Skip to main content Accessibility help
×
  • Cited by 54
  • 2nd edition
  • Amos Lapidoth, Swiss Federal University (ETH), Zürich
Publisher:
Cambridge University Press
Online publication date:
March 2017
Print publication year:
2017
Online ISBN:
9781316822708

Book description

Written in the intuitive yet rigorous style that readers of A Foundation in Digital Communication have come to expect, this second edition includes entirely new chapters on the radar problem (with Lyapunov's theorem) and intersymbol interference channels, new discussion of the baseband representation of passband noise, and a simpler, more geometric derivation of the optimal receiver for the additive white Gaussian noise channel. Other key topics covered include the definition of the power spectral density of nonstationary stochastic processes, the geometry of the space of energy-limited signals, the isometry properties of the Fourier transform, and complex sampling. Including over 500 homework problems and all the necessary mathematical background, this is the ideal text for one- or two-semester graduate courses on digital communications and courses on stochastic processes and detection theory. Solutions to problems and video lectures are available online.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents


Page 1 of 2



Page 1 of 2


Bibliography
Adams, R. A., and J. J. F., Fournier (2003): Sobolev Spaces. Elsevier B.V., Amsterdam, The Netherlands, second edn.
Adler, R. J. (1990): An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes. Institute of Mathematical Statistics, Hayward, CA.
Axler, S. (2015): Linear Algebra Done Right. Springer-Verlag New York, Inc., New York, third edn.
Barry, J. R., E. A., Lee, and D. G., Messerschmitt (2004): Digital Communication. Springer-Verlag New York, Inc., New York, third edn.
Bertsekas, D. P. (2005): Dynamic Programming and Optimal Control, vol. 1. Athena Scientific, Nashua, NH, third edn.
Billingsley, P. (1995): Probability and Measure. John Wiley & Sons, Inc., New York, third edn.
Blackwell, D., and R. V., Ramamoorthi (1982): “A Bayes but not classically sufficient statistic,” The Annals of Statistics, 10(3), 1025–1026.
Blahut, R. E. (2003): Algebraic Codes for Data Transmission. Cambridge University Press, New York.
Boas, R. P.Jr. (1954): Entire Functions. Academic Press Inc., New York.
Bogachev, V. I. (1998): Gaussian Measures. American Mathematical Society, Providence, RI.
Bogachev, V. I. (2007): Measure Theory: Volume I. Springer-Verlag, Berlin, Germany.
Bryc, W. (1995): The Normal Distribution: Characterizations with Applications. Springer-Verlag New York, Inc., New York.
Chung, K. L. (2001): A Course in Probability Theory. Academic Press, San Diego, CA, third edn.
Cormen, T. H., C. E., Leiserson, R. L., Rivest, and C., Stein (2009): Introduction to Algorithms. The MIT Press, Cambridge, MA, third edn.
Cover, T. M., and J. A., Thomas (2006): Elements of Information Theory. Wiley, Hoboken, NJ, second edn.
Cramér, H., and M. R., Leadbetter (2004): Stationary and Related Stochastic Processes: Sample Function Properties and Their Applications. Dover Publications, Inc., Mineola, NY.
Crum, M. M. (1956): “On positive definite functions,” Proc. London Math. Soc., 6(3), 548–560.
Davenport, W. B.Jr., and W. L., Root (1987): An Introduction to the Theory of Random Signals and Noise. IEEE Press, New York.
de Caen, D. (1997): “A lower bound on the probability of a union,” Discrete Mathematics, 169, 217–220.
Doob, J. L. (1990): Stochastic Processes. John Wiley & Sons, Inc., New York.
Dudley, R. M. (2003): Real Analysis and Probability. Cambridge University Press, New York, second edn.
Dym, H., and H. P., McKean (1972): Fourier Series and Integrals. Academic Press, Inc., San Diego.
Farebrother, R. W. (1988): Linear Least Squares Computations. Marcel Dekker, Inc., New York.
