[1] Adke, S.R., and Moyal, J.E.
1963. A birth, death, and diffusion process. J. Math. Anal. Appl., 7, 209–224.
[2] Adler, R.J.
1990. An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes. Institute of Mathematical Statistics Lecture Notes—Monograph Series, 12. Hayward, CA: IMS.
[3] Adler, R.J., and Taylor, J.E.
2007. Random Fields and Geometry. Springer Monographs in Mathematics. New York: Springer.
[4] Aïdéekon, E.
2013. Convergence in law of the minimum of a branching random walk. Ann. Probab., 41, 1362–1426.
[5] Aïdéekon, E., Berestycki, J., Brunet, É., and Shi, Z.
2013. Branching Brownian motion seen from its tip. Probab. Theory Related Fields, 157, 405–451.
[6] Aizenman, M., Sims, R., and Starr, S.L.
2003. An extended variational principle for the SK spin-glass model. Phys. Rev. B, 68, 214403.
[7] Arguin, L.-P.
2016. Extrema of log-correlated random variables: Principles and Examples. ArXiv e-prints, Jan.
[8] Arguin, L.-P., Bovier, A., and Kistler, N.
2011. Genealogy of extremal particles of branching Brownian motion. Comm. Pure Appl. Math., 64, 1647–1676.
[9] Arguin, L.-P., Bovier, A., and Kistler, N.
2012. Poissonian statistics in the extremal process of branching Brownian motion. Ann. Appl. Probab., 22, 1693–1711.
[10] Arguin, L.-P., Bovier, A., and Kistler, N.
2013a. An ergodic theorem for the frontier of branching Brownian motion. Electron. J. Probab., 18(53), 1–25.
[11] Arguin, L.-P., Bovier, A., and Kistler, N.
2013b. The extremal process of branching Brownian motion. Probab. Theory Related Fields, 157, 535–574.
[12] Aronson, D.G., and Weinberger, H.F.
1975. Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. Pages 5–49 of: Partial Differential Equations and Related Topics (Program, Tulane University., New Orleans, LA., 1974). Lecture Notes in Mathematics, vol. 446. Berlin: Springer.
[13] Athreya, K.B., and Ney, P.E.
1972. Branching processes. Die Grundlehren der mathematischen Wissenschaften, Band 196. New York: Springer.
[14] Belius, D., and Kistler, N.
2016. The subleading order of two dimensional cover times. Probab. Theory Related Fields, online first, 1–92.
[15] Ben Arous, G., and Kuptsov, A.
2009. REM universality for random Hamiltonians. Pages 45–84 of: Spin Glasses: Statics and Dynamics. Progr. Probab., vol. 62. Basel: Birkhäuser.
[16] Ben Arous, G., Gayrard, V., and Kuptsov, A.
2008. A new REM conjecture. Pages 59–96 of: In and Out of Equilibrium. 2. Progr. Probab., vol. 60. Basel: Birkhäuser.
[17] Berman, S.M.
1964. Limit theorems for the maximum term in stationary sequences. Ann. Math. Statist., 35, 502–516.
[18] Bernoulli, N.
1709. Specimina artis conjectandi, ad quaestiones juris applicatae. Basel. Acta Eruditorum Supplementa, pp. 159-170.
[19] Bertoin, J., and Le Gall, J.-F.
2000. The Bolthausen-Sznitman coalescent and the genealogy of continuous-state branching processes. Probab. Theory Related Fields, 117, 249–266.
[20] Billingsley, P.
1971. Weak Convergence of Measures: Applications in Probability. Philadelphia: Society for Industrial and Applied Mathematics.
[21] Biskup, M., and Louidor, O.
2014. Conformal symmetries in the extremal process of two-dimensional discrete Gaussian Free Field. ArXiv e-prints, Oct.
[22] Biskup, M., and Louidor, O.
2016. Extreme local extrema of two-dimensional discrete Gaussian free field. Commun. Math. Phys., online first, 1–34.
[23] Biskup, M., and Louidor, O.
