giardinà, C., and Giberti, C. 2011c. Stability of the spin glass phase under perturbations. Europhysics Letters, 96, 17003.
Cugliandolo, L.F. and Kurchan, J. 1993. Analytical solution of the off-equilibrium dynamics of a long-range spin-glass model. Physical Review Letters, 71(1), 173.
Cugliandolo, L.F. and Kurchan, J. 2008. The out-of-equilibrium dynamics of the Sherrington—Kirkpatrick model. Journal of Physics A: Mathematical and Theoretical, 41, 324018.
Das, A. and Chakrabarti, B.K. 2005. Quantum Annealing and Related Optimization Methods. Vol. 679. Springer Verlag.
De Dominicis, C. and Giardinà, I. 2006. Random Fields and Spin Glasses: a Field Theory Approach. Cambridge University Press.
De Dominicis, C., Kondor, I., and Temesvari, T. 1998. Beyond the Sherrington—Kirkpatrick model. Spin Glasses and Random Fields (Young, A.P. Editor), World Scientific, 119—160.
De Dominicis, C., Giardinà, I., Marinari, E., Martin, O.C., and Zuliani, F. 2005. Spatial correlation functions in three-dimensional Ising spin glasses. Physical ReviewB, 72(1), 014443.
Degli Esposti, M., Giardinà, C., Graffi, S., and Isola, S. 2001. Statistics of energy levels and zero temperature dynamics for deterministic spin models with glassy behaviour. Journal of Statistical Physics, 102(5), 1285–1313.
Degli Esposti, M., Giardinà, C., and Graffi, S. 2003. Energy landscape statistics of the random orthogonal model. Journal of Physics A: Mathematical and General, 36, 2983.
Derrida, B. 1980. Random-energy model: limit of a family of disordered models. Physical Review Letters, 45(2), 79–82.
Derrida, B. 1981. Random-energy model: An exactly solvable model of disordered systems. Physical ReviewB, 24(5), 2613–2626.
Derrida, B. 1985. A generalization of the random energy model which includes correlations between energies. Journal de Physique Lettres, 46(9), 401–407.
Derrida, B. 1997. From random walks to spin glasses. Physica D: Nonlinear Phenomena, 107(2–4), 186–198.
Derrida, B. and Gardner, E. 1986. Solution of the generalised random energy model. Journal of Physics C: Solid State Physics, 19, 2253–2274.
Diestel, R. 2000. Graph Theory. Springer.
Dorlas, T.C. and Wedagedera, J.R. 2001. Large deviations and the random energy model. International Journal of Modern PhysicsB, 15(1), 1–16.
Dyson, F.J., Lieb, E.H., and Simon, B. 1978. Phase transitions in quantum spin systems with isotropic and nonisotropic interactions. Journal of Statistical Physics, 18(4), 335–383.
Edwards, S.F. and Anderson, P.W. 1975. Theory of spin glasses. Journal of Physics F: Metal Physics, 5, 965.
Eisele, T. 1983. On a third-order phase transition. Communications in Mathematical Physics, 90(1), 125–159.
Ellis, R.S. and Newman, C.M. 1978. Limit theorems for sums of dependent random variables occurring in statistical mechanics. Probability Theory and Related Fields, 44(2), 117–139.
Fisher, D.S. and Huse, D.A. 1986. Ordered phase of short-range Ising spin-glasses. Physical Review Letters, 56(15), 1601–1604.
Fisher, D.S. and Huse, D.A. 1988. Equilibrium behavior of the spin-glass ordered phase. Physical ReviewB, 38(1), 386–411.
Fisher, M.E. 1964. The free energy of a macroscopic system. Archive for Rational Mechanics and Analysis, 17(5), 377–410.
Fisher, M.E. and Caginalp, G. 1977. Wall and boundary free energies. Communications in Mathematical Physics, 56(1), 11–56.
Fisher, M.E. and Lebowitz, J.L. 1970. Asymptotic free energy of a system with periodic boundary conditions. Communications in Mathematical Physics, 19(4), 251–272.
Franz, S. and Ricci-Tersenghi, F. 2000. Ultrametricity in three-dimensional Edwards—Anderson spin glasses. Physical ReviewE, 61(2), 1121.
Franz, S. and Toninelli, F.L. 2004. Kac limit for finite-range spin glasses. Physical Review Letters, 92(3), 30602.
Franz, S., Parisi, G., and Virasoro, M.A. 1992. The replica method on and off equilibrium. Journal de Physique I, 2(10), 1869–1880.
