Skip to main content Accessibility help
×
  • Cited by 9
Publisher:
Cambridge University Press
Online publication date:
August 2009
Print publication year:
2003
Online ISBN:
9780511543302

Book description

Flexagons are hinged polygons that have the intriguing property of displaying different pairs of faces when they are flexed. Workable paper models of flexagons are easy to make and entertaining to manipulate. Flexagons have a surprisingly complex mathematical structure and just how a flexagon works is not obvious on casual examination of a paper model. Flexagons may be appreciated at three different levels. Firstly as toys or puzzles, secondly as a recreational mathematics topic and finally as the subject of serious mathematical study. This book is written for anyone interested in puzzles or recreational maths. No previous knowledge of flexagons is assumed, and the only pre-requisite is some knowledge of elementary geometry. An attractive feature of the book is a collection of nets, with assembly instructions, for a wide range of paper models of flexagons. These are printed full size and laid out so they can be photocopied.

Reviews

' … an excellent resource for anyone with little previous knowledge to understand the basics, but with enough detail to satisfy the interest of all but the most ardent mathmos.'

Source: Eureka

'Pook's book summarizes a great deal of what is known about flexagons of all shapes and types, and contains much new material … an excellent purchase for someone who already knows something about flexagons and wants to know more.'

Ethan Berkove - Lafayette College

'This interesting book contains a wide collection of nets for making paper models of flexagons.'

Source: Zentralblatt MATH

'This book would be an excellent purchase for someone who already knows something about flexagons and wants to know more.'

Source: Society for Industrial and Applied Mathematics

'The main advantage of the book is that it gives a mathematical analysis of flexagons by using only elementary mathematical concepts. Thus this book will be very useful for anybody who is not a professional mathematician but wants to get some insight into the mathematical structure of these exciting puzzles.'

Source: EMS Newsletter

'… a thorough comprehensible work … keeps the text readable and easy to follow. … This book would be appropriate for anyone at the undergraduate level or higher, and would likely be enjoyed by anyone with an interest in recreational mathematics.'

