Skip to main content Accessibility help
×
  • Cited by 294
Publisher:
Cambridge University Press
Online publication date:
February 2015
Print publication year:
2010
Online ISBN:
9780511780509

Book description

This book equips the reader to understand every important aspect of the dynamics of rotating machines. Will the vibration be large? What influences machine stability? How can the vibration be reduced? Which sorts of rotor vibration are the worst? The book develops this understanding initially using extremely simple models for each phenomenon, in which (at most) four equations capture the behavior. More detailed models are then developed based on finite element analysis, to enable the accurate simulation of the relevant phenomena for real machines. Analysis software (in MATLAB) is associated with this book, and novices to rotordynamics can expect to make good predictions of critical speeds and rotating mode shapes within days. The book is structured more as a learning guide than as a reference tome and provides readers with more than 100 worked examples and more than 100 problems and solutions.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Bibliography
Abraham, O. N. L., Brandon, J. A., and Cohen, A. M. (1994). Remark on the determination Remark on the determination of compliance coefficients at the crack section of a uniform beam with circular cross section, Journal of Sound and Vibration 169, 570–574.
Adams, M. L. (2001). Rotating Machinery Vibration: From Analysis to Troubleshooting (Marcel Dekker, New York).
Adiletta, G., Guido, A. R., and Rossi, C. (1996). Chaotic motions of a rigid rotor in short journal bearings, Nonlinear Dynamics 10, 251–269.
Alauze, C., der Hagopian, J., Gaudiller, L., and Voinis, P. (2001). Active balancing of turbo-machinery: Application to large shaft lines, Journal of Vibration and Control 7, 249–278.
Al-Bedoor, B. O. (2000). Transient torsional and lateral vibrations of unbalanced rotors with rotor-to-stator rubbing, Journal ofSound and Vibration 229, 627–645.
Al-Bedoor, B. O. (2001). Modeling the coupled torsionaland lateralvibrations ofunbalanced rotors, Computer Methods in Applied Mechanics and Engineering 190, 5999–6008.
Alford, J. (1965). Protecting turbomachinery from self-excited rotor whirl, Journal of Engineering for Power 87, 333–344.
Al-Hussain, K. M. (2003). Dynamic stability of two rigid rotors connected by a flexible coupling with angular misalignment, Journal ofSound and Vibration 266, 217–234.
Al-Hussain, K. M., and Redmond, I. (2002). Dynamic response of two rotors connected by rigid mechanical coupling with parallel misalignment, Journal ofSound and Vibration 249, 483–498.
Alolah, R., Badr, M. A., and Abdel-Halim, M. A. (1999). A comparative study on the starting methods of three-phase wound-rotor induction motors: Part I, IEEE Transactions on Energy Conversion 14, 918–922.
Ananda Rao, M., Srinivas, J., Rama Raju, V. B. V., and Kumar, K. V. S. S. (2003). Coupled torsional-lateral vibration analysis of geared shaft systems using mode synthesis, Journal of Sound and Vibration 261, 359–364.
Arkkio, A., Antila, M., Pokki, K., Simon, A., and Lantto, E. (2000). Electromagnetic force on a whirling cage rotor, IEE Proceedings: Electric Power Applications 147, 353–360.
Astley, R. J. (1992). Finite Elements in Solids and Structures (Chapman and Hall, London).
Balbahadur, A. C., and Kirk, R. G. (2002a). Part I: Theoretical model for a synchronous thermal instability operating in overhung rotors, Sixth International Conference on Rotor Dynamics, IFToMM: Sydney, Australia.
Balbahadur, A. C., and Kirk, R. G. (2002b). Part II: Case studies for a synchronous thermal instability operating in overhung rotors, Sixth International Conference on Rotor Dynamics, IFToMM: Sydney, Australia.
Bathe, K.-J., and Wilson, E. L. (1976). Numerical Methods in Finite Element Analysis (Prentice-Hall, Englewood Cliffs, N.J.).
Bazoune, A., and Khulief, Y. A. (1992). A finite beam element for vibration analysis of rotating tapered Timoshenko beams, Journal ofSound and Vibration 156, 141–164.
Bazoune, A., Khulief, Y. A., and Stephen, N. G. (1999). Furtherresults for modal characteristics of rotating papered Timoshenko beams, Journal ofSound and Vibration 219, 157–174.
Bently, D. E. (1974). Forced subrotative speed dynamic action of rotating machinery, ASME Paper No. 74-Pet-16.
Bickford, W. B. (1994). A First Course in Finite Element Analysis, Second Edition (Richard D. Irwin, Burr Ridge, IL).
Bickford, W. B., and Nelson, H. D. (1985). A conical beam finite element for rotor dynamics analysis, Journal of Vibrations and Acoustics, Stress and Reliability in Design 107, 421–430.
Bigret, R. (2004). Balancing. In Encyclopedia of Vibration, S. G., Braun, editor-in-chief (Elsevier), pp. 111-124.
Bishop, R. E. D., and Gladwell, G. M. L. (1959). The vibration and balancing of an unbalanced flexible rotor, Journal of Mechanical Engineering Science 1, 66–77.
Black, H. F. (1969). Effects of hydraulic forces in annular pressure seals on the vibrations of centrifugal pump rotors, Journal of Mechanical Engineering Science 11, 206–213.
Blevins, R. D. (1979). Formulas for Natural Frequency andMode Shape (Van Nostrand Rein-hold, New York).
Blough, J. R. (2003). Development and analysis of time-variant discrete Fourier transform order tracking, Mechanical Systems and Signal Processing 17, 1185–1199.