Franz, S., Parisi, G., and Virasoro, M.A. 1994. Interfaces and lower critical dimension in a spin glass model. Journal de Physique I (France), 4(11), 1657–1667.
Franz, S., Mézard, M., Parisi, G., and Peliti, L. 1998. Measuring equilibrium properties in aging systems. Physical Review Letters, 81(9), 1758–1761.
Franz, S., Mezard, M., Parisi, G., and Peliti, L. 1999. The response of glassy systems to random perturbations: a bridge between equilibrium and off-equilibrium. Journal of Statistical Physics, 97(3), 459–488.
Franz, S., Leone, M., and Toninelli, F.L. 2003. Replica bounds for diluted non-Poissonian spin systems. Journal of Physics A: Mathematical and General, 36, 10967.
Gandolfi, A., Newman, C.M., and Stein, D.L. 1993. Exotic states in long-range spin glasses. Communications in Mathematical Physics, 157(2), 371–387.
Ghirlanda, S. and Guerra, F. 1998. General properties of overlap probability distributions in disordered spin systems. Towards Parisi ultrametricity. Journal of Physics A: Mathematical and General, 31, 9149.
Giardinà, C. and Starr, S. 2007. Variational bounds for the generalized random energy model. Journal of Statistical Physics, 127(1), 1–20.
Ginibre, J. 1970. In: Cargese Lectures in Physics. Gordon and Breach, New York.
Glimm, J. and Jaffe, A. 1981. Quantum Physics: A Functional Integral Point of View. Springer Verlag.
Griffiths, R.B. 1967a. Correlations in Ising ferromagnets. I. Journal of Mathematical Physics, 8, 478–483.
Griffiths, R.B. 1967b. Correlations in Ising ferromagnets. II. External magnetic fields. Journal of Mathematical Physics, 8, 484–489.
Guerra, F. 1972. Uniqueness of the vacuum energy density and van Hove phenomenon in the infinite-volume limit for two-dimensional self-coupled Bose fields. Physical Review Letters, 28(18), 1213–1215.
Guerra, F. 1995. The cavity method in the mean field spin glass model. Functional representations of thermodynamic variables. Advances in Dynamical Systems and Quantum Physics, S. Albeverio et al., eds, World Scientific, Singapore.
Guerra, F. 2003. Broken replica symmetry bounds in the mean field spin glass model. Communications in Mathematical Physics, 233(1), 1–12.
Guerra, F. 2006. The replica symmetric region in the Sherrington—Kirkpatrick mean field spin glass model. The Almeida—Thouless line. Arxiv Preprint cond-mat/0604674.
Guerra, F. and Toninelli, F.L. 2002. The thermodynamic limit in mean field spin glass models. Communications in Mathematical Physics, 230(1), 71–79.
Guerra, F. and Toninelli, F.L. 2003. The infinite volume limit in generalized mean field disordered models. Markov Processes and Related Fields, 9, 195–207.
Guerra, F., Rosen, L., and Simon, B. 1976. Boundary conditions in the P (φ)2 Euclidean field theory. Annales Institute Henri Poincare, 15, 213–334.
Hasenbusch, M., Pelissetto, A., and Vicari, E. 2008. The critical behavior of 3D Ising spin glass models: universality and scaling corrections. Journal of Statistical Mechanics: Theory and Experiment, 2008, L02001.
Hed, G., Young, A.P., and Domany, E. 2004. Lack of ultrametricity in the low-temperature phase of three-dimensional ising spin glasses. Physical Review Letters, 92(15), 157201.
Hukushima, K. and Nemoto, K. 1996. Exchange Monte Carlo method and application to spin glass simulations. Journal of the Physical Society of Japan, 65(6), 1604–1608.
Iniguez, D., Parisi, G., and Ruiz-Lorenzo, J.J. 1996. Simulation of three-dimensional Ising spin glass model using three replicas: study of Binder cumulants. Journal of Physics A: Mathematical and General, 29, 4337.
Jana, N.K. and Rao, B.V. 2006. Generalized random energy model. Journal of Statistical Physics, 123(5), 1033–1058.
Jimenez, S., Martin-Mayor, V., Parisi, G., and Tarancón, A. 2003. Ageing in spin-glasses in three, four and infinite dimensions. Journal of Physics A: Mathematical and General, 36, 10755.
Kahane, J.P. 1986. Une inegalité du type de Slepian et Gordon sur les processus gaussiens. Israel Journal of Mathematics, 55(1), 109–110.
