[1] G., Abrams, C., Menini, Categorical equivalences and realization theorems, J. Pure Appl. Algebra 113 (1996), no. 2, 107–120.
[2] G., Abrams, G., Aranda Pino, The Leavitt path algebra of a graph, J. Algebra 293 (2005), no. 2, 319–334.
[3] G., Abrams, P.N., Ánh, A., Louly, E., Pardo, The classification question for Leavitt path algebras, J. Algebra 320 (2008), no. 5, 1983–2026.
[4] F.W., Anderson, K.R., Fuller, Rings and categories of modules, Second Edition, Graduate Texts in Mathematics, Springer-Verlag 1992.
[5] P., Ara, M.A., Moreno, E., Pardo, Nonstable K-theory for graph algebras, Algebr. Represent. Theory 10 (2007), no. 2, 157–178.
[6] P., Ara, M., Brustenga, K1 of corner skew Laurent polynomial rings and applications, Comm. Algebra 33 (2005), no. 7, 2231–2252.
[7] P., Ara, M.A., González-Barroso, K.R., Goodearl, E., Pardo, Fractional skew monoid rings, J. Algebra 278 (2004), no. 1, 104–126.
[8] P., Ara, A., Facchini, Direct sum decompositions of modules, almost trace ideals, and pullbacks of monoids, Forum Math. 18 (2006), 365–389.
[9] M., Artin, J.J., Zhang, Noncommutative projective schemes, Adv. Math. 109 (1994), no. 2, 228–287.
[10] Yu.A., Bahturin, S.K., Sehgal, M.V., Zaicev, Group gradings on associative algebras, J. Algebra 241 (2001), 677–698.
[11] I.N., Balaba, A.L., Kanunnikov, A.V., Mikhalev, Quotient rings of graded associative rings I, Journal of Mathematical Sciences 186 No. 4, (2012), 531–577.
[12] C., Barnett, V., Camillo, Idempotents in matrix rings, Proc. Amer. Math. Soc. 122.4 (1994), 965–969.
[13] H., Bass, Algebraic K-theory, W. A. Benjamin, Inc., New York, Amsterdam 1968.
[14] H., Bass, K1-theory and stable algebra, Publ. Math. IHES 22 (1964), 5–60.
[15] H., Bass, M., Pavaman Murthy, Grothendieck groups and Picard groups of abelian group rings, Ann. of Math. (2) 86 (1967) 16–73.
[16] H., Bass, Lectures on topics in algebraic K-theory, Notes by Amit, Roy, Tata Inst. Research Lectures on Math., No. 41, Tata Institute of Fundamental Research, Bombay, 1967.
[17] M., Beattie, A., del Río, The Picard group of a category of graded modules, Comm. Algebra 24 (1996), no. 14, 4397–4414.
[18] M., Beattie, A., del Río, Graded equivalences and Picard groups, J. Pure Appl. Algebra 141 (1999), no. 2, 131–152.
[19] G., Bergman, On Jacobson radicals of graded rings, unpublished notes. Available from math.berkeley.edu/~gbergman/papers/unpub/
[20] M., van den Bergh, A note on graded K-theory, Comm. Algebra 14 (1986), no. 8, 1561–1564.
[21] A.J., Berrick, M.E., Keating, Rectangular invertible matrices, Amer. Math. Monthly 104 (1997), no. 4, 297–302.
[22] P., Boisen, Graded Morita theory, J. Algebra 164 (1994), no. 1, 1–25.
[23] A., Borovik, Mathematics under the microscope, American Mathematical Society Publication, Providence, 2010.
[24] N., Bourbaki, Algebra I. Chapters 1–3. Translated from the French. Elements of Mathematics, Springer-Verlag, Berlin, 1998.
[25] M., BoyleSymbolic dynamics and matrices, Combinatorial and Graph-Theoretic Problems in Linear Algebra (IMA Volumes in Math and Appl., 50). Eds. R., Brualdi, S., Friedland and V., Klee. Springer, 1993, 1–38.
[26] S., Caenepeel, F., Van Oystaeyen, Brauer groups and the cohomology of graded rings, Monographs and Textbooks in Pure and Appl. Math., 121, Marcel Dekker, Inc., New York, 1988.
[27] S., Caenepeel, S., Dăscălescu, C., Năstăsescu, On gradings of matrix algebras and descent theory, Comm. Algebra 30 (2002), no. 12, 5901–5920.
[28] P.M., Cohn, Some remarks on the invariant basis property, Topology 5 (1966), 215–228.
[29] M., Cohen, S., Montgomery, Group-graded rings, smash products, and group actions, Trans. Amer. Math. Soc. 282 (1984), no. 1, 237–258. Addendum: Trans. Amer. Math. Soc. 300 (1987), no. 2, 810–811.
[30] J., Cuntz, R., Meyer, J., Rosenberg, Topological and bivariant K-theory, Oberwolfach Seminars, 36. Birkhäuser Verlag, Basel, 2007.