Source: Mathematical Association of America Online

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
References
Chapman, P. B. (1961). Square flexagons. Mathematical Gazette, 45, 192–194
Conrad, A. S. (1960). The Theory of the Flexagon, RIAS Technical Report 60–24. Baltimore, MD: RIAS
Conrad, A. S. and Hartline, D. K. (1962). Flexagons. RIAS Technical Report 62–11. Baltimore, MD: RIAS
Coxeter, H. S. M. (1963). Regular Polytopes, 2nd edn, New York: The Macmillan Company
Cromwell, P. R. (1997). Polyhedra, Cambridge: Cambridge University Press
Cundy, H. M. and Rollett, A. R. (1981). Mathematical Models, 3rd edn, Stradbrooke, Diss, Nfk: Tarquin Publications
Dunkerley, S. (1910). Mechanisms, 3rd edn, London: Longmans, Green and Co
Dunlap, R. A. (1997/8). Regular polygon rings. Mathematical Spectrum, 30, 13–15
Engel, D. (1969). Hybrid flexahedrons. Journal of Recreational Mathematics, 2, 35–41
Feynman, R. P. (1989). Surely You're Joking, Mr Feynman, London: Unwin paperbacks
Gardner, M. (1965). Mathematical Puzzles and Diversions, Harmondsworth, Middx: Penguin Books
Gardner, M. (1966). More Mathematical Puzzles and Diversions, Harmondsworth, Middx: Penguin Books
Gardner, M. (1976). Mathematical games. Scientific American, 234, 120–125
Gardner, M. (1978). Mathematical games. Scientific American, 239, 18–19, 22, 24–25
Gardner, M. (1988). Hexaflexagons and Other Mathematical Diversions, Chicago: University of Chicago Press
Griffiths, M. (2001). Two proofs concerning ‘Octagon loops’. Mathematical Gazette, 85, 80–84
Hilton, P. and Pedersen J. (1994). Build Your Own Polyhedra, Menlo Park, CA: Addison-Wesley
Hilton, P., Pedersen, J. and Walser, H. (1997). The faces of the tri-hexaflexagon. Mathematics Magazine, 20, front cover, 243–251
Hirsch, R. (1997). What Is Mathematics Really?, London: Jonathan Cape
Hirst, A. (1995). Can you do it with heptagons?Mathematical Gazette, 79, 17–29
Holden, A. (1991). Shapes, Space and Symmetry, New York: Dover Publications, Inc
Johnson, D. (1974). Mathmagic with Flexagons, Hayward, CA: Activity Resource Co
Kenneway, E. (1987). Complete Origami, New York: St Martin's Press
Laithwaite, E. (1980). Engineer through the Looking Glass, London: British Broadcasting Corporation
Liebeck, P. (1964). The construction of flexagons. Mathematical Gazette, 48, 397–402
McIntosh, H. V. (2000a). My Flexagon Experiences, Puebla, Mexico: Departamento de Aplicación de Microcomputadoras, Instituto de Ciencias, Universidad Autónoma de Puebla
McIntosh, H. V. (2000b). REC-F for Flexagons, Puebla, Mexico: Departamento de Aplicación de Microcomputadoras, Instituto de Ciencias, Universidad Autónoma de Puebla
McIntosh, H. V. (2000c). A Flexagon, Flexatube, and Bregdoid Book of Designs, Puebla, Mexico: Departamento de Aplicación de Microcomputadoras, Instituto de Ciencias, Universidad Autónoma de Puebla
McIntosh, H. V. (2000d), Heptagonal Flexagons, Puebla, Mexico: Departamento de Aplicación de Microcomputadoras, Instituto de Ciencias, Universidad Autónoma de Puebla
McIntosh, H. V. (2000e). Hexagon Flexagons, Puebla, Mexico: Departamento de Aplicación de Microcomputadoras, Instituto de Ciencias, Universidad Autónoma de Puebla
McIntosh, H. V. (2000f). Pentagonal Flexagons, Puebla, Mexico: Departamento de Aplicación de Microcomputadoras, Instituto de Ciencias, Universidad Autónoma de Puebla
McIntosh, H. V. (2000g). Tetragonal Flexagons, Puebla, Mexico: Departamento de Aplicación de Microcomputadoras, Instituto de Ciencias, Universidad Autónoma de Puebla
McIntosh, H. V. (2000h). Trigonal Flexagons, Puebla, Mexico: Departamento de Aplicación de Microcomputadoras, Instituto de Ciencias, Universidad Autónoma de Puebla
McLean, T. B. (1979). V-flexing the hexahexaflexagonAmerican Mathematical Monthly, 86, 457–466
Macmillan, R. H. (1950). The freedom of linkages. Mathematical Gazette, 34, 26–37
Madachy, J. S. (1968). Mathematics on Vacation, London: Thomas Nelson and Sons Ltd
Maunsell, F. G. (1954) The flexagon and the hexaflexagram. Mathematical Gazette, 38, 213–214
Mitchell, D. (1999). The Magic of Flexagons Paper: Manipulative Paper Puzzles to Cut Out and Make, Stradbrooke, Diss, Nfk: Tarquin Publications
Neale, R. E. (1999). Self-designing tetraflexagons. In The Mathematician and Pied Puzzler, Ed. E. Berlekamp and T. Rodgers, pp. 117–126. Natick, MA: A. K. Peters Ltd
Oakley, C. O. and Wisner, R. J. (1957). Flexagons. American Mathematical Monthly, 64, 143–154
O'Reilly, T. (1976). Classifying and counting hexaflexagrams. Journal of Recreational Mathematics, 8(3), 182–187
Pedersen, J. J. and Pedersen, K. A. (1973). Geometric Playthings to Color, Cut and Fold, San Francisco: Troubadour Press
Sawyer, W. W. (1943). Prelude to Mathematics, London: Penguin Books
Schattschneider, D. and Walker, W. (1983). M. C. Escher Kaleidocycles. Stradbrooke, Diss, Nfk: Tarquin Publications
Sloane, N. J. A. and Plouffe, S. (1995). The Encyclopedia of Integer Sequences, San Diego: Academic Press
Taylor, P. (1997). The Complete? Polygon, Ipswich: Nattygrafix
Velleman, D. (1992). Rubik's tesseract. Mathematics Magazine, 65, 27–36
Wenninger, M. J. (1971). Polyhedron Models, Cambridge: Cambridge University Press
Wheeler, R. F. (1958). The flexagon family. Mathematical Gazette, 42, 1–6

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.