Feller, W. (1971): An Introduction to Probability Theory and Its Applications, vol. II. John Wiley & Sons, Inc., New York, second edn.
Finner, H., and M., Roters (1997): “Log-concavity and inequalities for chisquare, F and beta distributions with applications in multiple comparisons,” Statistica Sinica, 7(3), 771–787.
Forney, G. D.Jr. (1991): “Geometrically uniform codes,” IEEE Transactions on Information Theory, 37(5), 1241–1260.
Gallager, R. G. (2008): Principles of Digital Communication. Cambridge University Press, New York.
Gikhman, I. I., and A. V., Skorokhod (1996): Introduction to the Theory of Random Processes. Dover Publications, Inc., Mineola, NY.
Golub, G. H., and C. F. van, Loan (1996): Matrix Computations. The John Hopkins University Press, Baltimore, MD, third edn.
Gray, R. M. (2006): “Toeplitz and circulant matrices: a review,” Foundations and Trends in Communications and Information Theory, 2(3), 155–239.
Grimmett, G., and D., Stirzaker (2001): Probability and Random Processes. Oxford University Press, New York, third edn.
Halmos, P. R. (1950): Measure Theory. D. Van Nostrand Company, Inc., Princeton, NJ.
Halmos, P. R. (1958): Finite-Dimensional Vector Spaces. D. Van Nostrand Company, Inc., Princeton, NJ.
Halmos, P. R., and L. J., Savage (1949): “Application of the Radon-Nikodym theorem to the theory of sufficient statistics,” The Annals of Mathematical Statistics, 20(2), 225–241.
Helstrom, C. W. (1995): Elements of Signal Detection and Estimation. Prentice Hall, Englewood Cliffs, NJ.
Herstein, I. N. (1975): Topics in Algebra. John Wiley & Sons, Inc., New York, second edn.
Horn, R. A., and C. R., Johnson (2013): Matrix Analysis. Cambridge University Press, New York, second edn.
Johnson, N. L., and S., Kotz (1972): Distributions in Statistics: Continuous Multivariate Distributions. John Wiley & Sons, Inc., New York.
Johnson, N. L., S., Kotz, and N., Balakrishnan (1994): Continuous Univariate Distributions, vol. 1. John Wiley & Sons, Inc., New York, second edn.
Johnson, N. L., S., Kotz, and N., Balakrishnan (1995): Continuous Univariate Distributions, vol. 2. John Wiley & Sons, Inc., New York, second edn.
Kailath, T., A. H., Sayed, and B. Hassibi (2000): Linear Estimation. Prentice Hall, Inc., Upper Saddle River, NJ.
Kallenberg, O. (2002): Foundations of Modern Probability. Springer, New York, second edn.
Karatzas, I., and S. E., Shreve (1991): Brownian Motion and Stochastic Calculus. Springer-Verlag New York, Inc., New York, second edn.
Karlin, S., and W. J., Studden (1966): Tchebycheff Systems: With Applications in Analysis and Statistics. John Wiley & Sons, Inc., New York.
Katznelson, Y. (2004): An Introduction to Harmonic Analysis. Cambridge University Press, New York, NY, third edn.
Körner, T. W. (1988): Fourier Analysis. Cambridge University Press, New York, NY.
Kwakernaak, H., and R. Sivan (1991): Modern Signals and Systems. Prentice Hall, Inc., Englewood Cliffs, NJ.
Lehmann, E. L., and J. P., Romano (2005): Testing Statistical Hypotheses. Springer-Verlag New York, Inc., New York, third edn.
Loeliger, H.-A. (1991): “Signal sets matched to groups,” IEEE Transactions on Information Theory, 37(6), 1675–1682.
Loève, M. (1963): Probability Theory. D. Van Nostrand Company, Inc., Princeton, NJ, third edn.
Logan, B. F.Jr. (1978): “Theory of analytic modulation systems,” The Bell System Technical Journal, 57(3), 491–576.
MacWilliams, F. J., and N. J. A., Sloane (1977): The Theory of Error- Correcting Codes. North-Holland, Amsterdam, The Netherlands.
Marshall, A. W., I., Olkin, and B. C., Arnold (2011): Inequalities: Theory of Majorization and Its Applications. Springer, New York, NY, second edn.
Nehari, Z. (1975): Conformal Mapping. Dover Publications, Inc., Mineola, NY.
Neveu, J. (1968): Processus Aléatoires Gaussiens. Les Presses de l'Université de Montréal.