[31] C.W., Curtis, I., Reiner, Methods of representation theory with applications to finite groups and orders, Vol. II, Pure Appl. Math., Wiley-Interscience, 1987.
[32] E., Dade, Group-graded rings and modules, Math. Z. 174 (1980), no. 3, 241–262.
[33] E., Dade, The equivalence of various generalizations of group rings and modules, Math. Z. 181 (1982), no. 3, 335–344.
[34] S., Dăscălescu, B., Ion, C., Năstăsescu, J., Rios Montes, Group gradings on full matrix rings, J. Algebra 220 (1999), no. 2, 709–728.
[35] P.K., Draxl, Skew fields, London Mathematical Society Lecture Note Series, 81, Cambridge University Press, Cambridge, 1983.
[36] G.A., Elliott, On the classification of inductive limits of sequences of semisimple finite-dimensional algebras, J. Algebra 38 (1976), no. 1, 29–44.
[37] E.G., Effros, Dimensions and C*-algebras, CBMS Regional Conference Series in Mathematics, 46 AMS, 1981.
[38] A., Fröhlich, The Picard group of nonzero rings, in particular of orders, Trans. Amer. Math. Soc. 180, (1973) 1–46.
[39] S.M., Gersten, K-theory of free rings, Comm. Algebra 1 (1974), 39–64.
[40] K.R., Goodearl, Von Neumann regular rings, Second Edition, Krieger Publishing Co., Malabar, FL, 1991.
[41] K.R., Goodearl, D.E., Handelman, Classification of ring and C*-algebra direct limits of finite-dimensional semisimple real algebras, Mem. Amer. Math. Soc. 69 (1987), no. 372.
[42] R., Gordon, E.L., Green, Graded Artin algebras, J. Algebra 76 (1982), 111–137.
[43] J., Haefner, A., del Río, Actions of Picard groups on graded rings, J. Algebra 218 (1999), no. 2, 573–607.
[44] J., Haefner, Graded equivalence theory with applications, J. Algebra 172 (1995), no. 2, 385–424.
[45] D., Handelman, W., Rossmann, Actions of compact groups on AF C*-algebras, Illinois J. Math. 29 (1985), no. 1, 51–95.
[46] D., Happel, Triangulated categories in representation theory of finite dimensional algebras, London Math. Soc., Lecture Notes Ser. 119 (1988) Cambridge University Press.
[47] R., Hazrat, The graded structure of Leavitt path algebras, Israel J. Math. 195 (2013), 833–895.
[48] R., Hazrat, The graded Grothendieck group and the classification of Leavitt path algebras, Math. Annalen 355 (2013), no. 1, 273–325.
[49] R., Hazrat, T., Hüttemann, On Quillen's calculation of graded K-theory, J. Homotopy Relat. Struct. 8 (2013) 231–238.
[50] T.W., Hungerford, Algebra, Graduate Texts in Mathematics 73, Springer-Verlag, Berlin, 1974.
[51] D., Lind, B., Marcus, An introduction to symbolic dynamics and coding, Cambridge University Press, 1995.
[52] E., Jespers, Simple graded rings, Comm. Algebra 21:7 (1993), 2437–2444.
[53] A.V., Kelarev, Ring constructions and applications, World Scientific, 2001.
[54] A., Kleshchev, Representation theory of symmetric groups and related Hecke algebras, Bull. Amer. Math. Soc. (N.S.) 47 (2010), no. 3, 419–481.
[55] M.-A., Knus, Quadratic and Hermitian forms over rings, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 294, Springer-Verlag, Berlin, 1991.
[56] W., Krieger, On dimension functions and topological Markov chains, Invent. Math. 56 (1980), no. 3, 239–250.
[57] P.A., Krylov, A.A., Tuganbaev, Modules over formal matrix rings, J. Math. Sci. (N.Y.) 171 (2010), no. 2, 248–295.
[58] T.-Y., Lam, M.K., Siu, K0 and K1 – an introduction to algebraic K-theory, Amer. Math. Monthly 82 (1975), 329–364.
[59] T.-Y., Lam, A crash course on stable range, cancellation, substitution and exchange, J. Algebra Appl. 03 (2004), 301–343.
[60] T.-Y., Lam, A first course in noncommutative rings, Graduate Texts in Mathematics, 131. Springer-Verlag, New York, 1991.
[61] T.-Y., Lam, Lectures on modules and rings, Graduate Texts in Mathematics, 189. Springer-Verlag, New York, 1999.
[62] M., Lawson, Inverse semigroups. The theory of partial symmetries, World Scientific Publishing Co., Inc., River Edge, NJ, 1998
[63] W.G., Leavitt, The module type of a ring, Trans. Amer. Math. Soc. 103 (1962) 113–130.
[64] H., Li, On monoid graded local rings, J. Pure Appl. Algebra 216 (2012), no. 12, 2697–2708.
[65] G., Liu, F., Li, Strongly groupoid graded rings and the corresponding Clifford theorem, Algebra Colloq. 13 (2006), no. 2, 181–196.
[66] P., Lundström, The category of groupoid graded modules, Colloq. Math. 100 (2004), 195–211.