Cameron, A. (1976). Basic Lubrication Theory (Ellis Horwood, Chichester, England).
Cartmell, M. P. (1990). Introduction to Linear, Parameteric and Nonlinear Vibrations (Chapman and Hall, London).
Caughey, T. K., and O'Kelly, M. E. (1965). Classical normal modes in damped linear systems, Journal ofApplied Mechanics 32, 583–588.
Chatelet, E., D'Ambrosio, F., and Jacquet-Richardet, G. (2005). Toward global modeling approaches for dynamic analyses of rotating assemblies of turbo-machines, Journal ofSound and Vibration 282, 163–178.
Childs, D. (1993). Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis (Wiley, New York).
Childs, D. W., Graviss, M., and Rodriguez, L. E. (2007). Influence of groove size on the static and rotordynamic characteristics of short, laminar-flow annular seals, Journal of Tribology 129, 398–406.
Choy, F. K., and Padovan, J. (1987). Nonlinear transient analysis of rotor-casing rub events, Journal ofSound and Vibration 113, 529–545.
Choy, F. K., Padovan, J., and Li, W. H. (1988). Rub in high-performance turbo-machinery, modeling, solution methodology, and signature analysis, Mechanical Systems and Signal Processing 2, 113–133.
Choy, F. K., Padovan, J., and Qian, W. (1993). Effects of foundation excitation on multiple rub interactions in turbo-machinery, Journal ofSound and Vibration 164, 349–363.
Chu, F., and Zhang, Z. (1997). Periodic, quasiperiodic, and chaotic vibrations of a rub-impact rotor system supported on oil-film bearings, International Journal of Engineering Science 5, 963–973.
Chu, F., and Zhang, Z. (1998). Bifurcation and chaos in a rub-impact Jeffcott rotor system, Journal ofSound and Vibration 210, 1–18.
Chun, S.-B., and Lee, C.-W. (1996). Vibration analysis of shaft-bladed disk system by using substructure synthesis and assumed modes method, Journal ofSound and Vibration 189, 587–608.
Chung, J., Heo, J. W., and Han, C. S. (2003). Natural frequencies of a flexible spinning disk misaligned with the axis of rotation, Journal of Sound and Vibration 260, 763–775.
Chung, J., and Ro, D. S. (1999). Dynamic analysis of an automatic dynamic balancer for rotating mechanisms, Journal ofSound and Vibration 228, 1035–1056.
Combescure, D., and Lazarus, A. (2008). Refined finite element modeling for the vibration analysis of large rotating machines: Application to the gas turbine modular helium reactor power conversion unit, Journal ofSound and Vibration 318, 1262–1280.
Cook, R. D., Malkus, D. S., Plesha, M. E., and Witt, R. J. (2001). Concepts and Applications of Finite Element Analysis, Fourth Edition (John Wiley, N.Y.).
Cookson, R. A., and Kossa, S. S. (1979). The effectiveness of squeeze-film damper bearings supporting rigid rotors without a centralizing spring, International Journal ofMechanical Sciences 21, 639–650.
Cookson, R. A., and Kossa, S. S. (1980). The effectiveness of squeeze-film damper bearings supporting flexible rotors without a centralizing spring, International Journal of Mechanical Sciences 22, 313–324.
Cooley, J. W., and Tukey, J. W. (1965). An algorithm for the machine calculation of complex Fourier series, Mathematics ofComputation 19, 297–301.
Cowper, G. R. (1966). The shear coefficient in Timoshenko's beam theory, Journal of Applied Mechanics 33, 335–340.
Craig, R. R. (1981). Structural Dynamics: An Introduction to Computer Methods (John Wiley, New York).
Craig, R. R., and Bampton, M. C. C. (1968). Coupling of substructures for dynamic analysis, AIAA Journal 6, 1313–1319.
Darpe, A. K., Gupta, K., and Chawla, A. (2004). Coupled bending, longitudinal and torsional vibrations of a cracked rotor, Journal ofSound and Vibration 269, 33–60.
Davies, W. G. R., and Mayes, I. W. (1984). The vibrational behavior analysis of a multi-shaft, multi-bearing system in the presence of a propagating transverse crack, Journal of Vibration, Acoustics, Stress, and Reliability in Design 106, 146–153.
Davis, R., Henshell, R. D., and Warburton, G. B. (1972). A Timoshenko beam element, Journal ofSound and Vibration 22, 475–487.
Dawe, D. J. (1984). Matrix and Finite Element Displacement Analysis of Structures (Oxford University Press, Oxford, England).
de Castro, H. F., Cavalca, K. L., and Nordmann, R. (2008). Whirl and whip instabilities in rotor-bearing system considering a nonlinear force model, Journal ofSound and Vibration, 317, 273-293.
Delamare, J., Rulliere, E., and Yonnet, J. P. (1995). Classification and synthesis of permanent-magnet bearing configurations, IEEE Transactions on Magnetics 31, 4190–4192.
Dimarogonas, A. D. (1976). Vibration Engineering (West Publishers, St Paul, MN).
Dimarogonas, A. D. (1994). Author's reply to Abraham et al. (1994), Journal ofSound and Vibration 169, 575–576.
Dimarogonas, A. D. (1996). Vibration of cracked structures: A State-of-the-art review, Engineering Fracture Mechanics 55, 831–857.
Dimarogonas, A. D., and Papadopoulos, C. A. (1983). Vibration of cracked shafts in bending, Journal ofSound and Vibration 91, 583–593.
