Skip to main content Accessibility help
×
  • Cited by 27
Publisher:
Cambridge University Press
Online publication date:
June 2018
Print publication year:
2018
Online ISBN:
9781139194006

Book description

Permutation groups, their fundamental theory and applications are discussed in this introductory book. It focuses on those groups that are most useful for studying symmetric structures such as graphs, codes and designs. Modern treatments of the O'Nan–Scott theory are presented not only for primitive permutation groups but also for the larger families of quasiprimitive and innately transitive groups, including several classes of infinite permutation groups. Their precision is sharpened by the introduction of a cartesian decomposition concept. This facilitates reduction arguments for primitive groups analogous to those, using orbits and partitions, that reduce problems about general permutation groups to primitive groups. The results are particularly powerful for finite groups, where the finite simple group classification is invoked. Applications are given in algebra and combinatorics to group actions that preserve cartesian product structures. Students and researchers with an interest in mathematical symmetry will find the book enjoyable and useful.

Reviews

'This is a thorough reference book that consists of three parts … In summary, the book is an impressive collection of theorems and their proofs.'

Miklós Bóna Source: MAA Reviews

'One of the most important achievements of this book is building the first formal theory on G-invariant cartesian decompositions; this brings to the fore a better knowledge of the O'Nan–Scott theorem for primitive, quasiprimitive, and innately transitive groups, together with the embeddings among these groups. This is a valuable, useful, and beautiful book.'

Pablo Spiga Source: Mathematical Reviews

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.