Kelly, D.G. and Sherman, S. 1968. General Griffiths' inequalities on correlations in Ising ferromagnets. Journal of Mathematical Physics, 9, 466–484.
Khanin, K.M. and Sinai, Y.G. 1979. Existence of free energy for models with long-range random Hamiltonians. Journal of Statistical Physics, 20(6), 573–584.
Kingman, J.F.C. 1975. Random discrete distributions. Journal of the Royal Statistical Society. Series B (Methodological), 1–22.
Kingman, J.F.C. 1982. The coalescent. Stochastic Processes and their Applications, 13(3), 235–248.
Kirk, G.S., Raven, R.E., and Schoeld, M. 1995. The Presocratic Philosophers. Cambridge University Press.
Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P. 1983. Optimization by simulated annealing. Science, 220(4598), 671.
Krzakala, F. and Martin, O.C. 2000. Spin and link overlaps in three-dimensional spin glasses. Physical Review Letters, 85(14), 3013–3016.
Kubo, R., Toda, M., and Hashitsume, N. 1991. Statistical Physics. Springer, Berlin.
Landau, L.D. and Lifshitz, E.M. 1969. Statistical Physics. Elsevier Ltd, Oxford.
Ledrappier, F. 1977. Pressure and variational principle for random Ising model. Communications in Mathematical Physics, 56(3), 297–302.
Lukic, J., Galluccio, A., Marinari, E., Martin, O.C., and Rinaldi, G. 2004. Critical thermodynamics of the two-dimensional ± J Ising spin glass. Physical Review Letters, 92(11), 117202.
Marinari, E. and Parisi, G. 1992. Simulated tempering: a new Monte Carlo scheme. Euro-physics Letters, 19, 451.
Marinari, E. and Parisi, G. 2001. Effects of a bulk perturbation on the ground state of 3D Ising spin glasses. Physical Review Letters, 86(17), 3887–3890.
Marinari, E., Parisi, G., and Ritort, F. 1994a. Replica field theory for deterministic models: I. Binary sequences with low autocorrelation. Journal of Physics A: Mathematical and General, 27, 7615.
Marinari, E., Parisi, G. and Ritort, F. 1994b. Replica field theory for deterministic models. II. A non-random spin glass with glassy behaviour. Journal of Physics A: Mathematical and General, 27, 7647.
Marinari, E., Parisi, G. and Ruiz-Lorenzo, J.J. 1997. Numerical simulations of spin glass systems. Spin Glasses and Random Fields (Young, A.P. Editor), World Scientific, 59–98.
Marinari, E., Parisi, G., Ricci-Tersenghi, F., Ruiz-Lorenzo, J.J., and Zuliani, F. 2000. Replica symmetry breaking in short-range spin glasses: theoretical foundations and numerical evidences. Journal of Statistical Physics, 98(5), 973–1074.
Mattis, D.C. 1976. Solvable spin models with random interactions. Physics LettersA, 56, 421–422.
Mézard, M. and Montanari, A. 2009. Information, Physics, and Computation. Oxford University Press, USA.
Mézard, M. and Parisi, G. 2001. The Bethe lattice spin glass revisited. The European Physical Journal B-Condensed Matter and Complex Systems, 20(2), 217–233.
Mézard, M., Parisi, G., Sourlas, N., Toulouse, G., and Virasoro, M. 1984. Nature of the spin-glass phase. Physical Review Letters, 52(13), 1156–1159.
Mézard, M., Parisi, G., and Virasoro, M.A. 1987. Spin glass theory and beyond. World Scientific Singapore.
Mézard, M., Parisi, G., and Zecchina, R. 2002. Analytic and algorithmic solution of random satisfiability problems. Science, 297(5582), 812.
Morita, S. and Nishimori, H. 2008. Mathematical foundation of quantum annealing. Journal of Mathematical Physics, 49, 125210.
Morita, S., Nishimori, H., and Contucci, P. 2004. Griffiths inequalities for the Gaussian spin glass. Journal of Physics A: Mathematical and General, 37, L203.
Morita, S., Nishimori, H., and Contucci, P. 2005. Griffiths inequalities in the Nishimori Line. Progress of Theoretical Physics — Supplement, 157, 73–76.
Neveu, J. 1992. A continuous-state branching process in relation with the GREM model of spin glass theory. Rapport Interne No 267, Ecole Polytechnique.
Newman, C.M. 1997. Topics in disordered systems. Birkhäauser.