Ding, Q., and Leung, A. Y. T. (2005). Numerical and experimental investigations on flexible multi-bearing rotor dynamics, Journal ofVibration and Acoustics 127, 408–415.
Ding, X. J., Yang, Y. L., Chen, W., Huang, S. H., and Zheng, C. G. (2006). Calculation method of efficiency factor in Alfords force, Journal of Power and Energy 220, 169-177.
Dorf, R. C., and Bishop, R. H. (2008). Modern Control Systems, Eleventh Edition (Pearson Prentice Hall, Upper Saddle River, N.J.).
Drew, S. J., Hesterman, D. C., and Stone, B. J. (1999). The torsional excitation of variable inertia effects in a reciprocating engine. Mechanical Systems and Signal Processing 13, 125–144.
Earnshaw, S. (1842). On the nature of the molecular forces which regulate the constitution of the luminiferous ether, Transactions ofthe Cambridge Philosophy Society 7, 97–112.
Eckert, L., Schmied, J., and Ziegler, A. (2006). Case history and analysis of the spiral vibration of a large turbogenerator using three different heat input models, 7th IFToMM Conference on Rotor Dynamics; Vienna, Austria; 25-28 September.
Edney, S. L., Fox, C. H. J., and Williams, E. J. (1990). Tapered Timoshenko finite elements for rotor dynamics analysis, Journal ofSound and Vibration 137, 463–481.
Edwards, S., Lees, A. W., and Friswell, M. I. (1999). The influence of torsion on rotor-stator contact in rotating machinery, Journal ofSound and Vibration 225, 767–778.
Ehrich, F. F. (1988). High-order subharmonic response of high-speed rotors in bearing clearance, Journal ofVibration Acoustics Stress and Reliability in Design 110, 9–16.
Ehrich, F. F. (1992). Observations of subcritical, superharmonic and chaotic response in ro-tordynamics, Journal of Vibration and Acoustics 114, 93–100.
Ehrich, F. F. (1999). Handbook of Rotordynamics (Krieger Publishing Company, Malabar, FL).
Ertas, B. H., and Vance, J. M. (2002). The effect of static and dynamic misalignment on ball-bearing radial stiffness, 38th A1AAASME/SAEASEE Joint Propulsion Conference & Exhibit, 7-10 July 2002, Indianapolis, IN, AIAA 2002-4160.
Fagan, M. J. (1992). Finite Element Analysis: Theory and Practice (Longman Scientific and Technical, Harlow, Essex, England).
Fenner, R. T. (1989). Mechanics of Solids (Blackwell Scientific Publications, Oxford).
Foiles, W. C., and Allaire, P. E. (2006). Single-plane and multi-plane balancing using only amplitude, 7th IFToMM Conference on Rotordynamics; Vienna, Austria; Paper Number 182.
Foiles, W. C., Allaire, P. E., and Gunter, E. J. (1998). Review: Rotor balancing, Shock and Vibration 5, 325–336.
Foiles, W. C., and Bently, D. E. (1998). Balancing with phase only (single-plane and multiplane), Journal ofVibration, Acoustics, Stress, and Reliability in Design 110, 151–157.
Friswell, M. I., Garvey, S. D., and Penny, J. E. T. (1995). Model reduction using dynamic and iterated IRS techniques, Journal ofSound and Vibration 186, 311–323.
Friswell, M. I., Garvey, S. D., and Penny, J. E. T. (1998a). The convergence of the iterated IRS method, Journal ofSound and Vibration 211, 123–132.
Friswell, M. I., Garvey, S. D., Penny, J. E. T., and Smart, M. G. (1998b). Computing critical speeds for rotating machines with speed-dependent bearing properties, Journal ofSound and Vibration 213, 139–158.
Friswell, M. I., and Penny, J. E. T. (1994). The accuracy of jump frequencies in series solutions of the response of a duffing oscillator, Journal of Sound and Vibration 169, 261–269.
Friswell, M. I., Penny, J. E. T., Garvey, S. D., and Lees, A. W. (2001). Damping ratio and natural frequency bifurcations in rotating systems, Journal ofSound and Vibration 245, 960–967.
Friswell, M. I., and Mottershead, J. E. (1995). Finite Element Model Updating in Structural Dynamics (Kluwer Academic Publishers Dordrecht, Netherlands).
Friichtenicht, J., Jordon, H., and Seinsch, H. O. (1982). Exzentrizitats felder als Ursache von Laufinstabilitaten bei asynchronmaschinen, Archiv fiir Elektrotechnik 65, 271–292.
Garvey, S. D., Friswell, M. I., Williams, E. J., Lees, A. W., and Care, I. (2002). Robust balancing for rotating machines, IMechE Journal ofEngineering Science 216, 1117–1130.
Garvey, S. D., Penny, J. E. T. and Friswell, M. I. (1998). The relationship between the real and imaginary parts of complex modes, Journal ofSound and Vibration 212, 75–83.
Garvey, S. D., Williams, E. J., Cotter, G., Davies, C., and Grum, N. (2005). Reductionofnoise effects for in situ balancing of rotors, Journal ofVibration and Acoustics 127, 234–246.
Gasch, R. (1976). Dynamic behavior of a simple rotor with a cross-sectional crack, IMechE Conference on Vibrations in Rotating Machinery, Cambridge, UK, 1976, Paper C178/76.
Gasch, R. (1993). A survey of the dynamic behavior of a simple rotating shaft with a transverse crack, Journal ofSound and Vibration 160, 313–332.
