Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B., Petran and F., Csaaki (Eds.), International symposium on information theory, Budapest: Akadeemiai Kiadi, pp. 267–281.
Berger, J. O. and L. R., Pericchi (1996). The intrinsic Bayes factor for model selection and prediction. Journal Of The American Statistical Association 91(433), 109–122.
Casella, G. and R., Berger (1990). Statistical inference. Belmont, CA: Duxbury Press.
Cox, D. R. (1992). Planning of experiments. New York: Wiley Classics Library.
Cox, D. R. and D. V., Hinkley (1974). Theoretical statistics. London: Chapman & Hall.
Davis, T. A. (2006). Direct methods for sparse linear systems. Philadelphia: SIAM.
Davison, A. C. (2003). Statistical models. Cambridge: Cambridge University Press.
De Groot, M. H. and M. J., Schervish (2002). Probability and statistics. Boston: Addison-Wesley.
Fahrmeir, L., T., Kneib, and S., Lang (2004). Penalized structured additive regression for space-time data: a Bayesian perspective. Statistica Sinica 14(3), 731–761.
Friel, N. and A., Pettitt (2008). Marginal likelihood estimation via power posteriors. Journal of the Royal Statistical Society, Series B 70(3), 589–607.
Gage, J. and P., Tyler (1985). Growth and recruitment of the deep-sea urchin echinus affinis. Marine Biology 90(1), 41–53.
Gamerman, D. and H., Lopes (2006). Markov chain Monte Carlo: stochastic simulation for Bayesian inference, Volume 68. Boca Raton, FL: Chapman & Hall CRC.
Gelman, A., J. B., Carlin, H. S., Stern, D. B., Dunson, A., Vehtari, and D. B., Rubin (2013). Bayesian data analysis. Boca Raton, FL: CRC press.
Gentle, J. (2003). Random number generation and Monte Carlo methods (2nd ed.). New York: Springer.
Gill, P. E., W., Murray, and M. H., Wright (1981). Practical optimization. London: Academic Press.
Golub, G. H. and C. F., Van Loan (2013). Matrix computations (4th ed.). Baltimore: Johns Hopkins University Press.
Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82(4), 711–732.
Griewank, A. and A., Walther (2008). Evaluating derivatives: principles and techniques ofalgorithmic differentiation. Philadelphia: SIAM.
Grimmett, G. and D., Stirzaker (2001). Probability and random processes (3rd ed.). Oxford: Oxford University Press.
Gurney, W. S. C. and R. M., Nisbet (1998). Ecological dynamics. Oxford: Oxford University Press.
Hastie, T., R., Tibshirani, and J., Friedman (2001). The Elements of Statistical Learning. New York: Springer.
Kass, R. and A., Raftery (1995). Bayes factors. Journal of the American Statistical Association 90(430), 773–795.
Klein, J. and M., Moeschberger (2003). Survival analysis: techniques for censored and truncated data (2nd ed.). New York: Springer.
Marsaglia, G. (2003). Xorshift random number generators. Journal of Statistical Software 8(14), 1–16.
Matsumoto, M. and T., Nishimura (1998). Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation 8, 3–30.
McCullagh, P. and J. A., Nelder (1989). Generalized linear models (2nd ed.). London: Chapman & Hall.
Neal, R. M. (2003). Slice sampling. Annals of Statistics 31, 705–767.
Nocedal, J. and S., Wright (2006). Numerical optimization (2nd ed.). New York: Springer verlag.
O'Hagan, A. (1995). Fractional Bayes factors for model comparison. Journal of the Royal Statistical Society. Series B (Methodological) 57(1), 99–138.
Pinheiro, J. C. and D. M., Bates (2000). Mixed-effects models in S and S-PLUS. New York: Springer-Verlag.
Plummer, M., N., Best, K., Cowles, and K., Vines (2006). Coda: convergence diagnosis and output analysis for MCMC. R News 6(1), 7–11.
Press, W., S., Teukolsky, W., Vetterling, and B., Flannery (2007). Numerical recipes (3rd ed.). Cambridge: Cambridge University Press.
R Core Team (2012). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. ISBN 3-900051-07-0.
Ripley, B. D. (1987). Stochastic simulation. New York: Wiley.
Robert, C. (2007). The Bayesian choice: from decision-theoretic foundations to computational implementation. New York: Springer.
Robert, C. and G., Casella (2009). Introducing Monte Carlo methods with R. New York: Springer.
Roberts, G. O., A., Gelman, and W. R., Gilks (1997). Weak convergence and optimal scaling of random walk metropolis algorithms. The Annals of Applied Probability 7(1), 110–120.
Rue, H., S., Martino, and N., Chopin (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the royal statistical society: Series B 71(2), 319–392.
Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics 6(2), 461–464.
Silvey, S. D. (1970). Statistical inference. London: Chapman & Hall.
Spiegelhalter, D. J., N. G., Best, B. P., Carlin, and A., van der Linde (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society, Series B 64(4), 583–639.
Steele, B. M. (1996). A modified EM algorithm for estimation in generalized mixed models. Biometrics 52(4), 1295–1310.
Tierney, L., R., Kass, and J., Kadane (1989). Fully exponential Laplace approximations to expectations and variances of nonpositive functions. Journal of the American Statistical Association 84(407), 710–716.
Watkins, D. S. (1991). Fundamentals of matrix computation. New York: Wiley.
Wichmann, B. and I., Hill (1982). Efficient and portable pseudo-random number generator. Applied Statistics 31, 188–190.
Wood, S. N. (2006). Generalized additive models: an introduction with R. Boca Raton, FL: CRC press.