Newman, C.M. and Stein, D.L. 1992. Multiple states and thermodynamic limits in short-ranged Ising spin-glass models. Physical ReviewB, 46(2), 973.
Newman, C.M. and Stein, D.L. 1996. Non-mean-field behavior of realistic spin glasses. Physical Review Letters, 76(3), 515–518.
Newman, C.M. and Stein, D.L. 1998. Thermodynamic chaos and the structure of short-range spin glasses. Progress in Probability, 243–288.
Newman, C.M. and Stein, D.L. 2001. Interfaces and the question of regional congruence in spin glasses. Physical Review Letters, 87(7), 77201.
Newman, C.M. and Stein, D.L. 2002. The state(s) of replica symmetry breaking: Mean field theories vs. short-ranged spin glasses. Journal of Statistical Physics, 106(1), 213–244.
Newman, C.M. and Stein, D.L. 2003a. Finite-dimensional spin glasses: states, excitations, and interfaces. Annales Henri Poincaré, 4, 497–503.
Newman, C.M. and Stein, D.L. 2003b. Ordering and broken symmetry in short-ranged spin glasses. Journal of Physics: Condensed Matter, 15, R1319.
Nishimori, H. 1981. Internal energy, specific heat and correlation function of the bond-random Ising model. Progress of Theoretical Physics, 66(4), 1169–1181.
Nishimori, H. 2001. Statistical physics of spin glasses and information processing: an introduction. Oxford University Press, USA.
Ogielski, A.T. and Morgenstern, I. 1985. Critical behavior of three-dimensional Ising spin-glass model. Physical Review Letters, 54(9), 928–931.
Olivieri, E. and Picco, P. 1984. On the existence of thermodynamics for the random energy model. Communications in Mathematical Physics, 96(1), 125–144.
Onsager, L. 1936. Electric moments of molecules in liquids. Journal of the American Chemical Society, 58(8), 1486–1493.
Palassini, M. and Young, A.P. 2000. Nature of the spin glass state. Physical Review Letters, 85(14), 3017–3020.
Panchenko, D. 2010a. A connection between the Ghirlanda—Guerra identities and ultra-metricity. The Annals of Probability, 38(1), 327–347.
Panchenko, D. 2010b. The Ghirlanda—Guerra identities for mixed p-spin model. Comptes Rendus Mathematique, 348(3–4), 189–192.
Panchenko, D. 2011a. The Parisi ultrametricity conjecture. Arxiv Preprint arXiv:1112.1003.
Panchenko, D. 2011b. A unified stability property in spin glasses. Arxiv Preprint arXiv:1106.3954.
Parisi, G. 1979a. Infinite number of order parameters for spin-glasses. Physical Review Letters, 43(23), 1754–1756.
Parisi, G. 1979b. Toward a mean field theory for spin glasses. Physics Letters A, 73(3), 203–205.
Parisi, G. 1980a. Magnetic properties of spin glasses in a new mean field theory. Journal of Physics A: Mathematical and General, 13, 1887.
Parisi, G. 1980b. The order parameter for spin glasses: A function on the interval 0-1. Journal of Physics A: Mathematical and General, 13, 1101.
Parisi, G. 1980c. A sequence of approximated solutions to the SK model for spin glasses. Journal of Physics A: Mathematical and General, 13, L115.
Parisi, G. 1983. Order parameter for spin-glasses. Physical Review Letters, 50(24), 1946—1948.
Parisi, G. 2001. Stochastic stability. Pages 73–80 of: AIP Conference Proceedings.
Parisi, G. 2004. On the probabilistic formulation of the replica approach to spin glasses. International Journal of Modern PhysicsB, 18, 733–744.
Parisi, G. 2006. Spin glasses and fragile glasses: Statics, dynamics, and complexity. Proceedings National Academy Sciences, 103(21), 7948–7955.
Parisi, G. and Ricci-Tersenghi, F. 2000. On the origin of ultrametricity. Journal of Physics A: Mathematical and General, 33, 113.
Pastur, L.A. and Figotin, A.L. 1978. Theory of disordered spin systems. Theoretical and Mathematical Physics, 35(2), 403–414.
Pastur, L.A. and Shcherbina, M.V. 1991. Absence of self-averaging of the order parameter in the Sherrington—Kirkpatrick model. Journal of Statistical Physics, 62(1), 1–19.
Perman, M., Pitman, J., and Yor, M. 1992. Size-biased sampling of Poisson point processes and excursions. Probability Theory and Related Fields, 92(1), 21–39.