2016. Full extremal process, cluster law and freezing for two-dimensional discrete Gaussian Free Field. ArXiv e-prints, June.
[24] Bolthausen, E., and Sznitman, A.-S.
1998. On Ruelle's probability cascades and an abstract cavity method. Comm. Math. Phys., 197, 247–276.
[25] Bovier, A.
2006. Statistical Mechanics of Disordered Systems. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge: Cambridge University Press.
[26] Bovier, A.
2015. From spin glasses to branching Brownian motion—and back? Pages 1–64 of: RandomWalks, Random Fields, and Disordered Systems. Lecture Notes in Mathematics, vol. 2144. Cham: Springer.
[27] Bovier, A., and Hartung, L.
2014. The extremal process of two-speed branching Brownian motion. Electron. J. Probab., 19(18), 1–28.
[28] Bovier, A., and Hartung, L.
2015. Variable speed branching Brownian motion: 1. Extremal processes in the weak correlation regime. ALEA Lat. Am. J. Probab. Math. Stat., 12, 261–291.
[29] Bovier, A., and Hartung, L.
2016. Extended convergence of the extremal process of branching Brownian motion. Ann. Appl. Probab., to appear.
[30] Bovier, A., and Kurkova, I.
2004a. Derrida's generalised random energy models I. Models with finitely many hierarchies. Ann. Inst. H. Poincaré Probab. Statist., 40, 439–480.
[31] Bovier, A., and Kurkova, I.
2004b. Derrida's generalized random energy models II. Models with continuous hierarchies. Ann. Inst. H. Poincaré Probab. Statist., 40, 481–495.
[32] Bovier, A., Kurkova, I., and Löwe, M.
2002. Fluctuations of the free energy in the REM and th. p-spin SK models. Ann. Probab., 30, 605–651.
[33] Bramson, M.
1978. Maximal displacement of branching Brownian motion. Comm. Pure Appl. Math., 31, 531–581.
[34] Bramson, M.
1983. Convergence of solutions of the Kolmogorov equation to travelling waves. Mem. Amer. Math. Soc., 44(285), iv+190.
[35] Bramson, M.
1986. Location of the travelling wave for the Kolmogorov equation. Probab. Theory Related Fields, 73, 481–515.
[36] Bramson, M., and Zeitouni, O.
2012. Tightness of the recentered maximum of the two-dimensional discrete Gaussian free field. Comm. Pure Appl. Math., 65, 1–20.
[37] Bramson, M., Ding, J., and Zeitouni, O.
2016. Convergence in law of the maximum of the two-dimensional discrete Gaussian free field. Commun. Pure Appl. Math., 69, 62–123.
[38] Capocaccia, D., Cassandro, M., and Picco, P.
1987. On the existence of thermodynamics for the generalized random energy model. J. Statist. Phys., 46, 493–505.
[39] Chauvin, B., and Rouault, A.
1988. KPP equation and supercritical branching Brownian motion in the subcritical speed area. Application to spatial trees. Probab. Theory Related Fields, 80, 299–314.
[40] Chauvin, B., and Rouault, A.
1990. Supercritical branching Brownian motion and K-P-P equation in the critical speed-area. Math. Nachr., 149, 41–59.
[41] Chauvin, B., Rouault, A., and Wakolbinger, A.
1991. Growing conditioned trees. Stochastic Process. Appl., 39, 117–130.
[42] Daley, D.J., and Vere-Jones, D.
2003. An Introduction to the Theory of Point Processes. Vol. 1: Elementary Theory and Methods. Springer Series in Statistics. New York: Springer.
[43] Daley, D.J., and Vere-Jones, D.
2007. An Introduction to the Theory of Point Processes. Vol. 2: General Theory and Structure. Springer Series in Statistics. New York: Springer.
[44] Derrida, B.
1980. Random-energy model: limit of a family of disordered models. Phys. Rev. Lett., 45, 79–82.
[45] Derrida, B.
