Skip to main content Accessibility help
×
  • Cited by 564
Publisher:
Cambridge University Press
Online publication date:
July 2010
Print publication year:
2004
Online ISBN:
9780511755323

Book description

Lévy processes form a wide and rich class of random process, and have many applications ranging from physics to finance. Stochastic calculus is the mathematics of systems interacting with random noise. For the first time in a book, Applebaum ties the two subjects together. He begins with an introduction to the general theory of Lévy processes. The second part develops the stochastic calculus for Lévy processes in a direct and accessible way. En route, the reader is introduced to important concepts in modern probability theory, such as martingales, semimartingales, Markov and Feller processes, semigroups and generators, and the theory of Dirichlet forms. There is a careful development of stochastic integrals and stochastic differential equations driven by Lévy processes. The book introduces all the tools that are needed for the stochastic approach to option pricing, including Itô's formula, Girsanov's theorem and the martingale representation theorem.

Reviews

'… the monograph closes the gap between classical textbooks on stochastic analysis where either Brownian motion or general semimartingales are considered. … Besides standard results on existence and uniqueness of a solution and its Markov property, more advanced concepts are presented, such as representation of the solutions as Feller processes and as a stochastic flow.'

Source: Zentralblatt MATH

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.