Pitman, J. 2006. Combinatorial Stochastic Processes. Lectures Notes in Mathematics, Ecole d'Eté de probabilités de Saint-Flour XXXII-2002. Vol 1875. Springer, Berlin.
Pitman, J. and Yor, M. 1997. The two-parameter Poisson—Dirichlet distribution derived from a stable subordinator. The Annals of Probability, 855–900.
Ruelle, D. 1987. A mathematical reformulation of Derrida's REM and GREM. Communications in Mathematical Physics, 108(2), 225–239.
Ruelle, D. 1999. Statistical mechanics: Rigorous results. World Scientific.
Ruzmaikina, A. and Aizenman, M. 2005. Characterization of invariant measures at the leading edge for competing particle systems. Annals of Probability, 82–113.
Sachdev, S. 2001. Quantum Phase Transitions. Cambridge University Press.
Sherrington, D. and Kirkpatrick, S. 1975. Solvable model of a spin-glass. Physical Review Letters, 35(26), 1792–1796.
Simon, B. 1993. The Statistical Mechanics of Lattice Gases. University Presses of California, Columbia and Princeton, New Jersey.
Slepian, D. 1962. The one-sided barrier problem for Gaussian noise. Bell System Technical Journal, 41(2), 463–501.
Sollich, P. and Barra, A. 2012. Notes on the polynomial identities in random overlap structures. Arxiv Preprint arXiv:1201.3483.
Sompolinsky, H. and Zippelius, A. 1982. Relaxational dynamics of the Edwards—Anderson model and the mean-field theory of spin-glasses. Physical Review B, 25(11), 6860.
Sourlas, N. 2005. Soft annealing: a new approach to difficult computational problems. Physical Review Letters, 94(7), 70601.
Southern, B.W. and Young, A.P. 1977. Real space rescaling study of spin glass behaviour in three dimensions. Journal of Physics C: Solid State Physics, 10, 2179.
Talagrand, M. 2002. Gaussian averages, Bernoulli averages, and Gibbs' measures. Random Structures and Algorithms, 21(3–4), 197–204.
Talagrand, M. 2006. The Parisi formula. Annals of Mathematics, 163(1), 221–264.
Talagrand, M. 2010a. Construction of pure states in mean field models for spin glasses. Probability Theory and Related Fields, 148, 601–643.
Talagrand, M. 2010b. Spin glasses: a challenge for mathematicians: cavity and mean field models. Springer Verlag.
Temesvari, T. 2007. Replica symmetric spin glass field theory. Nuclear PhysicsB, 772(3), 340–370.
Temesvari, T. and De Dominicis, C. 2002. Replica field theory and renormalization group for the Ising spin glass in an external magnetic field. Physical Review Letters, 89(9), 97204.
Thouless, D.J., Anderson, P.W., and Palmer, R.G. 1977. Solution of ‘solvable model of a spin glass’. Philosophical Magazine, 35, 593–601.
Toninelli, F.L. 2002. About the Almeida—Thouless transition line in the Sherrington— Kirkpatrick mean-field spin glass model. Europhysics Letters, 60, 764.
Toulouse, G. 1977. Theory of the frustration effect in spin glasses: I. Communication Physics, 2(4), 115–119.
Van der Hofstad, R. 2012. Random graphs and complex networks. Lectures notes in preparation (2012). See http://www.win.tue.nl/rhofstad/NotesRGCN.pdf.
Van Enter, A.C.D. 1990. Stiffness exponent, number of pure states, and Almeida-Thouless line in spin-glasses. Journal of Statistical Physics, 60(1), 275–279.
Van Enter, A.C.D. and de Groote, E. 2011. An ultrametric state space with a dense discrete overlap distribution: Paperfolding sequences. Journal of Statistical Physics, 142(2), 223–228.
Van Enter, A.C.D. and van Hemmen, J.L. 1983. The thermodynamic limit for long-range random systems. Journal of Statistical Physics, 32(1), 141–152.
Van Enter, A.C.D., Hof, A., and Miekisz, J. 1992. Overlap distributions for deterministic systems with many pure states. Journal of Physics A: Mathematical and General, 25, L1133.
Vuillermot, P.A. 1977. Thermodynamics of quenched random spin systems, and application to the problem of phase transitions in magnetic (spin) glasses. Journal of Physics A: Mathematical and General, 10, 1319.
Zegarlinski, B. 1991. Interactions and pressure functionals for disordered lattice systems. Communications in Mathematical Physics, 139(2), 305–339.