Oppenheim, A. V., and A. S., Willsky (1997): Signals & Systems. Prentice Hall, Inc., Upper Saddle River, NJ, second edn.
Pinsky, M. A. (2002): Introduction to Fourier Analysis and Wavelets. Brooks/Cole, Pacific Grove, CA.
Poor, H. V. (1994): An Introduction to Signal Detection and Estimation. Springer-Verlag New York, Inc., New York, second edn.
Porat, B. (2008): Digital Processing of Random Signals: Theory and Methods. Dover Publications, Inc., Mineola, NY.
Pourahmadi, M. (2001): Foundations of Time Series Analysis and Prediction Theory. John Wiley & Sons, Inc., New York.
Proakis, J., and M., Salehi (2007): Digital Communications. McGraw-Hill Education, 5th edn.
Requicha, A. A. G. (1980): “The zeros of entire functions: theory and engineering applications,” Proceedings of the IEEE, 68(3), 308–328.
Richardson, T., and R., Urbanke (2008): Modern Coding Theory. Cambridge University Press, New York.
Riesz, F., and B. Sz., -Nagy (1990): Functional Analysis. Dover Publications, Inc., Mineola, NY.
Romano, J. P., and A. F., Siegel (1986): Counterexamples in Probability and Statistics. Chapman & Hall, New York.
Ross, D. A. (2005): “An elementary proof of Lyapunov's theorem,” The American Mathematical Monthly, 112(7), 651–653.
Roth, R. M. (2006): Introduction to Coding Theory. Cambridge University Press, New York.
Royden, H. L., and P. M., Fitzpatrick (2010): Real Analysis. Prentice Hall, Inc., Upper Saddle River, NJ, fourth edn.
Rudin, W. (1962): Fourier Analysis on Groups. John Wiley & Sons, New York.
Rudin, W. (1976): Principles of Mathematical Analysis. McGraw-Hill, Inc., New York, third edn.
Rudin, W. (1987): Real & Complex Analysis. McGraw-Hill, Inc., New York, third edn.
Ryan, W., and S., Lin (2009): Channel Codes: Classical and Modern. Cambridge University Press.
Sason, I., and S., Shamai (2006): “Performance analysis of linear codes under maximum-likelihood decoding: a tutorial,” Foundations and Trends in Communications and Information Theory, 3(1/2), 1–225.
Shiryaev, A. N. (1996): Probability. Springer-Verlag New York, Inc., New York, second edn.
Simon, B. (2005): Orthogonal Polynomials on the Unit Circle. Part 1: Classical Theory. American Mathematical Society, Providence RI.
Simon, M. K. (2002): Probability Distributions Involving Gaussian Random Variables: A Handbook for Engineers and Scientists. Kluwer Academic Publishers, Norwell, MA.
Slepian, D. (1976): “On bandwidth,” Proceedings of the IEEE, 64(3), 292–300.
Slepian, D., and H. O., Pollak (1961): “Prolate spheroidal wave functions, Fourier analysis and uncertainty—I,” The Bell System Technical Journal, 40(1), 43–63.
Steele, J. M. (2004): The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities. Cambridge University Press, New York.
Stein, E. M., and G., Weiss (1971): Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton, NJ.
Tong, Y. L. (1990): The Multivariate Normal Distribution. Springer-Verlag New York, Inc., New York.
Unser, M. (2000): “Sampling—50 years after Shannon,” Proceedings of the IEEE, 88(4), 569–587.
van Lint, J. H. (1998): Introduction to Coding Theory. Springer-Verlag New York, Inc., New York, third edn.
Verdú, S. (1998): Multiuser Detection. Cambridge University Press, New York.
Viterbi, A. J., and J. K., Omura (1979): Principles of Digital Communication and Coding. McGraw-Hill, Inc., New York.
Williams, D. (1991): Probability with Martingales. Cambridge University Press, New York.
Yaglom, A. (1986): Correlation Theory of Stationary and Related Random Functions: Volume I: Basic Results. Springer-Verlag.
Zhang, F. (2011): Matrix Theory: Basic Results and Techniques. Springer-Verlag New York, Inc., New York, second edn.
Zvonkin, A. (1997): “Matrix integrals and map enumeration: an accessible introduction,” Mathematical and Computer Modelling, 26(8–10), 281–304.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.