Gasch, R., Markert, R., and Pfützner, H. (1979). Acceleration of unbalanced flexible rotors through the critical speeds, Journal ofSound and Vibration 63, 393–409.
Genta, G., and Delprete, C. (1995). Acceleration through critical speeds of an anisotropic, nonlinear, torsionally stiff rotor with many degrees of freedom, Journal of Sound and Vibration 180, 369–386.
Genta, G., and Gugliotta, A. (1988). A conical element for finite element rotor dynamics, Journal ofSound and Vibration 120, 175–182.
Genta, G., and Tonoli, A. (1997). A harmonic finite element for the analysis of flexural, torsional, and axial rotordynamic behavior of bladed arrays, Journal ofSound and Vibration 207, 693–720.
Geradin, M., and Kill, N. (1984). A new approach to finite element modeling of flexible rotors, Engineering Computations 1, 52–64.
Gibbons, C. B. (1976). Coupling misalignment forces, Proceedings ofthe Fifth Turbomachinery Symposium, College Station, TX, 111-116.
Glasgow, D. A., and Nelson, H. D. (1980). Stability analysis of rotor-bearing systems using component-mode synthesis, Journal ofMechanical Design 102, 352–359.
Goldman, P., and Muszyiiska, A. (1994a). Chaotic behavior of rotor-stator systems with rubs, Journal of Engineering for Gas Turbines and Power 116, 692–701.
Goldman, P., and Muszynnska, A. (1994b). Dynamic effects in mechanical structures with gaps and impacting: Order and chaos, Journal of Vibration and Acoustics 116, 541–547.
Golub, G. H., and van Loan, C. F. (1996). Matrix Computations (The Johns Hopkins University Press, Baltimore, MD).
Goodman, L. E., and Sutherland, J. G. (1951). Natural frequencies of continuous beams of uniform span length, Journal of Applied Mechanics 18, 217–218.
Goodwin, M. J. (1989). Dynamics of Rotor-Bearing Systems (Unwin Hyman, London).
Goodwin, M. J., Hooke, C. J., and Penny, J. E. T. (1983). Controlling the dynamic characteristics of a hydrostatic bearing by using a pocket-connected accumulator, Proceedings of the IMechE, 197 C, 255-258.
Goodwin, M. J., Penny, J. E. T., and Hooke, C. J. (1984). Variable impedance bearings for turbo-generator rotors, Proceedings of the Third International Conference on Vibrations in Rotating Machinery; York, England; September 1984, Paper C288/8, 535-541.
Gordis, J. H. (1992). An analysis of the improved reduced system (IRS) model reduction procedure, Proceedings of the 10th International Modal Analysis Conference; San Diego, CA, 471-479.
Green, K., Champneys, A. R., Friswell, M. I., and Munoz, A. M. (2008). Investigation of a multi-ball automatic dynamic balancing mechanism for eccentric rotors, Royal Society Philosophical Transactions A 366(1866), 705-728.
Grieve, D. W., and McShane, I. E. (1989). Torque pulsations on inverter-fed induction motors. Proceedings of the Fourth International Conference on Electrical Machines and Drives, London, IEE Conference Publication 310, 328-333.
Guyan, R. J. (1965). Reduction of stiffness and mass matrices, AIAA Journal 3, 380.
Hamrock, B. J., Schmid, S. R., and Jacobson, B. O. (2004). Fundamentals of Fluid Film Lubrication (Marcel Dekker, NJ).
Han, D. J. (2007). Generalized modal balancing for nonisotropic rotor systems, Mechanical Systems and Signal Processing 21, 2137–2160.
Han, S. M., Benaroya, H., and Wei, T. (1999). Dynamics oftransversely vibratingbeams using four engineering theories, Journal of Sound and Vibration 225, 935–988.
Harris, T. A. (2001). Rolling Bearing Analysis, Fourth Edition (John Wiley and Son, New York).
Henry, T. A., and Okah-Avae, B. E. (1976). Vibrations in cracked shafts, IMechE Conference on Vibrations in Rotating Machinery, Cambridge, UK, 15-19.
Henshell, R. D., and Ong, J. H. (1975). Automatic masters for eigenvalue economisation, Earthquake Engineering and Structural Dynamics, 3, 375-383.
Heo, J. W., Chung, J., and Choi, K. (2003). Dynamic time responses of a flexible spinning disk misaligned with the axis of rotation, Journal ofSound and Vibration 262, 25–44.
Herzog, R., Buhler, P., Gahler, C., and Larsonneur, R. (1996). Unbalance compensationusing generalized notch-filters in the multivariable feedback of magnetic bearings, IEEE Transactions on Control Systems Technology 4, 580–586.
Hoa, S. V. (1979). Vibration ofa rotating beamwith tip mass, Journal of Sound and Vibration 67, 369–381.
Horn, R. A., and Johnson, C. R. (1985). Matrix Analysis (Cambridge University Press England).
Hu, H. Y., Jiang, P. L., and Yu, L. (2002). Coupled axial-lateral-torsional dynamics of a rotor-bearing system geared by spur bevel gears, Journal ofSound and Vibration 254, 427–446.
Hutchinson, J. R. (2001). Shear coefficients for Timoshenko beam theory, Journal of Applied Mechanics 68, 87–92.
Inman, D. J. (2006). Vibration with Control (John Wiley and Sons, Chichester, England).
Inman, D. J. (2008). Engineering Vibration, Third Edition (Pearson Prentice Hall, Upper Saddle River, N.J.).
Irons, B. M., and Ahmad, S. (1980). Techniques of Finite Elements (Ellis Horwood, Chichester, England).