1981. Random-energy model: an exactly solvable model of disordered systems. Phys. Rev. B (3), 24, 2613–2626.
[46] Derrida, B.
1985. A generalisation of the random energy model that includes correlations between the energies. J. Phys. Lett., 46, 401–407.
[47] Derrida, B., and Spohn, H.
1988. Polymers on disordered trees, spin glasses, and traveling waves. J. Statist. Phys., 51, 817–840.
[48] Ding, J.
2013. Exponential and double exponential tails for maximum of twodimensional discrete Gaussian free field. Probab. Theory Related Fields, 157, 285–299.
[49] Duplantier, B., Rhodes, R., Sheffield, S., and Vargas, V.
2014a. Critical Gaussian multiplicative chaos: Convergence of the derivative martingale. Ann. Probab., 42, 1769–1808.
[50] Duplantier, B., Rhodes, R., Sheffield, S., and Vargas, V.
2014b. Renormalization of critical Gaussian multiplicative chaos and KPZ relation. Comm. Math. Phys., 330, 283–330.
[51] Fang, M., and Zeitouni, O.
2012a. Branching random walks in time inhomogeneous environments. Electron. J. Probab., 17(67), 1–18.
[52] Fang, M., and Zeitouni, O.
2012b. Slowdown for time inhomogeneous branching Brownian motion. J. Statist. Phys., 149, 1–9.
[53] Fernique, X.
1974. Des résultats nouveaux sur les processus gaussiens. C. R. Acad. Sci. Paris Sér. A, 278, 363–365.
[54] Fernique, X.
1984. Comparaison de mesures gaussiennes et de mesures produit. Ann. Inst. H. Poincaré Probab. Statist., 20, 165–175.
[55] Fernique, X.
1989. Régularité de fonctions aléatoires gaussiennes stationnaires à valeurs vectorielles. Pages 66–73 of: Probability Theory on Vector Spaces, IV (Láncut, 1987). Lecture Notes in Mathematics, vol. 1391. Berlin: Springer.
[56] Fisher, R.A.
1937. The wave of advance of advantageous genes. Ann. Eugen., 7, 355–369.
[57] Fréchet, M.
1927. Sur la loi de probabilité de l'écart maximum. Ann. Soc. Pol. Math., 6, 93–116.
[58] Gardner, E., and Derrida, B.
1986a. Magnetic properties and function q(x) of the generalised random energy model. J. Phys. C, 19, 5783–5798.
[59] Gardner, E., and Derrida, B.
1986b. Solution of the generalised random energy model. J. Phys. C, 19, 2253–2274.
[60] Gnedenko, B.
1943. Sur la distribution limite du terme maximum d'une série aléatoire. Ann. Math, 44, 423–453.
[61] Gordon, Y.
1985. Some inequalities for Gaussian processes and applications. Israel J. Math., 50, 265–289.
[62] Gouéré, J.-B. 2014. Le mouvement Brownien branchant vu depuis sa particule la plus à gauche (d'après Arguin–Bovier–Kistler et Aïdékon–Berestycki–Brunet– Shi). Astérisque, 361, Exp. No. 1067, ix, 271–298.
[63] Guerra, F.
2003. Broken replica symmetry bounds in the mean field spin glass model. Comm. Math. Phys., 233, 1–12.
[64] Gumbel, E.
1958. Statistics of Extremes. New York: Columbia University Press.
[65] Hardy, R., and Harris, S.C.
2006. A conceptual approach to a path result for branching Brownian motion. Stochastic Process. Appl., 116, 1992–2013.
[66] Harris, S.C.
1999. Travelling-waves for the FKPP equation via probabilistic arguments. Proc. Roy. Soc. Edinburgh Sect. A, 129, 503–517.
[67] Harris, S.C., and Roberts, M.I.
2015. The many-to-few lemma and multiple spines. Ann. Inst. H. Poincaré Probab. Statist., online first, 1–18.
[68] Harris, Th. E.
