Skip to main content Accessibility help
×
  • Cited by 211
Publisher:
Cambridge University Press
Online publication date:
January 2010
Print publication year:
2007
Online ISBN:
9780511618864

Book description

This wide ranging but self-contained account of the spectral theory of non-self-adjoint linear operators is ideal for postgraduate students and researchers, and contains many illustrative examples and exercises. Fredholm theory, Hilbert-Schmidt and trace class operators are discussed, as are one-parameter semigroups and perturbations of their generators. Two chapters are devoted to using these tools to analyze Markov semigroups. The text also provides a thorough account of the new theory of pseudospectra, and presents the recent analysis by the author and Barry Simon of the form of the pseudospectra at the boundary of the numerical range. This was a key ingredient in the determination of properties of the zeros of certain orthogonal polynomials on the unit circle. Finally, two methods, both very recent, for obtaining bounds on the eigenvalues of non-self-adjoint Schrodinger operators are described. The text concludes with a description of the surprising spectral properties of the non-self-adjoint harmonic oscillator.

Reviews

'One will look in vain for the notions of pseudospectrum, hull and numerical range in standard functional analysis texts, so Davies has done us a great service by explaining them through beautiful theorems and examples. More generally, his book is the first to offer a comprehensive survey of the spectral theory of non-self-adjoint operators, including both 'classical' and 'cutting edge' results, showing that this theory holds as much promise as the self-adjoint theory in both foundations and application. The scope of the book is truly enormous and is only partly reflected by listing the chapter titles … [a] beautiful volume, which has no competitors.'

Source: The Mathematical Intelligencer

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.