ISO (1997). ISO 1940-2:1997, Mechanical Vibration: Balance Quality Requirements of Rigid Rotors, Part 2. Balance Errors.
ISO (1998). ISO 11342:1998, Mechanical Vibration: Balancing, Methods and Criteria for the Mechanical Balancing of Flexible Rotors.
ISO (2003). ISO 1940-1:2003, Mechanical Vibration: Balance Quality Requirements for Rigid Rotors in a Constant (Rigid) State, Part 1. Specification and Verification of Balance Tolerances.
ISO (2007). ISO 19499:2007, Mechanical Vibration: Balancing, Guidance on the Use and Application of Balancing Standards.
Jang, G. H., Lee, S. H., and Jung, M. S. (2002). Free vibration analysis of a spinning flexible disk-spindle system supported by ball bearing and flexible shaft using finite element method and substructuring synthesis, Journal ofSound and Vibration 251, 59–78.
Jeffcott, H. H. (1919). The lateral vibration of loaded shifts in the neighborhood of a whirling speed: The effects of want of balance, Philosophical Magazine Series 6, 37, 304-314.
Jei, Y. G., and Lee, C. W. (1992). Does curve veering occur in the eigenvalue problem of rotors? Journal of Vibration and Acoustics 114, 32–36.
Jia, H. S., and Chun, S. B. (1997). Evaluation of the longitudinal coupled vibrations in rotating, flexible disks-spindle systems, Journal of Sound and Vibration 208, 175–187.
Jordan, D. W., and smith, P. (1977). Nonlinear Ordinary Differential Equations (Oxford University Press, Oxford, England).
Jun, O. S., Eun, H. J., Earmme, Y. Y., and Lee, C.-W. (1992). Modeling and vibration analysis of a simple rotor with a breathing crack, Journal ofSound and Vibration 155, 273–290.
Kang, Y., Shih, Y.-P., and Lee, A.-C. (1992). Investigation on the steady-state responses of asymmetric rotors, Journal ofVibration and Acoustics 114, 194–208.
Keiner, H., and Gadala, M. S. (1988). Comparison of different modeling techniques to simulate the vibration of a cracked rotor, Journal ofSound and Vibration 254, 1012–1024.
Kellenburger, W. (1980). Spiral vibrations due to seal rings in turbo-generators: Thermally induced interaction between rotor and stator. Journal of Mechanical Design 102, 177–184.
Kellenberger, W., and Rihak, P. (1988). Bimodal (complex) balancing of large turbogenerator rotors having large or small unbalance. IMechE Conference on Vibrations in Rotating Machinery, Edinburgh, 479-486, Paper Number C292/88.
Keogh, P. S., and Morton, P. G. (1993). Journal bearing differential heating evaluation with influence on rotordynamic behavior. Proceedings of the Royal Society: Mathematical and Physical Sciences 441, 527–548.
Keogh, P. S., and Morton, P. G. (1994). The dynamic nature of rotor thermal bending due to unsteady lubricant shearing within a bearing, Proceedings of the Royal Society: Mathematical and Physical Sciences 445, 273–290.
Kessler, C., and Kim, J. (2001). Concept of directional natural mode for vibration analysis of rotors using complex variable descriptions, Journal ofSound and Vibration 239, 545–555.
Khulief, Y. A. (1989). Vibration frequencies of a rotating tapered beam with end mass, Journal ofSound and Vibration 134, 87–97.
Khulief, Y. A., and Bazoune, A. (1992). Frequencies of rotating tapered Timoshenko beams with different boundary conditions, Computers and Structures 42, 781–795.
Khulief, Y. A., and Yi, L. J. (1988). Lead lag vibrational frequencies of a rotating beam with end mass, Computers and Structures 29, 1075–1085.
Kill, N. (2008). Application of multistage cyclic symmetry to rotordynamics, Ninth International Conference on Vibrations in Rotating Machinery, Exeter, UK, 8-10 September 2008, 267-276, IMechE Paper C663/015/08.
Kirk, R. G., and Guo, Z. (2005). Morton effect analysis: Theory, program and case study. 3rd International Symposium on Stability Control in Rotating Machinery, Cleveland, OH.
Knospe, C. R., Hope, R. W., Fedigan, S., and Williams, R. (1995). Experiments in the control of unbalance response using magnetic bearings, Mechanics 5, 385–400.
Knospe, C. R., Hope, R. W., Tamer, S. M., and Fedigan, S. J. (1996). Robustness of adaptive unbalance control of rotors with magnetic bearings, Journal ofVibration and Control 2, 33–52.
Kramer, E. (1993). Dynamics of Rotors and Foundations (Springer-Verlag, Berlin, Germany).
Kumar, D. S., Sujatha, C., and Ganesan, N. (1997). Disc flexibility effects in rotor-bearing systems, Computers and Structures 62, 715–719.
Lalanne, M., and Ferraris, G. (1999). Rotordynamics Prediction in Engineering, Second Edition (John Wiley and Sons, New York).
Laurenson, R. M. (1976). Modal analysis of rotating flexible structures, AIAA Journal 14, 1444–1450.
Lee, C.-W. (1993). Vibration Analysis ofRotors (Kluwer Academic Publishers, Dordrecht, Netherlands).
Lee, A. S., Ha, J. W., and Choi, D. H. (2003). Coupled lateral and torsional vibration characteristics of a speed increasing geared rotor system, Journal ofSound and Vibration 263, 725–742.