[67] B., Magurn, An algebraic introduction to K-theory, Cambridge University Press, 2002.
[68] A., Marcus, On Picard groups and graded rings, Comm. Algebra 26 (1998), no. 7, 2211–2219.
[69] P., Menal, J., Moncasi, Lifting units in self-injective rings and an index theory for Rickart C*-algebras, Pacific J. Math. 126 (1987), 295–329.
[70] C., Menini, C., Năstăsescu, When is R-gr equivalent to the category of modules?J. Pure Appl. Algebra 51 (1988), no. 3, 277–291.
[71] J.R., Millar, K-theory of Azumaya algebras, Ph.D. thesis, Queen's University Belfast, United Kingdom 2010, arXiv:1101.1468.
[72] C., Năstăsescu, Group rings of graded rings. Applications, J. Pure Appl. Algebra 33 (1984), no. 3, 313–335.
[73] C., Năstăsescu, F., van Oystaeyen, Graded and filtered rings and modules, Lecture Notes in Mathematics, 758, Springer, Berlin, 1979.
[74] C., Năstăsescu, F., van Oystaeyen, Graded ring theory, North-Holland, Amsterdam, 1982.
[75] C., Năstăsescu, F., van Oystaeyen, Methods of graded rings, Lecture Notes in Mathematics, 1836, Springer-Verlag, Berlin, 2004.
[76] C., Năstăsescu, N., Rodinó, Group graded rings and smash products, Rend. Sem. Mat. Univ. Padova 74 (1985), 129–137.
[77] C., Năstăsescu, B., Torrecillas, F., Van Oystaeyen, IBN for graded rings, Comm. Algebra 28 (2000) 1351–1360.
[78] F., Van Oystaeyen, On Clifford systems and generalized crossed products, J. Algebra 87 (1984), 396–415.
[79] S., Paul Smith, Category equivalences involving graded modules over path algebras of quivers, Adv. in Math. 230 (2012) 1780–1810.
[80] N.C., Phillips, A classification theorem for nuclear purely infinite simple C*- algebras, Doc. Math. 5 (2000), 49–114.
[81] D., Quillen, Higher algebraic K-theory. I. Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, WA, 1972), pp. 85–147. Lecture Notes in Math., Vol. 341, Springer, Berlin 1973.
[82] A., del Río, Graded rings and equivalences of categories, Comm. Algebra 19 (1991), no. 3, 997–1012. Correction: Comm. Algebra 23 (1995), no. 10, 3943– 3946.
[83] A., del Río, Categorical methods in graded ring theory, Publ. Mat. 36 (1992), no. 2A, 489–531.
[84] J., Rosenberg, Algebraic K-theory and its applications, Springer-Verlag, New York, 1994.
[85] J.-P., Serre, Faisceaux alģebrique cohérents, Ann. of Math. 61 (1955), 197–278.
[86] S., Sierra, G-algebras, twistings, and equivalences of graded categories, Algebr. Represent. Theory 14 (2011), no. 2, 377–390.
[87] S., Sierra, Rings graded equivalent to the Weyl algebra, J. Algebra 321 (2009) 495–531.
[88] V., Srinivas, Algebraic K-theory, Second Edition. Progress in Mathematics, 90. Birkhauser Boston, Inc., Boston, MA, 1996.
[89] R., Swan, Algebraic K-theory, Lecture Notes in Mathematics, No. 76, Springer- Verlag, Berlin, New York 1968.
[90] J.-P., Tignol, A.R., Wadsworth, Value functions on simple algebras, and associated graded rings, Springer's Monographs in Mathematics, 2015.
[91] A.M., Vershik, S.V., Kerov, Locally semi-simple algebras: Combinatorial theory and K0-functor, J. Sov. Math. 38 (1987), 1701–1734.
[92] J.B., Wagoner, Markov partitions and K2, Publ. Math. IHES 65 (1987), 91–129.
[93] J.B., Wagoner, Topological Markov chains, C*-algebras, and K2, Adv. in Math. 71 (1988), no. 2, 133–185.
[94] C.A., Weibel, An introduction to homological algebra, Cambridge studies in advanced mathematics, 38, Cambridge University Press, 1994.
[95] C.A., Weibel, The K-book: an introduction to algebraic K-theory, Graduate Studies in Math. 145 AMS, 2013.
[96] H., Yahya, A note on graded regular rings, Comm. Algebra 25:1 (1997), 223–228.
[97] R.F., WilliamsClassification of subshifts of finite type, Ann. Math. 98 (2) (1973), 120–153.
[98] A., Zalesskii, Direct limits of finite dimensional algebras and finite groups, Proc. Miskolc Ring Theory Conf. 1996, Canadian Math. Soc. Conference Proceedings 22 (1998), 221–239.
[99] J.J., Zhang, Twisted graded algebras and equivalences of graded categories, Proc. London Math. Soc. 72 (1996) 281–311.
[100] Z., Zhang, A matrix description of K1 of graded rings, Israel J. Math. 211 (2016), 45–66.