1963. The Theory of Branching Processes. Die Grundlehren der Mathematischen Wissenschaften, Bd. 119. Berlin: Springer.
[69] Ikeda, N., Nagasawa, M., and Watanabe, S.
1968a. Markov branching processes I. J. Math. Kyoto Univ., 8, 233–278.
[70] Ikeda, N., Nagasawa, M., and Watanabe, S.
1968b. Markov branching processes II. J. Math. Kyoto Univ., 8, 365–410.
[71] Ikeda, N., Nagasawa, M., and Watanabe, S.
1969. Markov branching processes I. J. Math. Kyoto Univ., 9, 95–160.
[72] Kac, M.
1949. On distributions of certain Wiener functionals. Trans. Amer. Math. Soc., 65, 1–13.
[73] Kahane, J.-P.
1985. Sur le chaos multiplicatif. Ann. Sci. Math. Québec, 9, 105–150.
[74] Kahane, J.-P. 1986. Une inégalité du type de Slepian et Gordon sur les processus gaussiens. Israel J. Math., 55, 109–110.
[75] Kallenberg, O.
1983. Random Measures. Berlin: Akademie Verlag.
[76] Karatzas, I., and Shreve, S.E.
1988. Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics. New York: Springer.
[77] Kingman, J.F.C.
1993. Poisson Processes. Oxford Studies in Probability, vol. 3. New York: The Clarendon Press, Oxford University Press.
[78] Kistler, N.
2015. Derrida's random energy models. From spin glasses to the extremes of correlated random fields. Pages 71–120 of: Correlated Random Systems: Five Different Methods. Lecture Notes in Mathematics, vol. 2143. Cham: Springer.
[79] Kistler, N., and Schmidt, M.A.
2015. From Derrida's random energy model to branching random walks: from 1 to 3. Electron. Commun. Probab., 20(47), 1–12.
[80] Kolmogorov, A., Petrovsky, I., and Piscounov, N.
1937. Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Moscow Univ. Math. Bull., 1, 1–25.
[81] Kyprianou, A.E.
2004. Travelling wave solutions to the K-P-P equation: alternatives to Simon Harris' probabilistic analysis. Ann. Inst. H. Poincaré Probab. Statist., 40, 53–72.
[82] Lalley, S.
2010. Branching Processes. Lecture Notes, University of Chicago.
[83] Lalley, S.P., and Sellke, T.
1987. A conditional limit theorem for the frontier of a branching Brownian motion. Ann. Probab., 15, 1052–1061.
[84] Leadbetter, M.R., Lindgren, G., and Rootzén, H.
1983. Extremes and related properties of random sequences and processes. Springer Series in Statistics. New York: Springer.
[85] Ledoux, M., and Talagrand, M.
1991. Probability in Banach Spaces: isoperimetry and processes. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 23. Berlin: Springer.
[86] Liggett, Th. M.
1978. Random invariant measures for Markov chains, and independent particle systems. Z. Wahrsch. Verw. Gebiete, 45, 297–313.
[87] Madaule, T.
2015. Convergence in law for the branching random walk seen from its tip. J. Theor. Probab., online first, 1–37.
[88] Maillard, P., and Zeitouni, O.
2016. Slowdown in branching Brownian motion with inhomogeneous variance. Ann. Inst. H. Poincaré Probab. Statist., online first, 1–20.
[89] Mallein, B.
2015. Maximal displacement of a branching random walk in timeinhomogeneous environment. Stochastic Process. Appl., 125, 3958–4019.
[90] McKean, H.P.
1975. Application of Brownian motion to the equation of Kolmogorov–Petrovskii–Piskunov. Comm. Pure Appl. Math., 28, 323–331.
[91] Mézard, M., Parisi, G., and Virasoro, M.A.
1987. Spin Glass Theory and Beyond. World Scientific Lecture Notes in Physics, vol. 9. Teaneck, NJ: World Scientific Publishing.
[92] Moyal, J.E.
1962. Multiplicative population chains. Proc. Roy. Soc. Ser. A, 266, 518–526.
[93] Neveu, J.