Lee, C.-W., and Chun, S.-B. (1998). Vibration analysis of a rotor with multiple flexible disks using assumed-modes method, Journal ofVibration and Acoustics 120, 87–94.
Lee, C.-W., Joh, Y.-D., and Kim, Y.-D. (1990). Automatic modal balancing of flexible rotors during operation: Computer-controlled balancing head, Journal ofMechanical Engineering Science 204, 19–28.
Lees, A. W., and Friswell, M. I. (2001). The vibration signature of chordal cracks in asymmetric rotors, 19th International Modal Analysis Conference, Orlando, FL, 124-129.
Lewis, F. M. (1932). Vibration during acceleration through a critical speed, Transactions of the American Society of Mechanical Engineers 54, 253–261.
Li, G. X., Lin, Z. L., and Allaire, P. E. (2008). Robust optimal balancing of high-speed machinery using convex optimization, Journal ofVibration and Acoustics 130, Article Number 031008.
Li, M., and Yu, L. (2001). Analysis of the coupled lateral torsional vibration of a rotor-bearing system with a misaligned gear coupling, Journal of Sound and Vibration 243, 283–300.
Likins, P. W., Barbera, F. J., and Baddeley, V. (1973). Mathematical modeling of spinning elastic bodies for modal analysis, AIAA Journal 11, 1251–1258.
Lim, T. C., and Singh, R. (1990). Vibration transmission through rolling-element bearings, Part 1: Bearing stiffness formulation, Journal of Sound and Vibration 139, 179–199.
Lim, T. C., and Singh, R. (1994). Vibration transmission through rolling-element bearings, Part V: Effect of distributed contact load in roller-bearing stiffness matrix, Journal of Sound and Vibration 169, 547–553.
Lindfield, G. R., and Penny, J. E. T. (2000). Numerical Methods Using MATLAB (Prentice Hall Upper Saddle River, New Jersey).
Lum, K. Y., Coppola, V. T., and Bernstein, D. (1996). Adaptive autocentering control for an active magnetic bearing supporting a rotor with unknown mass imbalance, IEEE Transactions on Control Systems Technology, 4, 587-597.
Luo, Z., Sun, X., and Fawcett, J. N. (1996). Coupled torsional-lateral-axial vibration analysis of geared shaft systems using substructure synthesis, Mechanism and Machine Theory 31, 345–352.
Matsukura, Y., Kiso, M., Inoue, T., and Tomisawa, M. (1979). On the balancing convergence of flexible rotors, with special reference to asymmetric rotors, Journal of Sound and Vibration 63, 419–428.
Mayes, I. W., and Davies, W. G. R. (1976). The vibrational behavior ofa rotating shaft system containing a transverse crack, IMechE Conference on Vibrations in Rotating Machinery, Cambridge, UK, 53-64.
Mayes, I. W., and Davies, W. G. R. (1984). Analysis of the response of a multirotor-bearing system containing a transverse crack, Journal of Vibration, Acoustics, Stress, and Reliability in Design 106, 139–145.
Meirovitch, L. (1967). Analytical Methods in Vibrations (Macmillan, New York).
Meirovitch, L. (1986). Elements ofVibration Analysis, Second Edition (McGraw-Hill, New York).
Merrill, E. F. (1994). Dynamics of AC electrical machines. IEEE Transactions on Industry Applications 30, 277–285.
Mohan, S., and Hahn, E. J. (1974). Design of squeeze-film damper supports for rigid rotors, Journal ofEngineering for Industry 96, 976–982.
Moon, F. C. (2004). Chaotic Vibrations, Second Edition (John Wiley and Sons, N.Y.).
Morton, P. G. (2008). Unstable shaft vibrations arising from thermal effects due to oil shearing between stationary and rotating elements, Ninth International Conference on Vibrations in Rotating Machinery, Exeter, England, 383-392.
Muszynnska, A. (1984). Partial lateral rotor to stator rubs, 3rd International Conference on Vibrations in Rotating Machinery; York, UK; Paper C281/84, 327-335.
Muszynnska, A. (1989). Rotor to stationary element rub-related vibration phenomena in rotating machinery: Literature survey, Shock and Vibration Digest 21, 3–11.
Muszynnska, A. (2005). Rotordynamics (CRC Press, Taylor and Francis, Boca Raton, FL).
NAFEMS (1986). A Finite Element Primer (NAFEM, East Kilbride, Glasgow, U.K.).
Nandi, A., and Neogy, S. (2001). Modeling of rotors with three-dimensional solid finite elements, Journal ofStrain Analysis for Engineering Design 36, 359–371.
Nelson, H. D. (1980). A finite rotating shaft element using Timoshenko beam theory, Journal ofMechanical Design 102, 793–803.
Nelson, H. D., and McVaugh, J. M. (1976). The dynamics of rotor-bearing systems using finite elements, Journal of Engineering for Industry 98, 593–599.
Newkirk, B. L. (1926). Shaft rubbing: Relative freedom of rotor shafts from sensitiveness to rubbing contact when running above their critical speeds. Mechanical Engineering 48, 830–832.
Newkirk, B. L., and Taylor, H. D. (1925). Shaft-whipping due to oil action in journal bearings, General Electric Review 28, 559–568.
Newland, D. E. (1984). An Introduction to Random Vibrations and Spectral Analysis, Second Edition (Longman Scientific and Technical, Harlow England).
Newland, D. E. (1989). Mechanical Vibration Analysis and Computation (Longman Scientific and Technical, Harlow England).
Newmark, N. M. (1959). A method of computation for structural dynamics, ASCE Journal of Engineering Mechanics 85, 67–94.
O'Callahan, J. C. (1989). A procedure for an improved reduced system (IRS) model, Proceedings of the 7th International Modal Analysis Conference; Las Vegas, NV; 1721.
O'Callahan, J. C., Avitabile, P., and Riemer, R. (1989). System equivalent reduction expansion process (SEREP), Proceedings ofthe 7th International Modal Analysis Conference; Las Vegas, NV, 29-37.
Ostachowicz, W. M., and Krawczuk, M. (1992). Coupled torsional and bending vibrations of a rotor with an open crack, Archive ofApplied Mechanics 62, 191–201.
Papadopoulos, C. A. (2004). Some comments on the calculation of the local flexibility of cracked shafts, Journal of Sound and Vibration 278, 1205–1211.
Papadopoulos, C. A., and Dimarogonas, A. D. (1987). Coupled longitudinal and bending vibrations of a rotating shaft with an open crack, Journal ofSound and Vibration 117, 81–93.
Parkinson, A. G. (1965). The vibrationand balancingofshaftrotatinginasymmetricbearings, Journal ofSound and Vibration 2, 477–501.
Parkinson, A. G. (1966). On balancing of shafts with axial asymmetry, Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences 294(1436), 66–79.
Parkinson, A. G. (1967). An introduction to the vibration of rotating flexible shafts, Bulletin ofMechanical Engineering Education 6, 47–62.
Parkinson, A. G. (1991). Balancing of rotating machinery, Proceedings of the Institution of Mechanical Engineers, Part C, Journal ofMechanical Engineering Science 205, 53–66.
Parkinson, A. G., Darlow, M. S., and Smalley, A. J. (1980). A theoretical introduction to the development of a unified approach to flexible rotor balancing, Journal of Sound and Vibration 68, 489–506.
Pasricha, M. S., and Carnegie, W. D. (1976). Effects of variable inertia on the damped torsional vibrations of diesel-engine systems, Journal of Sound and Vibration 46, 339–345.
Pasricha, M. S., and Carnegie, W. D. (1979). Formulation of the equations ofdynamic motion including the effects of variable inertia on the torsional vibrations in reciprocating engines, Journal ofSound and Vibration 66, 181–186.
Pasricha, M. S., and Hassan, A. Y. (1997). Effects of dampingon secondary resonances in torsional vibrations of a two degree of freedom system - a variable inertia aspect in reciprocating engines, Sixth International Conference on Recent Advances in Structural Dynamics, Southampton, UK, 693-707.
Paz, M. (1984). Dynamic condensation, AIAA Journal 22, 724–727.
Penny, J. E. T., and Friswell, M. I. (2002). Simplified modeling of rotor cracks, ISMA 27; Leuven, Belgium; 607-615.
Perkins, N. C., and Mote, C. D. (1986). Comments on curve veering in eigenvalue problems, Journal ofSound and Vibration 106, 451–463.
Petyt, M. (1990). Introduction to Finite Element Vibration Analysis (Cambridge University Press).
Pilkey, W. D. (2005). Formulas for Stress, Strain, and Structural Matrices, Second Edition (John Wiley & Sons, Inc., Hoboken, NJ).
Porter, B. (1965). Nonlinear torsional vibration of a two-degree-of-freedom system having variable inertia, Journal ofMechanical Engineering Science 7, 101–113.
Proctor, M. P., and Gunter, E. J. (2005). Nonlinear whirl response of a high-speed seal test rotor with marginal and extended squeeze-film dampers, NASA Report, TM-2005-213808, August 2005, ISCORMA-3; Cleveland, OH; 19-23 September 2005.
Qu, Z.-Q. (2004). Model Order Reduction Techniques: With Applications in Finite Element Analysis (Springer-Verlag, UK).
Rades, M. (1998). Rotor-bearing model order reduction, 5thIFToMM, Darmstadt, Germany, 148-159.
Rao, S. S. (1990). Mechanical Vibrations, Second Edition (Addison-Wesley, Reading, MA).
Rao, J. S., Shiau, T. N., and Chang, J. R. (1998). Theoretical analysis of lateral response due to torsional excitation of geared rotors, Mechanism and Machine Theory 33, 761–783.
Rieger, N. F. (1986). Balancing of Rigid and Flexible Rotors, The Shock and Vibration Information Center, Washington, DC.
Saavedra, P. N., and Cuitino, L. A. (2002). Vibration analysis of rotor for crack identification, Journal ofVibration and Control 8, 51–67.
Saito, S., and Azuma, T. (1983). Balancing of flexible rotors by the complex modal method, Journal ofVibrations, Acoustics, Stress, and Reliability in Design 15, 94–100.
Sawicki, J. T., Montilla-Bravo, A., and Gosiewski, Z. (2003). Thermo-mechanical behavior of rotor with rubbing, International Journal ofRotating Machinery 9, 41–47.
Schneider, H. (2000). Exchangeability of rotor modules: A new balancing procedure for rotors in a flexible state, Seventh International Conference on Vibrations in Rotating Machinery; Nottingham, UK; Paper Number C576/018/2000, 101-108.
Sekhar, A. S. (2004). Crack identification in a rotor system: A model-based approach, Journal ofSound and Vibration 270, 887–902.
Sekhar, A. S., and Prabhu, B. S. (1995). Effects of coupling misalignment on vibrations of rotating machinery, Journal ofSound and Vibration 185, 655–671.