1986. Arbres et processus de Galton-Watson. Ann. Inst. H. Poincaré Probab. Statist., 22, 199–207.
[94] Neveu, J.
1992. A continuous state branching process in relation with the GREM model of spin glass theory. rapport interne 267. Ecole Polytechnique Paris.
[95] Newman, C., and Stein, D.
2013. Spin Glasses and Complexity. Princeton, NJ: Princeton University Press.
[96] Nolen, J., Roquejoffre, J.-M., and Ryzhik, L.
2015. Power-like delay in time inhomogeneous Fisher-KPP equations. Commun. Partial Differential Equations, 40, 475–5–5.
[97] Panchenko, D.
2013. The Sherrington–Kirkpatrick model. Springer Monographs in Mathematics. New York: Springer.
[98] Piterbarg, V.I.
1996. Asymptotic Methods in the Theory of Gaussian Processes and Fields. Translations of Mathematical Monographs, vol. 148. Providence, RI: American Mathematical Society.
[99] Resnick, S.I.
1987. Extreme Values, Regular Variation, and Point Processes. Applied Probability, vol. 4. New York: Springer.
[100] Rhodes, R., and Vargas, V.
2014. Gaussian multiplicative chaos and applications: A review. Probab. Surv., 11, 315–392.
[101] Roberts, M.I.
2013. A simple path to asymptotics for the frontier of a branching Brownian motion. Ann. Probab., 41, 3518–3541.
[102] Ruelle, D.
1987. A mathematical reformulation of Derrida's REM and GREM. Comm. Math. Phys., 108, 225–239.
[103] Sherrington, D., and Kirkpatrick, S.
1972. Solvable model of a spin glas. Phys. Rev. Letts., 35, 1792–1796.
[104] Shi, Z.
2016. Branching Random Walks. Lecture Notes in Mathematics, vol. 2151. Cham: Springer.
[105] Skorohod, A.V.
1964. Branching diffusion processes. Teor. Verojatnost. i Primenen., 9, 492–497.
[106] Slepian, D.
1962. The one-sided barrier problem for Gaussian noise. Bell System Tech. J., 41, 463–501.
[107] Stroock, D.W., and Varadhan, S. R. S.
1979. Multidimensional Diffusion Processes. Grundlehren der Mathematischen Wissenschaften, vol. 233. Berlin-New York: Springer.
[108] Talagrand, M.
2003. Spin Glasses: a Challenge for Mathematicians. Ergebnisse der Mathematik und ihrer Grenzgebiete. (3), vol. 46. Berlin: Springer.
[109] Talagrand, M.
2006. The Parisi formula. Ann. of Math. (2), 163, 221–263.
[110] Talagrand, M.
2011a. Mean Field Models for Spin Glasses. Volume I. Basic Examples. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., vol. 54. Berlin: Springer.
[111] Talagrand, M.
2011b. Mean Field Models for Spin Glasses. Volume II. Advanced Replica-Symmetry and Low Temperature. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., vol. 55. Heidelberg: Springer.
[112] Uchiyama, K.
1978. The behavior of solutions of some nonlinear diffusion equations for large time. J. Math. Kyoto Univ., 18, 453–508.
[113] Ulam, S.M.
1968. Computations on certain binary branching processes. Pages 168–171 of: Computers in Mathematical Research. Amsterdam: North-Holland.
[114] von Mises, R.
1936. La distribution de la plus grande de n valeurs. Rev. Math. Union Interbalcanique, 1, 141–160.
[115] Watanabe, T.
2004. Exact packing measure on the boundary of a Galton-Watson tree. J. London Math. Soc. (2), 69, 801–816.
[116] Watson, H.W., and Galton, F.
1875. On the probability of the extinction of families. J. Anthropol. Inst. Great Brit. Ireland, 4, 138–144.
[117] Zeitouni, O.
2016. Branching random walks and Gaussian fields. Proceedings of Symposia in Pure Mathematics, 91, 437–471.