Sinha, J. K., Friswell, M. I., and Lees, A. W. (2002). The identification of the unbalance and the foundation model of a flexible rotating machine from a single rundown, Mechanical Systems and Signal Processing 16, 255–271.
Sinha, J. K., Lees, A. W., and Friswell, M. I. (2004). Estimating unbalance and misalignment of a flexible rotating machine from a single rundown, Journal of Sound and Vibration 272, 967–989.
Sinou, J. J., and Lees, A. W. (2005). The influence of cracks in rotating shafts, Journal of Sound and Vibration 285, 1015–1037.
Smith, D. M. (1969). Journal Bearings in Turbomachinery (Chapman and Hall, London).
Somervaille, I. J. (1954). Balancing a rotating disk: Simple graphical construction, Engineering 177, 241–242.
Stephenson, R. W., Rouch, K. E., and Arora, R. (1989). Modeling rotors with axisymmetric solid harmonic elements, Journal ofSound and Vibration 131, 431–443.
Tenhunen, A., Holopainen, T. P., and Arkkio, A. (2003). Impulse method to calculate the frequency response of the electromagnetic forces on whirling-cage rotors. IEE Proceedings: Electric Power Applications 150, 752–756.
Thomas, D. L., Wilson, J. M., and Wilson, R. R. (1973). Timoshenko beam finite elements, Journal ofSound and Vibration 31, 315–330.
Thomas, H. J., Urlichs, K., and Wohlrab, R. (1976). Rotor instability in thermal turbomachines as a result of gap excitation, VGB Kraftwerkstechnik 56, 345–352.
Thompson, J. M. T., and Stewart, H. B. (1986). Nonlinear Dynamics and Chaos (John Wiley and SonsChichester, England).
Thompson, W. T. (1993). Theory ofVibration with Applications, Fourth Edition (Prentice Hall, Englewood Cliffs, NJ).
Thomsen, J. J. (1997). Vibrations and Stability: Order and Chaos (McGraw-Hill, Maidenhead England).
Tondl, A. (1965). Some Problems of Rotor Dynamics (Chapman and Hall, London).
Tondl, A., Ruijgrok, T., Verhulst, F., and Nabergoj, R. (2000). Autoparametric Resonances in Mechanical Systems (Cambridge University Press, England).
Turhan, O., and Bulut, G. (2006). Linearly coupled shaft-torsional and blade-bending vibrations in multistage rotor-blade systems, Journal ofSound and Vibration 296, 292–318.
Untaroiu, C. D., Allaire, P. E., and Foiles, W. C. (2008). Balancing of flexible rotors using convex optimization techniques: Optimum min-max LMI influence coefficient balancing, Journal of Vibration and Acoustics 130, Article Number 021006.
Van de Vegte, J. (1981). Balancing of flexible rotors during operation, Journal of Mechanical Engineering Science 23, 257–261.
Van de Vegte, J., and Lake, R. T. (1978). Balancing of rotating systems during operation, Journal ofSound and Vibration 57, 225–235.
Verstege, S. (1998). Oil whip in transient operating conditions conditions: Case history, analysis, and remedial action, Fifth International Conference on Rotor Dynamics; Darmstadt, Germany; 525-535.
Vold, H., and Leuridan, J. (1995). High-resolution order tracking at extreme slew rates using Kalman tracking filters, Shock and Vibration 2, 507–515.
von Groll, G., and Ewins, D. J. (2001). The harmonic balance method with arc-length continuation in rotor-stator contact problems, Journal of Sound and Vibration 241, 223–233.
von Groll, G., and Ewins, D. J. (2002). A mechanism of low subharmonic response in rotor-stator contact: Measurements and simulations, Journal of Vibration and Acoustics 124, 350–358.
Wauer, J., and Suherman, S. (1998). Vibration suppression of rotating shafts passing through resonances by switching shaft stiffness, Journal of Vibration and Acoustics 120, 170–180.
Wilkinson, J. H. (1965). The Algebraic Eigenvalue Problem (Clarendon Press, Oxford).
White, M. F. (1979). Rolling-element bearing vibration transfer characteristics: Effect of stiffness, Journal ofApplied Mechanics 46, 677–684.
Wolff, F. H., and Molnar, A. J. (1985). Variable frequency drives multiply torsional vibration problems, Power 129, 83–85.
Wu, J.-S., and Yang, I.-H. (1995). Computer method for torsion-and-flexure-coupled forced vibration of shafting system with damping, Journal ofSound and Vibration 180, 417–435.
Xu, M., and Marangoni, R. D. (1994a). Vibration analysis of a motor flexible coupling rotor system subject to misalignment and unbalance. 1. Theoretical-model and analysis, Journal of Sound and Vibration 176, 663–679.
Xu, M., and Marangoni, R. D. (1994b). Vibration analysis of a motor flexible coupling rotor system subject to misalignment and unbalance. 2. Experimental validation, Journal of Sound and Vibration 176, 681–691.
Yokoyama, T. (1988). Free vibration characteristics of rotating Timoshenko beams, International Journal ofMechanical Sciences 30, 743–755.
Zhou, S., and Shi, J. (2001). Active balancing and vibration control of rotating machinery: A survey, Shock and Vibration Digest 33, 361–371.
Zienkiewicz, O. C., Taylor, R. L., and Zhu, J. Z. (2005). The Finite Element Method, Sixth Edition (Elsevier Butterworth-Heinemann, Oxford).
Zorzi, E. S., and Nelson, H. D. (1980). The dynamics of rotor-bearing systems with axial torque: A finite element approach, Journal of Mechanical Design 102, 158-161.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.